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Abstract

We compare the constructions of Levi-Civita connections for noncommutative algebras developed in
[AW17, BGM20, MR24a]. The assumptions in these various constructions differ, but when they are all
defined, we provide direct translations between them. An essential assumption is that the (indefinite)
Hermitian inner product on differential forms/vector fields provides an isomorphism with the module
dual. By exploiting our translations and clarifying the simplifications that occur for centred bimodules,
we extend the existence results for Hermitian torsion-free connections in [AW17, BGM20].

1 Introduction
In the last decade, there have been several approaches to defining Levi-Civita connections, and so a

curvature tensor, in noncommutative geometry, [AW17, BM20, BGM20, BGJ21, MR24a, R13]. All use
the algebraic definition of connections on modules, but then different starting points and assumptions
enter to prove existence and/or uniqueness. Our aim is to clarify the relationships between the various
existence and uniqueness arguments. By providing a consistent language to translate between the different
approaches, we extend the existence results for Hermitian torsion-free connections in [AW17, BGM20].

The first difference to address is whether the Levi-Civita connection is defined on vector fields/deriva-
tions or on differential forms. The vector field/derivation approach is taken in [AW17, AW17b, R13]
in the setting of θ-deformations of free torus actions. The differential form approach fits well with
the algebraic machinary of differential calculi described in [BM20], and was the approach taken in
[BGM20, BGJ21, MR24a]. By being able to relate the two approaches, we recover much of the lan-
guage and flexibility of differential geometry in the noncommutative setting.

An existence and uniqueness proof for the Levi-Civita connection when the one-forms belong to a
class of centred bimodules (satisfying some side conditions including finite projectivity) was given in
[BGM20, BGJ21], with θ-deformations of free torus actions as a main example. In [MR24a] the centredness
of the one-forms was removed, with similar algebraic side conditions to those in [BGM20, BGJ21]. The
general framework of [AW17, AW17b] yields a uniqueness statement for metric compatible torsion-free
affine connections, but existence is only shown in examples, which crucially satisfy (up to duality) the
stronger assumptions of [BGM20, BGJ21]. An additional feature of [AW17, AW17b, BGM20, BGJ21]
is the introduction of non-degenerate indefinite signature Hermitian inner products (on vector fields and
one-forms respectively) to incorporate pseudo-Riemannian metrics. A different, possibly more restrictive,
approach to indefinite metrics appears in [MR24a].
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The setting in which all of the above approaches make sense and can be compared is that of centred
bimodules. To describe our results, recall that a centred bimodule X over an algebra A is generated as
an A-bimodule by central elements xj ∈ X , which satisfy xja = axj for all a ∈ A.

The special role of centredness for modules of one-forms Ω1
d is due to the existence, proved by Skeide

[S96], of a bimodule map σ ∶ (Ω1
d)⊗2 → (Ω1

d)⊗2 satisfying σ(ω ⊗ η) = η ⊗ ω when at least one of ω, η ∈ Ω1
d

is central. Thus we have a natural idempotent Ψ = 1
2(1 + σ) on the two-tensors.

The remaining differences revolve around the assumptions on the inner product on vector fields or
one-forms. In [AW17, AW17b] the inner product on vector fields is assumed to yield an injective map
X ∋ X ↦ (Y ↦ ⟨X ∣ Y ⟩) ∈ ÐÐ→HomA(X ,A), and we call this weak non-degeneracy. In [BGM20, BGJ21]
the same map is assumed to be an isomorphism, and we call this strong non-degeneracy. Very recently,
[AH25] has obtained existence results using strong non-degeneracy and various symmetry constraints on
the inner product.

In [MR24a] it is assumed that there is a pre-C∗-inner product, that is, positive definite and therefore
weakly non-degenerate, and that the algebra A is local (spectrally invariant and dense) inside a C∗-
algebra. These analytic assumptions were used in two places: to guarantee the existence of frames for the
one-forms1; and to obtain existence of a limit defining an Hermitian torsion-free connection on one-forms.
The existence of a frame implies strong non-degeneracy of the (in this case positive definite) inner product.

In Appendix A we show that strongly non-degenerate inner products guarantee the existence of a
suitable generalisation for frames. In Section 4.5 we show that for centred bimodules with strongly non-
degenerate inner product the existence of an Hermitian torsion-free connection on one-forms follows purely
algebraically. We stress that the latter argument does not hold in the generality of non-centred bimodules.
Thus, for centred bimodules, the analytic assumption of locality in [MR24a] can be effectively replaced
by the algebraic assumption of strong non-degeneracy. Nevertheless, establishing strong non-degeneracy
in practice may well require analytic, or other, data.

To relate our results for differential forms to the results of [AW17, AW17b], we show that a centred
Hermitian (in particular strongly non-degenerate) differential calculus gives rise to a Lie algebra of deriva-
tions such that the left and right dual bimodules define left and right pseudo-Riemannian calculi in the
sense of [AW17].

We also extend the existence result of [BGM20] by combining the methods of [BGM20, BGJ21] with
those of [MR24a] in Theorem 4.24. The bimodules considered in [BGM20, BGJ21] satisfy a stronger
condition than centredness (see condition (ii) of [BGM20, Theorem 4.1]), whereas the proof given here
uses only centredness. Using the aforementioned duality results, we derive an existence statement for
metric compatible torsion-free affine connections on vector fields, in the sense of [AW17, AW17b], when
the inner product is strongly non-degenerate, in Corollary 4.25.

Section 2 reviews the definitions and setup of [AW17, MR24a]. Section 3 relates the formalisms of
vector fields and differential forms. Our results relating the differential form connections to the vector field
affine connections of [AW17] are in Section 4, as are our existence and uniqueness statements. Appendix
A presents the results on strongly non-degenerate inner products on suitably finite modules, and are of
independent interest.

For simplicity, we work with unital complex ∗-algebras throughout, and refer to [MR24a, Section 7.1]
for methods to remove the unitality assumption.

Acknowledgements AR thanks Universiteit Leiden for hospitality in 2024. AF also thanks Uni-
versiteit Leiden for hosting him as an intern in 2024, as part of his master’s program at Ecole Normale
Superieure PSL. The authors thank J. Arnlind, J. Bhowmick and D. Goswami for feedback on a prelimi-
nary version, and thank J. Arnlind for sharing the preprint [AH25].

1a particular kind of generating set, [FL02, MR24a]
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2 Background
We begin by recalling the relevant parts of the formalism of [AW17] and [MR24a].

2.1 Pseudo-Riemannian calculi on noncommutative vector fields

In this section we begin by summarising the framework and results developed in [AW17] to extend
(pseudo)-Riemannian geometry to the noncommutative context. To define and study connections for
noncommutative algebras, [AW17] uses derivations as generalisations of vector fields on a smooth manifold.
Indeed, smooth vector fields on a manifold M are in one-to-one correspondence with derivations on
C∞(M), i.e. maps ∂ ∶ C∞(M) → C∞(M) such that ∂(fg) = ∂(f)g + f∂(g) for any two functions
f, g ∈ C∞(M). Vector fields then form both a Lie algebra (using composition of derivations) and a
C∞(M)-module by right multiplication, as sections of a vector bundle. To generalise this construction to
the noncommutative framework, we recall the definitions and terminology from [AW17].

Definition 2.1. Let A be a unital ∗-algebra. Let Der(A) be the set of derivations on A, a (complex)
Lie algebra, but not in general an A-module. We assume the existence of a (right) A-module X (A), a
(complex) Lie subalgebra gC of Der(A) and of a C-linear map

ϕ ∶ gC → X (A). (2.1)

We call X (A) the module of (right) noncommutative vector fields. We denote by g the real Lie algebra
of Hermitian derivations in gC, i.e. those satisfying ∂(a∗)∗ = ∂(a) for all a ∈ A.

Using this formalism we can import classical definitions from Riemannian geometry. First we need a
notion of a metric on vector fields. We will need to consider both right and left A-modules, so we adapt
definitions from [AW17] in the obvious manner to allow both cases. The map ϕ can be defined in the
same way for left or right modules.

Definition 2.2. We say that (X (A), ⟨⋅∣⋅⟩A) is a right metric A-module if X (A) is a right A-module and
⟨⋅∣⋅⟩A ∶ X (A) ×X (A)→ A is a map such that for all X,Y,Z ∈ X (A) and a ∈ A we have

⟨X ∣ Y +Z⟩A = ⟨X ∣ Y ⟩A + ⟨X ∣Z⟩A
⟨X ∣ Y a⟩A = ⟨X ∣ Y ⟩Aa
⟨X ∣ Y ⟩∗A = ⟨Y ∣X⟩A

and the inner product is weakly non-degenerate, meaning

⟨X ∣ Y ⟩A = 0 for all Y ∈ X (A) implies X = 0. (2.2)

Similarly a left metric A-module is a left A-module Y(A) endowed with a map A⟨⋅∣⋅⟩ ∶ Y(A) ×Y(A)→ A
such that

A⟨X ∣ Y +Z⟩ = A⟨X ∣ Y ⟩ + A⟨X ∣Z⟩
A⟨aX ∣ Y ⟩ = aA⟨X ∣ Y ⟩
A⟨X ∣ Y ⟩∗ = A⟨Y ∣X⟩

and the inner product is weakly non-degenerate, meaning

A⟨X ∣ Y ⟩ = 0 for all Y ∈ Y(A) implies X = 0.

We omit subscripts A when there is no ambiguity.

3



Remark 2.3. A pre-C∗-module over a pre-C∗-algebra satisfies ⟨X ∣ X⟩A ≥ 0 for all X, and so satisfies
Definition 2.2, but not conversely. The reason for the extra freedom allowed by (2.2) is to allow for
indefinite real inner products. That said, we will need to replace (2.2) by a stronger non-degeneracy
condition in the sequel to obtain our main results.

There are three pieces of initial data for the approach of [AW17]: the Lie algebra g, the module X (A)
(or Y(A)) and the metric ⟨⋅∣⋅⟩A (or A⟨⋅∣⋅⟩). To ensure the three elements are compatible, in particular so
that we do not have g = 0, we require further conditions.

Definition 2.4. Denoting the pair (g, ϕ) by gϕ, then the triple (X (A), ⟨⋅∣⋅⟩A ,gϕ) (resp. (Y(A),A⟨⋅∣⋅⟩,gϕ))
is called a right (resp. left) metric calculus over X (A) (resp. Y(A)) if the image ϕ(g) generates X (A)
(resp. Y(A)) as a right (resp. left) A-module. It is called a right (resp. left) real metric calculus if in
addition

⟨X ∣ Y ⟩∗ = ⟨X ∣ Y ⟩ for all X,Y ∈ ϕ(g).

2.2 Modules of differential forms

Differential forms over noncommutative algebras have appeared in many ways, from directly geometric
to cohomological applications. Our approach, and needs, are closest to those in [BM20, L97], and follow
the notation and conventions of [MR24a].

In order to state our strong non-degeneracy condition on inner products, and later to dualise from
differential forms to vector fields, we recall the definitions of module duals, as well as the centre of a
bimodule.

Definition 2.5. Let Y be a right A-module. Then
ÐÐ→
HomA(Y,A) is the set of right module homomorphims

Y → A, which is a left A-module. Similarly if Y is a left A-module, then
←ÐÐ
HomA(Y,A) is the set of left

module homomorphims Y → A, which is a right A-module, and if Y is an A-bimodule then
←Ð→
HomA(Y,A)

is the set of bimodule maps Y → A, and Z(Y) = {y ∈ Y ∶ ay = ya for all a ∈ A} is the centre of Y.
Finally, an A-bimodule Y is centred if Z(Y) generates Y as an A-bimodule (or equivalently as a right or
left module).

Much of our discussion of modules of forms and vector fields is simplified by the notion of a †-bimodule.

Definition 2.6. A †-bimodule over the ∗-algebraA is anA-bimodule X that is equipped with an antilinear
involution † ∶ X → X such that (axb)† = b∗x†a∗. Given a †-bimodule X , a †-bimodule derivation is a
bimodule derivation d ∶ A→ X such that d(a∗) = −d(a)†.

Remark 2.7. In [MR24a], †-bimodules were also required to be finite projective and with an inner product.
We will only use †-bimodules in this context below.

The universal one-forms associated to a unital ∗-algebra A are the kernel of the multiplication map

Ω1
u(A) = ker(m ∶ A⊗A→ A) = {∑aiδ(bi) ∶ ai, bi ∈ A}.

The differential δ ∶ A→ Ω1
u(A) is given by δ(b) = 1⊗ b − b⊗ 1. The universal forms are a †-bimodule with

†(aδ(b)) = −δ(b∗)a∗ = −δ(b∗a∗) + b∗δ(a∗), a, b ∈ A.
The universal feature of Ω1

u(A) is that whenever we have an A-†-bimodule M , and a †-bimodule
derivation d ∶ A → M , there exists a †-bimodule map π ∶ Ω1

u(A) → M such that π ○ δ(b) = d(b) for all
b ∈M . The data (M,d) is called a first order †-calculus for A.

Definition 2.8. [BM20, Definitions 1.4 and 1.15] A first order differential structure (Ω1
d(A), †) for the

∗-algebra A is a first order †-calculus (Ω1
d(A),d) for A such that Ω1

d(A) = π(Ω1
u(A)). The first order

differential structure (Ω1
d(A), †) is Hermitian if Ω1

d(A) is a finitely generated projective A-module and
carries a right A-valued inner product ⟨⋅ ∣ ⋅⟩A satisfying, for all ω, η ∈ Ω1

d(A) and a ∈ A
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1. ⟨ω ∣ ηa⟩A = ⟨ω ∣ η⟩Aa;
2. ⟨ω ∣ η⟩∗A = ⟨η ∣ ω⟩A;
3. ⟨aω ∣ η⟩A = ⟨ω ∣ a∗η⟩A;
4. the inner product is strongly non-degenerate, meaning that the map g ∶ ω ↦ (η ↦ ⟨ω† ∣ η⟩A) is an

isomorphism Ω1
d(A)→

ÐÐ→
HomA(Ω1(A),A) of left A-modules.

Remark 2.9. In [MR24a], condition 3. of Definition 2.8 was inadvertently omitted, despite being required
throughout.
Remark 2.10. An Hermitian first order differential structure has a left inner product on one-forms as well,
given by A⟨ω ∣ρ⟩ ∶= ⟨ω† ∣ρ†⟩A. Observe that we have not asked for the inner product to be positive definite,
and to incorporate indefinite inner products, we have condition 4. This is the form of non-degeneracy
used in [BGM20, BGJ21] and which we require to relate the three approaches we consider, and is stronger
than the non-degeneracy imposed in Definition 2.2 by [AW17, AW17b], which amounts to injectivity of
the map Ω1

d(A)→
ÐÐ→
HomA(Ω1(A),A).

Remark 2.11. In [AH25, Definition 3.5], symmetric bilinear forms (such as g) satisfying condition 4 are
referred as being invertible. Such forms are also related to the notion of invertible quantum metric of
[BM20, Definition 1.15]. See also Remark A.5 in Appendix A.
Remark 2.12. In [MR24a], the ∗-algebra A is always assumed to be dense and spectral invariant in a
C∗-algebra A. This assumption allows for a well-defined notion of positivity in A. The inner products
considered in [MR24a] are positive definite in the sense of Hilbert C∗-modules. In this context, the inner
product will satisfy condition 4, a fact implied by the existence of frames.

Example 2.13. Given a spectral triple (A,H,D), see [CPR11] for instance, the commutators of algebra
elements a ∈ A and the self-adjoint operator D are bounded. We can then define the module of one-forms

Ω1
D(A) ∶= span{a[D, b] ∶ a, b ∈ A} ⊂ B(H).

We obtain a first order differential calculus d ∶ A→ Ω1
D(A) by setting d(b) ∶= [D, b]. This calculus carries

an involution (a[D, b])† ∶= [D, b]∗a∗ induced by the operator adjoint. Given the extra data of a strongly
non-degenerate inner product ⟨⋅ ∣ ⋅⟩A on Ω1

D(A), we find that (Ω1
D(A), ⟨⋅ ∣ ⋅⟩A, †) is an Hermitian differential

structure.

We recall some constructions from [L97, MR24a] for (Ω1
d(A), †). Writing T k

d (A) ∶= Ω1
d(A)⊗Ak and

T ∗d (A) = ⊕kT k
d (A), the universal differential forms Ω∗u(A) admit a representation

πd ∶ Ωk
u(A)→ T k

d (A) πd(a0δ(a1)⋯δ(ak)) = a0d(a1)⊗⋯⊗ d(ak). (2.3)

The modules T k
d (A) all carry right (and so left) inner products whenever Ω1

d(A) does. For example, the
inner product on T 2

d (A) is defined on simple tensors ω ⊗ ρ, η ⊗ τ by ⟨ω ⊗ ρ ∣ η ⊗ τ⟩A = ⟨ρ ∣ ⟨ω ∣ η⟩A τ⟩A.
Typically πd is not a map of differential algebras, as T ∗d (A) is not a differential algebra, but πd is an

A-bilinear map of associative ∗-A-algebras, [L97, MR24a]. The †-structure on T ∗d (A) is given by the † on
Ω1
d(A) and (well-defined for the balanced tensor products)

(ω1 ⊗ ω2 ⊗⋯⊗ ωk)† ∶= ω†
k ⊗⋯⊗ ω†

2 ⊗ ω†
1.

The maps πd ∶ Ω∗u(A) → T ∗d (A) and δ ∶ Ωk
u(A) → Ωk+1

u (A) are typically not compatible in the sense
that δ need not map kerπd to itself. Thus in general, T ∗d (A) cannot be made into a differential algebra.
The issue to address is that there are universal forms ω ∈ Ωn

u(A) for which πd(ω) = 0 but πd(δ(ω)) ≠ 0.
The latter are known as junk tensors, [C94, Chapter VI]. We denote the A-bimodules of junk tensors by

JT k
d (A) = {πd(δ(ω)) ∶ πd(ω) = 0}.

Observe that the junk submodule only depends on the representation of the universal forms.
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Definition 2.14. A second order differential structure (Ω1
d, †,Ψ) for a ∗-algebra A is a first order dif-

ferential structure (Ω1
d(A), †) together with an idempotent Ψ = Ψ2 ∶ T 2

d → T 2
d satisfying Ψ ○ † = † ○Ψ and

JT 2
d (A) ⊂ Im(Ψ). A second order differential structure is Hermitian if (Ω1

d(A), †) is an Hermitian first
order structure with right inner product ⟨⋅ ∣ ⋅⟩A, such that Ψ = Ψ2 = Ψ∗ is a projection.

A second order differential structure admits an exterior derivative dΨ ∶ Ω1
d(A)→ T 2

d (A) via

dΨ(ρ) = (1 −Ψ) ○ πd ○ δ ○ π−1d (ρ). (2.4)

The differential satisfies dΨ(d(a)) = 0 for all a ∈ A and

dΨ(ω†) = dΨ(ω)†, dΨ(aωb) = (1 −Ψ)(da⊗ ωb) + a(dΨω)b − (1 −Ψ)(aω ⊗ db).

The differential allows us to define curvature for modules, and formulate torsion for connections on one-
forms. See [MR24a, Section 3] for details.

3 Relating the vector field and differential form formalisms

3.1 Dualising noncommutative differential forms

We will start by comparing Hermitian first and second order differential structures of [MR24a] and
the metric calculus of [AW17]. Later we will consider connections and compare the two constructions of
Levi-Civita connections, and also relate them to the approach of [BGM20, BGJ21]. Defining vector fields
as (suitable submodules of) duals of one-forms appears in [BGL20] in their discussion of Koszul formulae.
Indeed, most of our dualising formulae mirror those of [BGL20], as they must, but as we work in the
Hermitian setting, rather than bilinear, and with somewhat different hypotheses, we start from scratch.
That said, most of our results in this section have analogues in [BGL20].

Definition 3.1. Let A be a unital ∗-algebra and (Ω1
d(A), ⟨⋅∣⋅⟩A , †) be an Hermitian first-order differential

structure over A in the sense of Definition 2.8.
We define right-linear, left-linear and bilinear vector fields to be respectively the right-A-linear, left-A-

linear and bi-A-linear dual of Ω1
d(A). We denote these

Ð→X (A) ∶=ÐÐ→HomA(Ω1
d(A),A)

←ÐX (A) ∶=←ÐÐHomA(Ω1
d(A),A)

←→X (A) ∶=←Ð→HomA(Ω1
d(A),A).

The inner product on Ω1
d(A) induces C-linear maps

Ð→♯ ∶ Ω1
d(A)→

Ð→X (A) ω ↦ (η ↦ ⟨ω† ∣ η⟩A)
←Ð♯ ∶ Ω1

d(A)→
←ÐX (A) ω ↦ (η ↦ ⟨η† ∣ ω⟩A) , ω, η ∈ Ω1

d(A).

We write the C-bilinear pairing of a right-linear vector field X (left-linear vector field Y ) with a
differential one-form ω as

⟪X ∣ ω⟫ ∶=X(ω) ∈ A and ⟪ω ∣ Y ⟫ ∶= Y (ω) ∈ A.

Right-linear (resp. left-linear) vector fields form a left (resp. right) A-module and the pairings satisfy

⟪aX ∣ ωb⟫ = a⟪X ∣ ω⟫b and ⟪aω ∣ Y b⟫ = a⟪ω ∣ Y ⟫b,

for X ∈←ÐX (A), Y ∈Ð→X (A), ω ∈ Ω1
d(A) and a, b ∈ A.
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Definition 3.2. Let X and Y be respectively a right- and a left-linear vector field. We define their
product to be the C-linear map X ⋅ Y ∶ T 2

d (A)→ A given on simple tensors by

(X ⋅ Y )(ω ⊗ η) = ⟪X ∣ ω ⊗ η ∣ Y ⟫ ∶= ⟪X ∣ ω⟫⟪η ∣ Y ⟫.

Remark 3.3. The product of vector fields is well-defined on balanced tensors since for X right-linear and
Y left-linear,

⟪X ∣ ωa⟫⟪η ∣ Y ⟫ = ⟪X ∣ ω⟫a⟪η ∣ Y ⟫ = ⟪X ∣ ω⟫⟪aη ∣ Y ⟫

so ⟪X ∣ ωa⊗ η ∣ Y ⟫ = ⟪X ∣ ω ⊗ aη ∣ Y ⟫.

We also consider the R-linear isomorphism † ∶←ÐX (A)→Ð→X (A) defined using duality by

⟪X† ∣ ω⟫ ∶= ⟪ω† ∣X⟫∗. (3.1)

By abuse of notation we also write † for its inverse †−1 ∶Ð→X (A)→←ÐX (A).

Proposition 3.4. The musical maps Ð→♯ ,←Ð♯ are isomorphisms of left- and right-A-modules respectively,
that are compatible with the dagger maps on forms and vector fields † ○Ð→♯ = ←Ð♯ ○ †. We denote by Ð→♭ ,←Ð♭
their inverses.

Proof. Definition 2.8 immediately implies that Ð→♯ ,←Ð♯ are left- and right-A-linear maps respectively and
that Ð→♯ is an isomorphism of right modules. To show †-compatibility, let ω, η ∈ Ω1

d(A). Then using the
definition of the †-structure (3.1) at the last equality

⟪(ω†)
Ð→♯ ∣ η⟫ = ⟨ω ∣ η⟩A = ⟨η ∣ ω⟩∗A = ⟪η† ∣ ω

←Ð♯ ⟫∗ = ⟪(ω
←Ð♯ )† ∣ η⟫.

Hence also ←Ð♯ = † ○Ð→♯ ○ † is an isomorphism of left modules.

The right (resp. left) inner product on Ω1
d(A) induces an Hermitian right (resp. left) inner product

on
←ÐX (A) (resp.

Ð→X (A)) by

⟨X ∣ Y ⟩A ∶= ⟨X
←Ð♭ ∣ Y

←Ð♭ ⟩A A⟨U ∣ V ⟩ ∶= A⟨U
Ð→♭ ∣ V

Ð→♭ ⟩, (3.2)

for X,Y ∈ ←ÐX (A) and U,V ∈ Ð→X (A). These inner products on vector fields inherit strong non-degeneracy
from the inner product on one-forms.

Proposition 3.5. The musical isomorphisms restrict to C-linear isomorphisms between the centre Z(Ω1
d(A))

of Ω1
d(A) and the bilinear vector fields

←→X (A):

Ð→♯ ∶ Z(Ω1
d(A))

≅Ð→←→X (A) and ←Ð♯ ∶ Z(Ω1
d(A))

≅Ð→←→X (A).

Proof. We only prove this for the right isomorphisms (the left follows in a similar manner). First, observe
that if ω ∈ Z(Ω1

d(A)) is a central one-form then, for all η ∈ Ω1
d(A) and a ∈ A,

⟪ω
Ð→♯ ∣ aη⟫ = ⟨ω† ∣ aη⟩A = ⟨a∗ω† ∣ η⟩A = ⟨ω†a∗ ∣ η⟩A = a⟨ω† ∣ η⟩A = a⟪ω

Ð→♯ ∣ η⟫

so Ð→♯ maps Z(Ω1
d(A)) into

Ð→X (A)∩←ÐX (A) =←→X (A). Conversely, if ω
Ð→♯ ∈←→X (A) then, for all η ∈ Ω1

d(A) and
a ∈ A, using that Ð→♯ is a left module map we have

⟪(aω)
Ð→♯ ∣ η⟫ = a⟪ω

Ð→♯ ∣ η⟫ = ⟪ω
Ð→♯ ∣ aη⟫ = ⟨ω† ∣ aη⟩A = ⟨(ωa)† ∣ η⟩A = ⟪(ωa)

Ð→♯ ∣ η⟫

hence, since Ð→♯ is an isomorphism and the pairing is non-degenerate, aω = ωa.
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Remark 3.6. In general, the isomorphisms Ð→♯ ,←Ð♯ do not coincide on Z(Ω1
d(A)). This is because the two

pairings that define Ð→♯ ,←Ð♯ are distinct and additional information is required to relate them. For if ω is
a central one-form and η is any one-form we have ⟪ω

Ð→♯ ∣ η⟫ = ⟨ω† ∣ η⟩A while ⟪η ∣ ω
←Ð♯ ⟫ = ⟨η† ∣ ω⟩A, and in

general these are distinct elements of A.
The following lemma is another expression of the duality of bilinear vector fields and central one-forms,

and will be used repeatedly.

Lemma 3.7. If X ∈ ←→X (A) is a bilinear vector field and ω ∈ Z(Ω1
d(A)) is a central one-form then

⟪X ∣ ω⟫ ∈ Z(A) is a central element of A.

Proof. With X and ω as in the statement we use Proposition 3.5 to write X = η
Ð→♯ with η a central

one-form. For arbitrary a ∈ A we have

a⟪X ∣ ω⟫ = a⟪η
Ð→♯ ∣ ω⟫ = a⟨η† ∣ ω⟩A = ⟨(aη)† ∣ ω⟩A = ⟨(ηa)† ∣ ω⟩A

= ⟨a∗η† ∣ ω⟩A = ⟨η† ∣ aω⟩A = ⟨η† ∣ ωa⟩A = ⟪X ∣ ω⟫a.

Proposition 3.8. Let A be a unital ∗-algebra and (Ω1
d(A), ⟨⋅∣⋅⟩A , †) be an Hermitian first-order differential

structure over A in the sense of Definition 2.8. Then the pair (←ÐX (A), ⟨⋅∣⋅⟩A ) is a right metric A-module.
Symmetrically the pair (Ð→X (A),A⟨⋅∣⋅⟩) is a left metric A-module.

Proof. Linearity in the second argument and Hermitian symmetry are clear from the fact that ⟨⋅∣⋅⟩A is an
Hermitian inner product on Ω1

d(A). Weak non-degeneracy follows from the fact that the inner product
on one-forms is strongly non-degenerate.

As such, a single inner product over a bimodule of one-forms Ω1
d(A) yields two separate inner product

structures over vector fields, one for the right module
←ÐX (A) and one for the left module

Ð→X (A). These
are related by the dagger map described above.

3.2 Derivations and first-order differential calculi

In this section, we show how noncommutative vector fields seen as duals of differential forms, are
naturally related to derivations on the algebra A, extending the well-known fact that vector fields on a
smooth manifold act as derivations on smooth functions.

We fix a unital ∗-algebra A, an Hermitian first-order differential structure (Ω1
d(A), ⟨⋅∣⋅⟩A , †), and let

Der(A) be the set of derivations of A into itself.

Proposition 3.9. Consider the C-linear subspace of Der(A) defined by

DC ∶= {∂ ∈ Der(A) ∣ ∀ai, bi ∈ A, ∑
i

aidbi = 0 Ô⇒ ∑
i

ai∂bi = 0}.

We define a C-linear map ϕ ∶DC →
Ð→X (A) by

⟪ϕ(∂) ∣∑
i

aidbi⟫ ∶=∑
i

ai∂bi.

Then the image of ϕ is contained in
←→X (A) and the map ϕ ∶DC →

←→X (A) is a C-linear isomorphism.

Proof. That ϕ is well-defined follows from the definition of DC. We first show that ϕ takes its values in
←→X (A). Indeed, suppose ∂ ∈DC. Using that d is a derivation we compute, for a, b, ai, bi ∈ A,

a(∑
i

aidbi)b =∑
i

aai d(bib) −∑
i

aaibidb.
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Hence

⟪ϕ(∂) ∣ a(∑
i

aidbi)b⟫ =∑
i

aai∂(bib) −∑
i

aaibi∂b = a(∑
i

ai∂bi)b = a⟪ϕ(∂) ∣ (∑
i

aidbi)⟫b,

so ϕ(∂) is A-bilinear. To show that ϕ ∶ DC →
←→X (A) is an isomorphism, we construct the inverse. Let

X ∈←→X (A) be a bilinear vector field. Define a derivation ∂X on A by ∂X(a) ∶= ⟪X ∣ da⟫, a ∈ A. Then, for
all ai, bi ∈ A such that ∑i aidbi = 0, we have by bilinearity of X

∑
i

ai∂X(bi) = ⟪X ∣∑
i

aidbi⟫ = 0.

So ∂X ∈DC, and the map
←→X (A) ∋X ↦ (A ∋ a↦ ⟪X ∣ da⟫) is the inverse of ϕ.

In the next section we will identify the key additional assumption which allows us to relate the
identification of (real) vector fields as duals of differential forms and the identification with (Hermitian)
derivations. We make the following definition.

Definition 3.10. We say that a bilinear vector field X ∈←→X (A) is real if X† = −X. We say that a derivation
∂ ∈ Der(A) is Hermitian if ∂† = ∂, where ∂†(a) ∶= ∂(a∗)∗. We write the sets of real bilinear vector fields
and Hermitian derivations as

←→X (A)† and Der(A)† respectively. We let D ∶= D†
C = DC ∩Der(A)† be the

subset of Hermitian derivations in DC.

3.3 Centred bimodules of differential forms

To make contact with the constructions of [AW17] summarised in Definition 2.4, we need to impose
further conditions on our modules of vector fields and the map ϕ from derivations on A to our module(s).
In particular we need to check that:

• D is a real Lie algebra of derivations, i.e. it is stable under commutators;

• The image of D by ϕ generates the module
←ÐX (A) (or symmetrically

Ð→X (A)).

By Proposition 3.9, the latter condition, at least for DC, reduces to checking that
←→X (A) generates

←ÐX (A)
as a right module (or equivalently

Ð→X (A) as a left module, since the dagger map intertwines the two
module structures). Using Proposition 3.5, this is in turn the same as requiring that the central forms
Z(Ω1

d(A)) generate Ω1
d(A) (as a right, left or bimodule). Thus the second condition above is equivalent

to the bimodule of differential forms being centred, as in Definition 2.5. We will see in Theorem 3.21 that
when Ω1

d(A) is a centred bimodule and some mild assumptions hold, D is moreover a real Lie subalgebra
of Der(A)† and plays the role of g in [AW17].

First we need some results on centred bimodules. Recall that a braiding on a †-A-bimodule X is an
invertible map σ ∶ X ⊗A X → X ⊗A X such that σ−1 ○ † = † ○ σ. By Proposition A.8 of the Appendix, on
a centred †-bimodule X over A, there exists a unique braiding σcan which satisfies σcan(x ⊗ y) = y ⊗ x
whenever x or y ∈ Z(X ). This braiding is an involution.
Remark 3.11. The canonical braiding σcan on X yields an idempotent Ψ ∶= 1

2(1+σ
can) which, for differential

forms on a manifold, is the junk projection onto symmetric tensors [MR24a, Section 6.5].

Definition 3.12. We define the bilinear quantum metric to be the map g ∶ T 2
d (A) → A given on the

simple tensor ω ⊗ η ∈ T 2
d (A) by g(ω ⊗ η) ∶= −⟨ω† ∣ η⟩A. Observe that g(aω ⊗ ηb) = ag(ω ⊗ η)b for a, b ∈ A.

Remark 3.13. The bilinear quantum metric is well-defined on balanced tensors since for a ∈ A we have
g(ωa⊗ η) = −⟨a∗ω† ∣ η⟩ = −⟨ω† ∣ aη⟩ = g(ω ⊗ aη).
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Remark 3.14. We can reformulate the musical isomorphisms in term of the bilinear quantum metric. For
ω, η ∈ Ω1

d(A) we have ⟪ω
Ð→♯ ∣ η⟫ = −g(ω ⊗ η) and ⟪η ∣ ω

←Ð♯ ⟫ = −g(η ⊗ ω).
The following is the core definition of this paper: it is the setting in which we will show that the

constructions of [AW17], [BGM20], [MR24a] all make sense and coincide.

Definition 3.15. We say that the Hermitian first-order differential structure (Ω1
d(A), ⟨⋅∣⋅⟩A , †) is a centred

Hermitian differential calculus if the following holds:

1. The bimodule Ω1
d(A) is centred over A, i.e. is generated as an A-bimodule by its centre;

2. The bilinear quantum metric on Ω1
d(A) is invariant under the canonical braiding: g ○ σcan = g;

3. The submodule JT 2
d of junk forms satisfies JT 2

d ⊂ ImΨ where Ψ ∶= 1
2(1 + σ

can).

We denote such a calculus by (Ω1
d(A), †, ⟨⋅∣⋅⟩ , σcan).

Remark 3.16. We will often, when there is no ambiguity, drop the superscript on the braiding σcan.

Proposition 3.17. A centred Hermitian differential calculus (Ω1
d(A), †, ⟨⋅∣⋅⟩ , σcan) is an Hermitian second

order differential structure in the sense of Definition 2.14.

Proof. The only thing to prove is that Ψ is a projection, and since σ2 = Id we immediately have Ψ2 = Ψ.
For self-adjointness it suffices to prove that σ is self-adjoint on T 2

d . For this, it suffices to work with simple
tensors ω ⊗ ρ, η ⊗ τ of central one-forms. For these, repeated use of centrality yields

⟨σ(ω ⊗ ρ) ∣ η ⊗ τ⟩A = ⟨ρ⊗ ω ∣ η ⊗ τ⟩A = ⟨ω ∣ ⟨ρ ∣ η⟩A τ⟩A = ⟨ω ∣ τ⟩A ⟨ρ ∣ η⟩A
= ⟨ρ⟨τ ∣ ω⟩A ∣ η⟩A = ⟨⟨τ ∣ ω⟩A ρ ∣ η⟩A = ⟨ρ ∣ ⟨ω ∣ τ⟩A η⟩A
= ⟨ω ⊗ ρ ∣ τ ⊗ η⟩A = ⟨ω ⊗ ρ ∣ σ(η ⊗ τ)⟩A.

Proposition 3.18. Let (Ω1
d(A), ⟨⋅∣⋅⟩A , †) be a centred Hermitian differential calculus. Then the musical

isomorphisms Ð→♯ ,←Ð♯ coincide on the central one-forms Z(Ω1
d(A)).

Proof. We recall from Remark 3.6 that if ω is a central one-form and η is any one-form, the pairings
defining the musical isomorphisms are

⟪ω
Ð→♯ ∣ η⟫ = ⟨ω† ∣ η⟩A = −g(ω ⊗ η) and ⟪η ∣ ω

←Ð♯ ⟫ = ⟨η† ∣ ω⟩A = −g(η ⊗ ω).

Since g ○ σ = g, the pairings coincide and so the musical isomorphisms Ð→♯ ,←Ð♯ coincide on Z(Ω1
d(A)).

Proposition 3.19. The complex linear isomorphism ϕ ∶DC →
←→X (A) restricts to a real linear isomorphism

ϕ ∶D →←→X (A)†.

Proof. Let ∂ ∈D =DC ∩Der(A)†. Using (3.1) we have

⟪∑
i

aidbi ∣ ϕ(∂)†⟫ = ⟪ϕ(∂) ∣ −∑
i

d(b∗i )a∗i ⟫∗

= ( − ⟪ϕ(∂) ∣∑
i

d(b∗i a∗i )⟫ + ⟪ϕ(∂) ∣∑
i

b∗i d(a∗i )⟫)
∗

= ( −∑
i

∂(b∗i a∗i ) +∑
i

b∗i ∂(a∗i ))
∗

= −∑
i

ai∂(b∗i )∗ = −⟪ϕ(∂) ∣∑
i

aidbi⟫ = −⟪∑
i

aidbi ∣ ϕ(∂)⟫,

where we used the Leibniz rule for both d and ∂, ∂(b∗i )∗ = ∂(bi), and the bilinearity of ϕ(∂) at the
last equality. Hence we deduce that ϕ(∂)† = −ϕ(∂). Conversely, if ϕ(∂) is real then ∂†(a) = ∂(a∗)∗ =
⟪ϕ(∂) ∣ d(a∗)⟫∗ = −⟪ϕ(∂)† ∣ da⟫ = ∂(a).
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Lemma 3.20. Suppose (Ω1
d(A), †,Ψ, ⟨⋅∣⋅⟩ , σcan) is a centred Hermitian differential calculus. Let X,Y be

two bilinear vector fields. For any two-tensor α ∈ T 2
d (A),

⟪X ∣ α ∣ Y ⟫ − ⟪Y ∣ α ∣X⟫ = 2⟪X ∣ (1 −Ψ)α ∣ Y ⟫.

Proof. Since Ω1
d(A) is centred, T 2

d (A) is generated by elements of the form η ⊗ ρ with η and ρ central
one-forms. Then the definition of the pairing and the centrality implied by Lemma 3.7 yield

⟪X ∣ η ⊗ ρ ∣ Y ⟫ − ⟪Y ∣ η ⊗ ρ ∣X⟫ = ⟪X ∣ η⟫⟪ρ ∣ Y ⟫ − ⟪Y ∣ η⟫⟪ρ ∣X⟫
= ⟪X ∣ η⟫⟪ρ ∣ Y ⟫ − ⟪X ∣ ρ⟫⟪η ∣ Y ⟫
= ⟪X ⋅ Y ∣ η ⊗ ρ − ρ⊗ η⟫.

Since σ is the flip on η ⊗ ρ, we have

η ⊗ ρ − ρ⊗ η = (1 − σ)η ⊗ ρ = 2(1 −Ψ)η ⊗ ρ.

The general result then follows by A-bilinearity of Ψ.

Theorem 3.21. Let (Ω1
d(A), †,Ψ, ⟨⋅∣⋅⟩ , σcan) be a centred Hermitian differential calculus. Then DC is a

complex Lie algebra of derivations, i.e. DC is stable under the commutator of derivations. Hence D is a
real Lie subalgebra of Der(A)†.

Proof. Let ∂1, ∂2 ∈ DC. We need to show that their commutator [∂1, ∂2] is again in DC, i.e. that
∑i ai[∂1, ∂2](bi) = 0 whenever ai, bi ∈ A satisfy ∑i aidbi = 0. For such ai, bi,

∑
i

ai[∂1, ∂2](bi) =∑
i

ai∂1∂2bi − ai∂2∂1bi

=∑
i

∂1(ai∂2bi) − ∂2(ai∂1bi) − (∂1ai)(∂2bi) + (∂2ai)(∂1bi)

=∑
i

∂1(ai∂2bi) − ∂2(ai∂1bi)

− [⟪ϕ(∂1) ∣ dai ⊗ dbi ∣ ϕ(∂2)⟫ − ⟪ϕ(∂2) ∣ dai ⊗ dbi ∣ ϕ(∂1)⟫].

Now, since ∂1, ∂2 ∈ DC and ∑i aidbi = 0, the first two terms vanish. We are left only with the last term,
which by Lemma 3.20 reduces to

∑
i

ai[∂1, ∂2](bi) = −2∑
i

⟪ϕ(∂1) ∣ (1 −Ψ)(dai ⊗ dbi) ∣ ϕ(∂2)⟫ = −2⟪ϕ(∂1) ∣ dΨ(∑
i

aidbi) ∣ ϕ(∂2)⟫ = 0.

Hence [∂1, ∂2] ∈ DC, and DC is a complex Lie subalgebra of Der(A). By restricting to Hermitian deriva-
tions we also get that D is a real Lie subalgebra of Der(A)†.

Proposition 3.17 and Theorem 3.21 show that centred Hermitian differential calculi are a natural class
of noncommutative calculi where the constructions of [MR24a], [BGM20] and [AW17] can be compared.
We also see that, despite these constructions being well-defined for first-order calculi (of forms or vector
fields), independently of second-order phenomena, we need the second order information encoded in Ψ for
them to be dual. As we shall show subsequently, the second-order structure also appears when extending
the comparison to Levi-Civita connections.

In order to complete our comparison at the level of differential calculi, it must now be shown that
dualising a centred Hermitian structure satisfies all the conditions of Definition 2.4, making the dual a
real metric calculus. By Proposition 3.18, we may and shall omit arrows on the musical isomorphisms
when working with bilinear vector fields or central forms on centred Hermitian differential calculi.

Corollary 3.22. Suppose (Ω1
d(A), †, ⟨⋅∣⋅⟩ , σcan) is a centred Hermitian differential calculus. Let X,Y ∈

←→X (A). The following hold:
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1. (X♭)† = (X†)♭;
2. ⟨X ∣ Y ⟩A = ⟨Y † ∣X†⟩A;
3. If X,Y are real vector fields, ⟨X ∣ Y ⟩∗A = ⟨X ∣ Y ⟩A.

Proof. The first point follows from Proposition 3.18 and the fact that † ○←Ð♭ = Ð→♭ ○ †. The second is a
consequence of the first, since

⟨X ∣ Y ⟩A = ⟨X♭ ∣ Y ♭⟩A = ⟨(Y ♭)† ∣ (X♭)†⟩A = ⟨(Y †)♭ ∣ (X†)♭⟩A = ⟨Y † ∣X†⟩A,

where for the second equality we have used that g(ω ⊗ η) = g(η ⊗ ω) for central forms ω, η. The third
point follows from the second, since a real vector field X satisfies X† = −X and the inner product is
Hermitian.

Lemma 3.23. Let (Ω1
d(A), †,Ψ, ⟨⋅∣⋅⟩ , σcan) be a centred Hermitian differential calculus. The set of bilinear

vector fields
←→X (A) generates

←ÐX (A) (resp.
Ð→X (A)) as a right (resp. left) A-module.

Proof. Since ←Ð♯ and Ð→♯ are respectively a right and left module map, this follows from the isomorphism
Z(Ω1

d(A)) ≅
←→X (A) and the fact that Ω1

d(A) is generated by its centre.

Theorem 3.24. Let (Ω1
d(A), †,Ψ, ⟨⋅∣⋅⟩ , σcan) be a centred Hermitian differential calculus. Then the triple

(←ÐX (A), ⟨⋅∣⋅⟩A ,Dϕ), where Dϕ ∶= (D,ϕ), is a right real metric calculus as in Definition 2.4. Symmetrically
the triple (Ð→X (A),A⟨⋅∣⋅⟩,Dϕ) is a left real metric calculus. In both cases the inner products are strongly
non-degenerate.

Proof. We treat the right module (left-linear) case. Firstly, ϕ surjects onto
←→X (A)† (see Proposition 3.19),

so using Lemma 3.23 we find that ϕ(D) generates
←ÐX (A) as a right A-module. Secondly, we have to show

that for all ∂1, ∂2 ∈ ϕ(D),
⟨ϕ(∂1) ∣ ϕ(∂2)⟩A = ⟨ϕ(∂1) ∣ ϕ(∂2)⟩∗A.

But ϕ(∂i) is bilinear and real by Lemma 3.9 and Proposition 3.19, so this is a direct consequence of
Corollary 3.22.

4 Relating connections on vector fields and forms
We now investigate how connections on forms relate to affine connections on vector fields, particularly

in the context of centred Hermitian differential calculi. We start by recalling the respective formalisms of
[AW17] and [MR24a] for dealing with connections, and how metric compatibility and torsion freeness are
expressed in each framework.

4.1 Affine connections on modules of vector fields

The following definitions and theorems are from [AW17]. We state them only for calculi over right
A-modules, but they all have analogs for calculi over left modules.

Definition 4.1. Let (X (A), ⟨⋅∣⋅⟩A ,gϕ) be a right metric calculus. A right affine connection on (X (A),g)
is a C-bilinear map ∇ ∶ g ×X (A)→ X (A) which for all λ ∈ C, ∂ ∈ g and X,Y ∈ X satisfies

∇∂(X + Y ) = ∇∂X +∇∂Y

∇λ∂+∂′X = λ∇∂X +∇′∂X
∇∂(Xa) = (∇∂X)a +X∂a.

We call the data (X (A), ⟨⋅∣⋅⟩A ,gϕ,∇) a right connection calculus.
If furthermore (X (A), ⟨⋅∣⋅⟩A ,gϕ) is a right real metric calculus and ⟨∇∂X ∣ Y ⟩ = ⟨∇∂X ∣ Y ⟩∗ for all

X,Y ∈ ϕ(g) and ∂ ∈ g, then we say that the data (X (A), ⟨⋅∣⋅⟩A ,gϕ,∇) is a right real connection calculus.
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Definition 4.2. Let (X (A), ⟨⋅∣⋅⟩A ,gϕ,∇) be a right real connection calculus. The calculus is called metric
if

∂⟨X ∣ Y ⟩A = ⟨∇∂X ∣ Y ⟩A + ⟨X ∣∇∂Y ⟩A
for all X,Y ∈ X (A), ∂ ∈ g, and torsion-free if

τ(∂1, ∂2) ∶= ∇∂1ϕ(∂2) −∇∂2ϕ(∂1) − ϕ([∂1, ∂2])

vanishes for all ∂1, ∂2 ∈ g. If (X (A), ⟨⋅∣⋅⟩A ,gϕ,∇) is both metric and torsion-free, we say it is a right
pseudo-Riemannian calculus over X (A). If moreover ⟨∇∂1∇∂2X ∣ Y ⟩A is Hermitian for all ∂1, ∂2 ∈ g and
X,Y ∈ ϕ(g), then the pseudo-Riemannian calculus is called real.

Example 4.3. Let M be a smooth real manifold with a pseudo-Riemannian metric g. Denote by
ΓC(TM) the complexification of smooth sections of the tangent bundle. There is a one-to-one map-
ping ϕ ∶ Der(C∞(M)) → ΓC(TM), where C∞(M) is the algebra of smooth complex-valued functions on
M . It is well-known that there is a unique metric compatible and torsion-free connection ∇ on Γ(TM),
called the Levi-Civita connection, and it naturally extends complex-linearly to ΓC(TM).

There are two approaches to extending the metric g to ΓC(TM): bi-linearly or sesqui-linearly. The
latter corresponds to the approach of [AW17, AW17b], while the former corresponds to the bilinear
“quantum metric” of Definition 3.12, due to [BGM20].

For the sesquilinear extension of the metric, the calculus (ΓC(TM), g,Der(C∞(M))ϕ) is a real met-
ric calculus and the Levi-Civita connection makes (ΓC(TM), g,Der(C∞(M))ϕ,∇) into a (real) pseudo-
Riemannian calculus.

Example 4.4. The 2-torus T2 acts by isometries on T2 and S3. The θ-deformation construction (see
[CL01]) yields one-parameter families of noncommutative algebras C∞(T2

θ) and C∞(S3θ). In [AW17],
pseudo-Riemannian calculi are explicitly constructed for both of these families by analogy with the classical
calculi. In subsection 4.7 we return to these examples and generalise to any θ-deformation coming from
a free toral action on a Riemannian manifold, using differential forms and the method of [MR24a].

One would like to prove that there exists a unique metric and torsion-free connection for every real
metric calculus. In the framework of [AW17, AW17b], it has been shown that there exists at most one
such connection. In [AH25] a more general setup is considered, and sufficient conditions for existence are
explored.

Theorem 4.5. [AW17, Theorem 3.4] Let (X (A), ⟨⋅∣⋅⟩A ,gϕ) be a right real metric calculus. Then there ex-
ists at most one affine connection ∇ on X (A) such that (X (A), ⟨⋅∣⋅⟩A ,gϕ,∇) is a right pseudo-Riemannian
calculus.

One of the main motivations for defining Levi-Civita connections on noncommutative algebras is to
investigate curvature on these “noncommutative spaces”. With the formalism of [AW17], curvature can
be defined as usual in differential geometry.

Definition 4.6. Let (X (A), ⟨⋅∣⋅⟩A ,gϕ,∇) be a right pseudo-Riemannian calculus. The curvature operator
of ∇ is defined on X (A) by

R(∂1, ∂2) = ∇∂1∇∂2 −∇∂2∇∂1 −∇[∂1,∂2].

The definition of Ricci and scalar curvature is discussed in [AW17] with additional hypotheses. On the
other hand, in [MR24b] Ricci and scalar curvature are generically defined in the context of Levi-Civita
connections on noncommutative differential forms. We will show that when both frameworks apply, they
are compatible, and so we can define Ricci and scalar curvature for pseudo-Riemannian calculi. We will
discuss the full curvature tensors later, and refer to [AW17] and [MR24b] for discussions of Ricci and
scalar curvatures.
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4.2 Connections on differential forms

We now recall the standard definitions of (bimodule) connections on modules. In subsection 4.5 we
will prove an existence and uniqueness theorem for Levi-Civita connections combining the frameworks of
[MR24a] and [AW17], thus recovering in a new way a result of [BGM20]. Starting from connections on
differential forms and dualising then provides an existence proof for pseudo-Riemannian calculi coming
from centred calculi.

Given a first order differential structure (Ω1
d(A), †), a right connection on a right A-module X is a

C-linear map Ð→∇ ∶ X → X ⊗A Ω1
d, such that Ð→∇(xa) =Ð→∇(x)a + x⊗ da.

Similarly, a left connection on a left A-module X is a C-linear map
←Ð∇ ∶ X → Ω1

d ⊗A X , such that Ð→∇(ax) = aÐ→∇(x) + da⊗ x.

Connections always exist on finite projective modules [CQ95, L97]. In the presence of an Hermitian inner
product, we have the well-known definition of Hermitian connections which we recall below. We first need
to introduce a notation for pairings between tensors of different orders:
Notation 4.7. For ω, η, ρ ∈ Ω1

d(A), we define

⟨ω ∣ η ⊗ ρ⟩Ω1
d
(A) ∶= ⟨ω ∣ η⟩Aρ

⟨η ⊗ ρ ∣ ω⟩Ω1
d
(A) ∶= ρ∗⟨η ∣ ω⟩A.

We then extend this by linearity to ⟨ω ∣ α⟩Ω1
d
(A) and ⟨α ∣ ω⟩Ω1

d
(A) for ω ∈ Ω1

d(A) and α ∈ T 2
d (A). We also

define left pairings by Ω1
d
(A)⟨⋅ ∣ ⋅⟩ ∶= ⟨⋅† ∣ ⋅†⟩Ω1

d
(A).

Definition 4.8. Given a connection Ð→∇ on a right inner product A-module X we say that Ð→∇ is Hermitian
if for all x, y ∈ X we have

−⟨Ð→∇x ∣ y⟩Ω1
d
(A) + ⟨x ∣

Ð→∇y⟩Ω1
d
(A) = d (⟨x ∣ y⟩A) .

For left connections we instead require

Ω1
d
(A)⟨
←Ð∇x ∣ y⟩ − Ω1

d
(A)⟨x ∣

←Ð∇y⟩ = d (A⟨x ∣ y⟩) .

The differential (2.4) allows us to ask whether a connection on Ω1
d(A) is torsion-free, leading to the

well-known definitions from the algebraic literature [L97, BM20].
Definition 4.9. Let (Ω1

d, †,Ψ) be an Hermitian second-order differential structure as in Definition 2.14
and Ð→∇ ∶ Ω1

d → T 2
d a right connection and ←Ð∇ ∶ Ω1

d → T 2
d a left connection. The torsion of Ð→∇ and ←Ð∇ ,

respectively, are the maps

(1 −Ψ) ○Ð→∇ + dΨ ∈
ÐÐ→
HomA(Ω1

d, T
2
d )

(1 −Ψ) ○←Ð∇ − dΨ ∈
←ÐÐ
HomA(Ω1

d, T
2
d ).

Since Ω1
d and T 2

d are †-bimodules, for each right connection Ð→∇ ∶ Ω1
d → T 2

d there is a conjugate left
connection ←Ð∇ given by ←Ð∇ = −† ○Ð→∇ ○ † which is Hermitian if and only if Ð→∇ is Hermitian.
Definition 4.10. Suppose that σ ∶ T 2

d (A) → T 2
d (A) is a braiding, that is, an invertible bimodule map

such that † ○ σ = σ−1 ○ †. If the conjugate connections Ð→∇ ,←Ð∇ satisfy

σ ○Ð→∇ =←Ð∇ ,
then we say that (Ð→∇ , σ) is a σ-†-bimodule connection.
Remark 4.11. The notion of a σ-†-bimodule connection can be defined for general †-bimodules X equipped
with a braiding σ ∶ X ⊗A Ω1

d(A) → Ω1
d(A) ⊗A X , see [MR24a, Definition 5.8]. For the present paper it

suffices to confine ourselves to the case X = Ω1
d.
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4.3 Dualising noncommutative connections

In differential geometry one can relate the evaluation of a given connection, or covariant derivative, on
differential one-forms and on vector fields. This can be expressed locally using the Christoffel symbols or
globally in terms of duality. It is this latter form that we extend, first on general inner product †-bimodules
of forms and then specifically for centred Hermitian calculi.

Throughout this section, we fix A a unital ∗-algebra and (Ω1
d(A), ⟨⋅∣⋅⟩A , †) an Hermitian first-order

differential structure over A.

Proposition 4.12. Suppose Ð→∇ (resp. ←Ð∇) is a right (resp. left) connection on (Ω1
d(A), ⟨⋅∣⋅⟩A , †). For

X ∈Ð→X (A) and ∂ ∈D, ω ∈ Ω1
d(A), the formula

⟪Ð→∇∂X ∣ ω⟫ ∶= ∂⟪X ∣ ω⟫ − ⟪X ∣
Ð→∇(ω) ∣ ϕ(∂)⟫

defines a left affine connection on the left A-module
Ð→X (A). Similarly, for X ∈ ←ÐX (A) and ∂ ∈ D,

ω ∈ Ω1
d(A), the formula

⟪ω ∣←Ð∇∂X⟫ ∶= ∂⟪ω ∣X⟫ − ⟪ϕ(∂) ∣
←Ð∇(ω) ∣X⟫

defines a right affine connection on the right A-module
←ÐX (A).

Proof. We only show the computation for left-linear vector fields, the right being analogous. First we
show that ←Ð∇∂X is a left-linear vector field. For X ∈←ÐX (A) and a ∈ A,

⟪aω ∣←Ð∇∂X⟫ = ∂⟪aω ∣X⟫ − ⟪ϕ(∂) ∣
←Ð∇(aω) ∣X⟫

= (∂a)⟪ω ∣X⟫ + a∂⟪ω ∣X⟫ − ⟪ϕ(∂) ∣ a←Ð∇(ω) ∣X⟫ − ⟪ϕ(∂) ∣ da⊗ ω ∣X⟫
= (∂a)⟪ω ∣X⟫ + a∂⟪ω ∣X⟫ − ⟪ϕ(∂) ∣ a←Ð∇(ω) ∣X⟫ − ⟪ϕ(∂) ∣ da⟫⟪ω ∣X⟫

= (∂a)⟪ω ∣X⟫ + a (∂⟪ω ∣X⟫ − ⟪ϕ(∂) ∣←Ð∇(ω) ∣X⟫) − (∂a)⟪ω ∣X⟫

= a (∂⟪ω ∣X⟫ − ⟪ϕ(∂) ∣←Ð∇(ω) ∣X⟫) = a⟪ω ∣←Ð∇∂X⟫.

The fourth equality comes from the identity ⟪ϕ(∂) ∣aη⊗A ρ ∣X⟫ = a⟪ϕ(∂) ∣η⊗A ρ ∣X⟫ which holds because
ϕ(∂) is bilinear. We deduce that ←Ð∇∂X is a left-linear vector field. It is clearly C-linear in ∂. Moreover,
for any b ∈ A,

⟪ω ∣←Ð∇∂(Xb)⟫ = ∂⟪ω ∣Xb⟫ − ⟪ϕ(∂) ∣←Ð∇(ω) ∣Xb⟫
= ⟪ω ∣X⟫(∂b) + (∂⟪ω ∣X⟫ − ⟪ϕ(∂) ∣←Ð∇(ω) ∣X⟫)b
= ⟪ω ∣X(∂b) + (←Ð∇∂X)b⟫,

which finishes the proof.

Proposition 4.13. Let Ð→∇ and ←Ð∇ ∶= −† ○Ð→∇ ○ † be a conjugate pair of connections on (Ω1
d(A), ⟨⋅∣⋅⟩A , †).

Then the dagger intertwines the corresponding affine connections on vector fields, so that

(Ð→∇∂X)† =
←Ð∇∂(X†)

for all ∂ ∈D and X ∈Ð→X (A).

Proof. For ∂ ∈D and X ∈Ð→X (A), we compute for any ω ∈ Ω1
d(A),

⟪ω ∣ (Ð→∇∂X)†⟫ = ⟪
Ð→∇∂X ∣ ω†⟫∗ = [∂⟪X ∣ ω†⟫]∗ − ⟪X ∣Ð→∇(ω†) ∣ ϕ(∂)⟫∗.
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If we use Sweedler notation to write Ð→∇(ω†) = η(1) ⊗ η(2), then since Ð→∇(ω†) = −←Ð∇(ω)† we find

−←Ð∇(ω) =Ð→∇(ω†)† = (η(1) ⊗ η(2))† = η†
(2) ⊗ η†

(1).

With this computation in hand

⟪X ∣Ð→∇(ω†) ∣ ϕ(∂)⟫∗ = (⟪X ∣ η(1)⟫⟪η(2) ∣ ϕ(∂)⟫)
∗

= ⟪ϕ(∂)† ∣ η†
(2)⟫⟪η

†
(1) ∣X

†⟫

= ⟪ϕ(∂)† ∣ η†
(2) ⊗ η†

(1) ∣X
†⟫

= ⟪ϕ(∂)† ∣ −←Ð∇(ω) ∣X†⟫.

Using ∂(a)∗ = ∂(a∗), we get

⟪ω ∣ (Ð→∇∂X)†⟫ = ∂⟪ω ∣X†⟫ + ⟪ϕ(∂)† ∣←Ð∇(ω) ∣X†⟫ = ⟪ω ∣←Ð∇∂(X†)⟫,

the last equality following from ϕ(∂)† = −ϕ(∂).

Proposition 4.14. Let (Ð→∇ , σ) be a †-bimodule connection on (Ω1
d(A), ⟨⋅∣⋅⟩A , †), and assume that Ω1

d(A)
is centred so that σ = σcan. Then for all bilinear vector fields X ∈←→X (A) and derivations ∂ ∈D,

Ð→∇∂X =
←Ð∇∂X,

where Ð→∇∂ and ←Ð∇∂ are the affine connections induced by Ð→∇ and its conjugate ←Ð∇ = −† ○Ð→∇ ○ †.

Proof. For all one-forms ω we have ∂⟪X ∣ ω⟫ = ∂⟪ω ∣ X⟫ since X is bilinear, so the first terms in the
definitions of Ð→∇∂ and ←Ð∇∂ are the same. We are then left with showing that the second terms are
identical, namely

⟪X ∣Ð→∇(ω) ∣ ϕ(∂)⟫ = ⟪ϕ(∂) ∣←Ð∇(ω) ∣X⟫.

By definition of a †-bimodule connection, Ð→∇ = σ−1 ○←Ð∇ . Now, for any two bilinear vector fields U,V and
central one-forms η, ρ,

⟪U ∣ σ−1(η ⊗ ρ) ∣ V ⟫ = ⟪U ∣ ρ⊗ η ∣ V ⟫ = ⟪U ∣ ρ⟫⟪η ∣ V ⟫.

Using bilinearity of U and centrality of ρ, Lemma 3.7 shows that ⟪U ∣ ρ⟫ ∈ Z(A), and so

⟪U ∣ σ−1(η ⊗ ρ) ∣ V ⟫ = ⟪V ∣ η⟫⟪ρ ∣U⟫ = ⟪V ∣ η ⊗ ρ ∣U⟫.

Using that Ω1
d(A) is centred we deduce that this equality is true for any two-tensor α ∈ T 2

d (A). Specifying
to α =Ð→∇(ω) yields the result.

As for the musical isomorphisms, when working over a centred bimodule of forms with σ = σcan, we
will omit arrows when evaluating Ð→∇∂ or ←Ð∇∂ on

←→X (A).

Lemma 4.15. Let (Ð→∇ , σ) be a †-bimodule connection on (Ω1
d(A), ⟨⋅∣⋅⟩A , †), and assume that Ω1

d(A) is
centred so that σ = σcan. If X is a real bilinear vector field and ∂ ∈D an Hermitian derivation, then ∇∂X
is bilinear and real.

Proof. If X is a bilinear vector field, then Ð→∇∂X and ←Ð∇∂X are by construction respectively a right- and
a left-linear vector field. Since they coincide according to Proposition 4.14, then the common value ∇∂X
is bilinear. If furthermore X is real, then using Proposition 4.13 we see that (Ð→∇∂X)† =

←Ð∇∂(X†), i.e.
(∇∂X)† = ∇∂(X†) = −∇∂X since X† = −X.
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Theorem 4.16. Let (Ω1
d(A), †,Ψ, ⟨⋅∣⋅⟩ , σcan) be a centred Hermitian differential calculus and (Ð→∇ , σcan)

be a †-bimodule connection on Ω1
d(A). For all X,Y ∈ ϕ(D) and ∂ ∈D,

⟨∇∂X ∣ Y ⟩∗A = ⟨∇∂X ∣ Y ⟩A.

Therefore (←ÐX (A), ⟨⋅∣⋅⟩A ,Dϕ,
←Ð∇) and (Ð→X (A),A⟨⋅∣⋅⟩,Dϕ,

Ð→∇) are respectively a right and a left real connec-
tion calculus, and the inner products are strongly non-degenerate.

Proof. We give the proof for the right calculus. Hermitianness of ⟨∇∂X ∣ Y ⟩A follows from Lemma 4.15,
using the fact that ϕ(D) ⊂ ←→X (A) and that the inner product is symmetric on real bilinear vector fields
(see Corollary 3.22). Then, (←ÐX (A), ⟨⋅∣⋅⟩A ,Dϕ) is a right real metric calculus by Theorem 3.24, so by the
Hermitianness of ⟨∇∂X ∣ Y ⟩A, adding ←Ð∇ yields a right real connection calculus.

4.4 Dual Levi-Civita connections

In this section we investigate metric compatibility and torsion of connections over centred Hermitian
differential calculi. We show that the definitions of Levi-Civita connections in [MR24a] and [AW17]
coincide on these calculi, and that torsion maps are related by classical formulae.

In this section we fix (Ω1
d(A), †,Ψ, ⟨⋅∣⋅⟩ , σcan) a centred Hermitian differential calculus over a unital

∗-algebra A and (Ð→∇ ,←Ð∇) a conjugate pair of connections over Ω1
d(A).

Lemma 4.17. Let U be a left-linear vector field on Ω1
d(A), ω ∈ Ω1

d(A) and α ∈ T 2
d (A). Then

⟪⟨ω ∣ α⟩Ω1
d
(A) ∣U⟫ = ⟪(ω

←Ð♯ )† ∣ α ∣U⟫.

Proof. We prove the statement for a simple tensor α = η ⊗ ρ and extend by C-linearity. Recall that by
definition, ⟨ω ∣ η ⊗ ρ⟩Ω1

d
(A) = ⟨ω ∣ η⟩Aρ. So, by left-A-linearity of U ,

⟪⟨ω ∣ η ⊗A ρ⟩Ω1
d
(A) ∣U⟫ = ⟨ω ∣ η⟩A⟪ρ ∣U⟫ = ⟪(ω

←Ð♯ )† ∣ η⟫⟪ρ ∣U⟫ = ⟪(ω
←Ð♯ )† ∣ η ⊗ ρ ∣U⟫.

Proposition 4.18. Suppose the conjugate pair (Ð→∇ ,←Ð∇) is Hermitian. Then for any Hermitian derivation
∂ ∈D, the affine connections ←Ð∇∂ and Ð→∇∂ are metric, i.e.

∂⟨X ∣ Y ⟩A = ⟨
←Ð∇∂X ∣ Y ⟩A + ⟨X ∣

←Ð∇∂Y ⟩A
∂ A⟨U ∣ V ⟩ = A⟨

Ð→∇∂U ∣ V ⟩ + A⟨U ∣
Ð→∇∂Y ⟩,

for all X,Y ∈←ÐX (A) and U,V ∈Ð→X (A).

Proof. We show the computation for left-linear vector fields. Let X,Y ∈←ÐX (A). Then

⟨←Ð∇∂X ∣ Y ⟩A + ⟨X ∣
←Ð∇∂Y ⟩A = ⟪(

←Ð∇∂X)† ∣ Y
←Ð♭ ⟫ + ⟪(X

←Ð♭ )† ∣←Ð∇∂Y ⟫

= ⟪(Y
←Ð♭ )† ∣←Ð∇∂X⟫∗ + ⟪(X

←Ð♭ )† ∣←Ð∇∂Y ⟫

= ∂⟪(Y
←Ð♭ )† ∣X⟫∗ − ⟪ϕ(∂) ∣←Ð∇((Y

←Ð♭ )†) ∣X⟫∗

+ ∂⟪(X
←Ð♭ )† ∣ Y ⟫ − ⟪ϕ(∂) ∣←Ð∇((X

←Ð♭ )†) ∣ Y ⟫

= 2∂⟨X ∣ Y ⟩A − ⟪X† ∣Ð→∇(Y
←Ð♭ ) ∣ ϕ(∂)⟫ − ⟪Y † ∣Ð→∇(X

←Ð♭ ) ∣ ϕ(∂)⟫∗.

The first and last equalities are a consequence of the computation

⟪U † ∣ V
←Ð♭ ⟫ = ⟪† ○←Ð♯ ○←Ð♭ (U) ∣ V

←Ð♭ ⟫ = ⟪Ð→♯ ○ † ○←Ð♭ (U) ∣ V
←Ð♭ ⟫ = ⟨U

←Ð♭ ∣ V
←Ð♭ ⟩A = ⟨U ∣ V ⟩A
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for U,V ∈←ÐX (A). Using Lemma 4.17, we see that

⟪X† ∣Ð→∇(Y
←Ð♭ ) ∣ ϕ(∂)⟫ = ⟪⟨X

←Ð♭ ∣Ð→∇(Y
←Ð♭ )⟩Ω1

d
(A) ∣ ϕ(∂)⟫ = ⟪ϕ(∂) ∣ ⟨X

←Ð♭ ∣Ð→∇(Y
←Ð♭ )⟩Ω1

d
(A)⟫

since ϕ(∂) is bilinear. Hence also, using ϕ(∂)† = −ϕ(∂),

⟪Y † ∣Ð→∇(X
←Ð♭ ) ∣ ϕ(∂)⟫∗ = −⟪ϕ(∂) ∣ ⟨X

←Ð♭ ∣Ð→∇(Y
←Ð♭ )⟩†

Ω1
d
(A)⟫.

Since ⟨ω ∣ η ⊗ ρ⟩†
Ω1

d
(A) = ρ

†⟨ω ∣ η⟩∗A = ⟨η ⊗ ρ ∣ ω⟩Ω1
d
(A), we deduce

⟨←Ð∇∂X ∣ Y ⟩A + ⟨X ∣
←Ð∇∂Y ⟩A = 2∂⟨X ∣ Y ⟩A − ⟪ϕ(∂) ∣ [⟨X

←Ð♭ ∣Ð→∇(Y
←Ð♭ )⟩Ω1

d
(A) − ⟨

Ð→∇(X
←Ð♭ ) ∣ Y

←Ð♭ ⟩Ω1
d
(A)]⟫.

Since Ð→∇ is Hermitian,

⟨X
←Ð♭ ∣Ð→∇(Y

←Ð♭ )⟩Ω1
d
(A) − ⟨

Ð→∇(X
←Ð♭ ) ∣ Y

←Ð♭ ⟩Ω1
d
(A) = d⟨X

←Ð♭ ∣ Y
←Ð♭ ⟩A = d⟨X ∣ Y ⟩A,

so applying ϕ(∂) yields

⟨←Ð∇∂X ∣ Y ⟩A + ⟨X ∣
←Ð∇∂Y ⟩A = 2∂⟨X ∣ Y ⟩A − ⟪ϕ(∂) ∣ d⟨X ∣ Y ⟩A⟫ = ∂⟨X ∣ Y ⟩A.

Proposition 4.19. Let (Ð→∇ ,←Ð∇) be a conjugate pair of connections on Ω1
d(A). The torsion map on

derivations from Definition 4.2 is given by

⟪τ(∂1, ∂2) ∣ ω⟫ = 2⟪ϕ(∂2) ∣ ((1 −Ψ) ○
←Ð∇ − dΨ)(ω) ∣ ϕ(∂1)⟫

= 2⟪ϕ(∂1) ∣ ((1 −Ψ) ○
Ð→∇ + dΨ)(ω) ∣ ϕ(∂2)⟫,

for all ∂1, ∂2 ∈D and ω ∈ Ω1
d(A).

Proof. Recall that by definition, if ∂1, ∂2 ∈D are two Hermitian derivations then

τ(∂1, ∂2) = ∇∂1(ϕ(∂2)) −∇∂2(ϕ(∂2)) − ϕ([∂1, ∂2]).

In fact, one might define a right and left torsion map, using the right and the left affine connections,
but these coincide on the image of ϕ. Hence, for all ω ∈ Ω1

d(A), using the definition of the left affine
connection we have

⟪τ(∂1, ∂2) ∣ ω⟫ = ∂1⟪ϕ(∂2) ∣ ω⟫ − ∂2⟪ϕ(∂1) ∣ ω⟫ − ⟪ϕ([∂1, ∂2]) ∣ ω⟫
− ⟪ϕ(∂1) ∣

←Ð∇(ω) ∣ ϕ(∂2)⟫ + ⟪ϕ(∂2) ∣
←Ð∇(ω) ∣ ϕ(∂1)⟫.

Since τ(∂1, ∂2) is clearly A-bilinear, it is determined by its action on exact forms. Thus, if b ∈ A,

⟨τ(∂1, ∂2) ∣ db⟩ = ∂1(∂2b) − ∂2(∂1b) − [∂1, ∂2]b
− ⟪ϕ(∂1) ∣

←Ð∇(db) ∣ ϕ(∂2)⟫ + ⟪ϕ(∂2) ∣
←Ð∇(db) ∣ ϕ(∂1)⟫

= ⟪ϕ(∂2) ∣
←Ð∇(db) ∣ ϕ(∂1)⟫ − ⟪ϕ(∂1) ∣

←Ð∇(db) ∣ ϕ(∂2)⟫.

Now consider a generic one-form ω = ∑i aidbi. By definition we have ai
←Ð∇(dbi) =

←Ð∇(aidbi)−dai⊗dbi. So,
using left-linearity of τ(∂1, ∂2) we get

⟪τ(∂1, ∂2) ∣ ω⟫ = ⟪ϕ(∂2) ∣
←Ð∇(ω) − dai ⊗ dbi ∣ ϕ(∂1)⟫ − ⟪ϕ(∂1) ∣

←Ð∇(ω) − dai ⊗ dbi ∣ ϕ(∂2)⟫.
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Lemma 3.20 then yields the first formula

⟪τ(∂1, ∂2) ∣ ω⟫ = 2⟪ϕ(∂2) ∣ (1 −Ψ) ○
←Ð∇(ω) − dΨω ∣ ϕ(∂1)⟫.

For the second formula, we proceed in a similar manner: using the definition of the right affine connection,

⟪τ(∂1, ∂2) ∣ ω⟫ = ∂1⟪ϕ(∂2) ∣ ω⟫ − ∂2⟪ϕ(∂1) ∣ ω⟫ − ⟪ϕ([∂1, ∂2]) ∣ ω⟫
− ⟪ϕ(∂2) ∣

Ð→∇(ω) ∣ ϕ(∂1)⟫ + ⟪ϕ(∂1) ∣
Ð→∇(ω) ∣ ϕ(∂2)⟫.

On an exact form ω = db, the first three terms compensate:

⟪τ(∂1, ∂2) ∣ db⟫ = ⟪ϕ(∂1) ∣
Ð→∇(db) ∣ ϕ(∂2)⟫ − ⟪ϕ(∂2) ∣

Ð→∇(db) ∣ ϕ(∂1)⟫.

For a generic one-form we write ω = ∑aidbi = ∑d(aibi) − (dai)bi. Then Ð→∇[d(aibi)] −
Ð→∇(dai)bi =

Ð→∇[d(aibi)] −
Ð→∇[(dai)bi] + dai ⊗ dbi =

Ð→∇(ω) + dai ⊗ dbi. Hence, using bilinearity of τ(∂1, ∂2),

⟪τ(∂1, ∂2) ∣ ω⟫ = ⟪ϕ(∂1) ∣
Ð→∇(ω) + dai ⊗ dbi ∣ ϕ(∂2)⟫ − ⟪ϕ(∂2) ∣

Ð→∇(ω) + dai ⊗ dbi ∣ ϕ(∂1)⟫

and we conclude as above using Lemma 3.20.

Theorem 4.20. If (Ð→∇ , σ) is an Hermitian and torsion-free σ-†-bimodule connection on Ω1
d(A) then

the data (←ÐX (A), ⟨⋅∣⋅⟩A ,Dϕ,
←Ð∇) defines a right real pseudo-Riemannian calculus and (Ð→X (A),A⟨⋅∣⋅⟩,Dϕ,

Ð→∇)
defines a left real pseudo-Riemannian calculus, and the inner products are strongly non-degenerate.

Proof. We show the proof for the right calculus. For (Ð→∇ , σ) Hermitian and torsion-free we have (1−Ψ)Ð→∇ =
−dΨ (see 4.9). It follows that ←Ð∇∂ is torsion-free by Proposition 4.19, and it is metric by Proposition 4.18.
By Theorem 4.16, (←ÐX (A), ⟨⋅∣⋅⟩A ,Dϕ,

←Ð∇) is a real connection calculus. Therefore it satisfies the conditions
of a pseudo-Riemannian calculus.

To prove we have a real pseudo-Riemannian calculus, we only have left to show that ⟨∇∂1∇∂2X ∣Y ⟩∗A =
⟨∇∂1∇∂2X ∣Y ⟩A for any two Hermitian connections ∂1, ∂2 and X,Y ∈ ϕ(D). The proof of this is identical
to that of Theorem 4.16: X,Y are real bilinear vector fields and ∇∂ preserves

←→X (A)†, so ∇∂1∇∂2X is also
real bilinear. The property then follows from symmetry of the inner product on

←→X (A)†.

Corollary 4.21. If (Ð→∇ , σ) and (
Ð→
∇′, σ) are two Hermitian and torsion-free σ-†-bimodule connections on

Ω1
d(A), then Ð→∇ =

Ð→
∇′.

Proof. This is a direct consequence of Theorem 4.20 and [AW17, Theorem 3.4], which ensures uniqueness
of pseudo-Riemannian calculi on vector fields. Indeed, the formulae expressing affine connections on
vector fields in terms of connections on differential forms can be inverted because the image of D by ϕ

generates
←→X (A) C-linearly, which in turn generates both

Ð→X (A) and
←ÐX (A) as modules (and these are

isomorphic to Ω1
d(A)).

Remark 4.22. In the next section we present an existence proof for Hermitian torsion-free connections on
one-forms based on applying [MR24a] in the centred and strongly-nondegenerate setting. The uniqueness
criteria given in [MR24a, Theorem 5.14] is easily seen to hold using that σ is the flip-map on central forms,
an argument analogous to [MR24a, Lemma 6.11] and the invariance of the quantum metric g under σ.
This would give an alternative and independent proof of uniqueness.
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4.5 Existence of the Levi-Civita connection

We now provide a general existence and uniqueness result for centred Hermitian differential calculi,
inspired by the framework of [MR24a], but adapted to the algebraic setting of [BGM20, BM20]. This
recovers and extends [BGM20, Theorem 4.1] allowing any centred bimodule of one-forms with strongly
non-degenerate inner product, though the approach of the proofs differs. In [BGM20, Theorem 4.1], a
torsion-free connection is produced, and then a correction added to make it Hermitian. We produce an
Hermitian connection using our replacements for frames, and then add a correction to obtain a torsion-free
connection.

With duality in hand, Theorem 4.24 will provide an existence statement for Levi-Civita connections
on pseudo-Riemannian calculi coming from centred Hermitian calculi. Uniqueness will then follow from
Corollary 4.21 or directly from the methods of [MR24a] as in Remark 4.22.

The key results that allow us to replace the analytic considerations of [MR24a] with strong non-
degeneracy are contained in Appendix A. There we show that finitely generated modules with a strongly
non-degenerate inner product, in the sense of Definition 2.8, have (pairs of) generating sets which serve
the same purpose as frames in C∗-modules.

Proposition 4.23. Let (Ω1
d(A), †, ⟨⋅ ∣ ⋅⟩, σcan) be a centred Hermitian differential calculus and {(ωi, ηi)},

a pair of central generating sequences such that {(ωi, ηi)} = {(ω†
i , η

†
i )} as sets and for all ω ∈ Ω1

d

ω =∑
i

ωi⟨ηi ∣ ω⟩ =∑
i

ηi⟨ωi ∣ ω⟩.

Such †-invariant central generating sets exist by Lemma A.9. Then

Ð→∇(ω) ∶= 1

2
(∑

i

ωi ⊗ d⟨ηi ∣ ω⟩ + ηi ⊗ d⟨ωi ∣ ω⟩) ,

is an Hermitian σ-†-bimodule connection on Ω1
d(A).

Proof. The connection Ð→∇ is Hermitian since for all ω, η ∈ Ω1
d we have

⟨ω ∣Ð→∇(η)⟩ − ⟨Ð→∇(ω) ∣ η⟩ = 1

2
(∑

i

⟨ω ∣ ωi⟩d⟨ηi ∣ η⟩ + ⟨ω ∣ ηi⟩d⟨ωi ∣ η⟩ + (d⟨ω ∣ ηi⟩)⟨ωi ∣ η⟩ + (d⟨ω ∣ ωi⟩)⟨ηi ∣ η⟩)

= d⟨ω ∣ η⟩.

By centrality of the ωi, ηi and g ○ σ = g we have

σ ○Ð→∇(ω) = 1

2
(∑

i

d⟨ηi ∣ ω⟩⊗ ωi + d⟨ωi ∣ ω⟩⊗ ηi) =
1

2
(∑

i

d⟨ω† ∣ η†
i ⟩⊗ ωi + d⟨ω† ∣ ω†

i ⟩⊗ ηi) ,

whereas, using that ∑ωi ⊗ d⟨ηi ∣ ω⟩ = ∑ω†
i ⊗ d⟨η†

i ∣ ω⟩, we find

−† ○Ð→∇ ○ †(ω) = −1
2
(∑ωi ⊗ d⟨ηi ∣ ω†⟩ + ηi ⊗ d⟨ωi ∣ ω†⟩)†

= 1

2
∑d⟨ω† ∣ ηi⟩⊗ ω†

i + d⟨ω
† ∣ ωi⟩⊗ η†

i

= 1

2
∑d⟨ω† ∣ η†

i ⟩⊗ ωi + d⟨ω† ∣ ω†
i ⟩⊗ ηi

Thus Ð→∇ is a σ-†-bimodule connection.
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Recall from Proposition A.7 that strong non-degeneracy ensures that we have identifications

Ð→α ∶ T 3
d →
ÐÐ→
HomA(Ω1

d, T
2
d ), Ð→α (η ⊗ ρ⊗ τ)(ω) = η ⊗ ρ⟨τ † ∣ ω⟩

←Ðα ∶ T 3
d →
←ÐÐ
HomA(Ω1

d, T
2
d ), ←Ðα (η ⊗ ρ⊗ τ)(ω) = ⟨ω† ∣ η⟩ρ⊗ τ.

Using Ð→α , for instance, we can identify a 1-form-valued endomorphism A ∈ ÐÐ→HomA(Ω1
d, T

2
d ) on Ω1

d with a
three-tensor Ð→α −1(A) ∈ T 3

d .

Theorem 4.24. Let (Ω1
d, †, ⟨⋅∣⋅⟩, σcan) be a centred Hermitian calculus, and define the bimodule projections

P = Ψ⊗ 1, Q = 1⊗Ψ ∶ T 3
d (A) → T 3

d (A). Then there exists a unique Hermitian, torsion-free σ-†-bimodule
connection Ð→∇G on Ω1

d(A). Moreover, for any pair of finite central †-invariant generating sequences
{(ωi, ηi)} of Ω1

d as in Proposition 4.23, Ð→∇G is given by the formula

Ð→∇G(ω) ∶= 1

2
(∑

i

ωi ⊗ d⟨ηi ∣ ω⟩ + ηi ⊗ d⟨ωi ∣ ω⟩) −Ð→α ((1 + 4PQ)W ), (4.1)

where W = 1
2 ∑dωi ⊗ η†

i + dηi ⊗ ω†
i ∈ T 3

d (A).

Proof. By Lemma A.9 of the Appendix, there exist a pair of central generating sequences {(ωi, ηi)}
satisfying the hypotheses of Proposition 4.23. By Corollary 4.21, it suffices to prove that the connection
(4.1) is an Hermitian torsion-free σ-†-bimodule connection. For the projections P = Ψ⊗ 1 and Q = 1⊗Ψ

we have 2P − 1 = σ ⊗ 1 and 2Q − 1 = 1 ⊗ σ, and since the ωi, ηi are central and the sets {ωi} = {ω†
i },

{ηi} = {η†
i } are †-invariant, we find

(2P − 1)(2Q − 1)W = 1

2
∑η†

i ⊗ dωi + ω†
i ⊗ dηi =

1

2
∑ηi ⊗ dω†

i + ωi ⊗ dη†
i =W

†. (4.2)

Since PW = QW † = 0, applying Q to (4.2) yields

W † = (2P − 1)(2Q − 1)W = (4PQ − 2Q + 1)W, (4QPQ −Q)W = 0.

Therefore, using these relations we find

((1 + 4PQ)W )† = (1 + 4QP )W † = (1 + 4QP )(4PQ − 2Q + 1)W
= (8QPQ + 4PQ − 2Q + 1)W = (1 + 4PQ)W,

which, along with Proposition 4.23, proves the connection is Hermitian. For torsion-free, we first compute

(1 −Ψ)Ð→α ((1 + 4PQ)W ) =Ð→α ((1 − P )(1 + 4PQ)W ) =Ð→α ((1 − P )W ) =Ð→α (W ),

and then

(1 −Ψ)Ð→∇G(ω) = 1

2
∑(1 −Ψ)(ωi ⊗ d⟨ηi ∣ ω⟩ + ηi ⊗ d⟨ωi ∣ ω⟩) −Ð→α (W )(ω)

= 1

2
∑(1 −Ψ)(ωi ⊗ d⟨ηi ∣ ω⟩ + ηi ⊗ d⟨ωi ∣ ω⟩) − dωi⟨ηi ∣ ω⟩ − dηi⟨ωi ∣ ω⟩ = −dω.

Lastly, to see that Ð→∇G is a bimodule connection, Proposition 4.23 says that we need only show that

σ ○Ð→α ((1 + 4PQ)W ) = −←Ðα ((1 + 4QP )W †).

Now σ = 2Ψ − 1 and σ ○Ð→α =←Ðα ((σ ⊗ 1)(1⊗ σ)(σ ⊗ 1)) and we observe that

(2P − 1)(2Q − 1)(2P − 1)(1 + 4PQ)W = (2P − 1)(2Q − 1)(4PQ − 1)W
= (4PQ − 2P − 2Q + 1)(4PQ − 1)W
= (−4PQ − 1)W = −(1 + 4QP )W †.
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Thus we have

σ ○Ð→α ((1 + 4PQ)W )) = (2Ψ − 1)Ð→α ((1 + 4PQ)W )
=←Ðα ((2P − 1)(2Q − 1)(2P − 1)(1 + 4PQ)W )
= −←Ðα ((1 + 4QP )W †).

Uniqueness follows from Corollary 4.21, or via [MR24a, Theorem 5.14] as in Remark 4.22.

Corollary 4.25. Let (Ω1
d, †, ⟨⋅ ∣ ⋅⟩, σcan) be a centred Hermitian calculus. Then (←ÐX (A), ⟨⋅∣⋅⟩A ,Dϕ,

←Ð∇)
defines a right real pseudo-Riemannian calculus and (Ð→X (A),A⟨⋅∣⋅⟩,Dϕ,

Ð→∇) defines a left real pseudo-
Riemannian calculus, and the inner products are strongly non-degenerate.

4.6 Comparing curvatures

In this section we compare the definitions of curvature tensor presented in [AW17] and [MR24b]. To
recall the definition from [MR24b], let (Ω1

d, †, ⟨⋅∣⋅⟩A,Ψ) be an Hermitian second order differential structure.
Given a right connectionÐ→∇ ∶ Ω1

d(A)→ T 2
d (A), we can define the curvature R

Ð→∇ ∶ Ω1
d(A)→ Ω1

d(A)⊗AΛ2
d(A)

(where Λ2
d(A) = (1 −Ψ)T 2

d (A)) by

R
Ð→∇(ω) = 1⊗ (1 −Ψ) ○ (Ð→∇ ⊗ 1 + 1⊗ dΨ) ○

Ð→∇(ω), ω ∈ Ω1
d(A).

Similarly, for a left connection ←Ð∇ ∶ Ω1
d(A)→ T 2

d (A) we can define R
←Ð∇ ∶ Ω1

d(A)→ Λ2
d(A)⊗A Ω1

d(A) by

R
←Ð∇(ω) = (1 −Ψ)⊗ 1 ○ (1⊗Ð→∇ − dΨ ⊗ 1) ○←Ð∇(ω), ω ∈ Ω1

d(A).

To compare this definition of curvature to that of [AW17], we require the ability to evaluate, via duality,
on three vector fields. This seems difficult in general, but if two of the vector fields are bilinear, we can
do the following.

For bilinear vector fields Z1, Z2 ∈ D, a right linear vector field X ∈ Ð→X (A), and a left linear vector
field Y ∈←ÐX (A), we can extend the pairing of Definition 3.2 of pairs of vector fields with two-tensors to a
pairing with three-tensors by defining pairings on a simple three-tensor ω ⊗ ρ⊗ η

⟪X ∣ ω ⊗ ρ⊗ η ∣Z2 ⋅Z1⟫ ∶= ⟪X ∣ ω⟫⟪Z2 ∣ ρ⟫⟪Z1 ∣ η⟫
⟪Z1 ⋅Z2 ∣ ω ⊗ ρ⊗ η ∣ Y ⟫ ∶= ⟪Z1 ∣ ω⟫⟪Z2 ∣ ρ⟫⟪η ∣ Y ⟫

and extending by linearity.

Theorem 4.26. Let (Ω1
d(A), †,Ψ, ⟨⋅∣⋅⟩ , σcan) be a centred Hermitian differential calculus and (Ð→∇ ,←Ð∇) a

pair of conjugate connections. The curvature maps
Ð→
R,
←Ð
R of the affine connections ∂ ↦ Ð→∇∂ and ∂ ↦ ←Ð∇∂

on vector fields are related to the curvature tensors R
Ð→∇ ,R

←Ð∇ of (Ð→∇ ,←Ð∇) by

⟪Ð→R(∂1, ∂2)X ∣ ω⟫ = 2⟪X ∣R
Ð→∇(ω) ∣ ϕ(∂2) ⋅ ϕ(∂1)⟫

⟪ω ∣←ÐR(∂1, ∂2)Y ⟫ = 2⟪ϕ(∂1) ⋅ ϕ(∂2) ∣R
←Ð∇(ω) ∣ Y ⟫,

for all ∂1, ∂2 ∈D, X ∈Ð→X (A), Y ∈←ÐX (A) and ω ∈ Ω1
d(A).

Proof. We start by proving the formula for
Ð→
R . Let X ∈Ð→X (A), and ω ∈ Ω1

d(A). Then by definition

⟪Ð→R(∂1, ∂2)X ∣ ω⟫ = ⟪
Ð→∇∂1
Ð→∇∂2X ∣ ω⟫ − ⟪

Ð→∇∂2
Ð→∇∂1X ∣ ω⟫ − ⟪

Ð→∇ [∂1,∂2]X ∣ ω⟫.
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Using the definition of the right affine connection,

⟪Ð→∇∂1
Ð→∇∂2X ∣ ω⟫ = ∂1⟪

Ð→∇∂2X ∣ ω⟫ − ⟪
Ð→∇∂2X ∣

Ð→∇(ω) ∣ ϕ(∂1)⟫
= ∂1∂2⟪X ∣ ω⟫ − ∂1⟪X ∣

Ð→∇(ω) ∣ ϕ(∂2)⟫ − ⟪
Ð→∇∂2X ∣

Ð→∇(ω) ∣ ϕ(∂1)⟫,
⟪Ð→∇∂2

Ð→∇∂1X ∣ ω⟫ = ∂2∂1⟪X ∣ ω⟫ − ∂2⟪X ∣
Ð→∇(ω) ∣ ϕ(∂1)⟫ − ⟪

Ð→∇∂1X ∣
Ð→∇(ω) ∣ ϕ(∂2)⟫

⟪Ð→∇ [∂1,∂2]X ∣ ω⟫ = ∂1∂2⟪X ∣ ω⟫ − ∂2∂1⟪X ∣ ω⟫ − ⟪X ∣
Ð→∇(ω) ∣ ϕ([∂1, ∂2])⟫.

Hence the curvature becomes

⟪Ð→R(∂1, ∂2)X ∣ ω⟫ = ⟪X ∣
Ð→∇(ω) ∣ ϕ([∂1, ∂2])⟫

− ∂1⟪X ∣
Ð→∇(ω) ∣ ϕ(∂2)⟫ + ∂2⟪X ∣

Ð→∇(ω) ∣ ϕ(∂1)⟫
− ⟪Ð→∇∂2X ∣

Ð→∇(ω) ∣ ϕ(∂1)⟫ + ⟪
Ð→∇∂1X ∣

Ð→∇(ω) ∣ ϕ(∂2)⟫.

We write Ð→∇(ω) = ηi ⊗ ρi and ρi = aijdbij , with implicit sums over i and j. Then

∂2⟪X ∣
Ð→∇(ω) ∣ ϕ(∂1)⟫ = (∂2⟪X ∣ ηi⟫)⟪ϕ(∂1) ∣ ρi⟫ + ⟪X ∣ ηi⟫(∂2⟪ϕ(∂1) ∣ ρi⟫)

and
∂2⟪ϕ(∂1) ∣ ρi⟫ = ∂2(aij∂1bij) = (∂2aij)(∂1bij) + aij∂2∂1bij ,

which yield

∂2⟪X ∣
Ð→∇(ω) ∣ ϕ(∂1)⟫ = (∂2⟪X ∣ ηi⟫)⟪ϕ(∂1) ∣ ρi⟫ + ⟪X ∣ ηi⟫⟪ϕ(∂2) ∣ daij ⊗ dbij ∣ ϕ(∂1)⟫

+ ⟪X ∣ ηi⟫(aij∂2∂1bij), (4.3)

∂1⟪X ∣
Ð→∇(ω) ∣ ϕ(∂2)⟫ = (∂1⟪X ∣ ηi⟫)⟪ϕ(∂2) ∣ ρi⟫ + ⟪X ∣ ηi⟫⟪ϕ(∂1) ∣ daij ⊗ dbij ∣ ϕ(∂2)⟫

+ ⟪X ∣ ηi⟫(aij∂1∂2bij), (4.4)

⟪X ∣Ð→∇(ω) ∣ ϕ([∂1, ∂2])⟫ = ⟪X ∣ ηi⟫(aij∂2∂1bij) − ⟪X ∣ ηi⟫(aij∂1∂2bij). (4.5)

Furthermore, using the definition of vector field products

⟪Ð→∇∂1X ∣
Ð→∇(ω) ∣ ϕ(∂2)⟫ = [∂1⟪X ∣ ηi⟫ − ⟪X ∣

Ð→∇(ηi) ∣ ϕ(∂1)⟫]⟪ϕ(∂2) ∣ ρi⟫, (4.6)

⟪Ð→∇∂2X ∣
Ð→∇(ω) ∣ ϕ(∂1)⟫ = [∂2⟪X ∣ ηi⟫ − ⟪X ∣

Ð→∇(ηi) ∣ ϕ(∂2)⟫]⟪ϕ(∂1) ∣ ρi⟫. (4.7)

Computing (4.3) - (4.4) + (4.5) + (4.6) - (4.7) and simplifying yields

⟪Ð→R(∂1, ∂2)X ∣ ω⟫ = ⟪X ∣
Ð→∇(ηi)⊗ ρi + ηi ⊗ daij ⊗ dbij ∣ ϕ(∂2) ⋅ ϕ(∂1) − ϕ(∂1) ⋅ ϕ(∂2)⟫.

We can then use Lemma 3.20 and conclude that

⟪Ð→R(∂1, ∂2)X ∣ ω⟫ = 2⟪X ∣ 1⊗ (1 −Ψ) ○ (
Ð→∇ ⊗ 1 + 1⊗ dΨ) ○

Ð→∇(ω) ∣ ϕ(∂2) ⋅ ϕ(∂1)⟫.

Since we have chosen a representation Ð→∇(ω) = ηi ⊗ ρi, we need to check that the end result does not
depend on this choice. Indeed, the curvature tensor R

Ð→∇(ω) is well-defined on Ω1
d(A) ⊗A Λ2

d(A), so our
computation does not depend on the choice of representative.

The second formula of the theorem follows from the first by taking the dagger

⟪η† ∣ (Ð→R(∂1, ∂2)X)
†⟫ = ⟪Ð→R(∂1, ∂2)X ∣ η⟫∗ = 2⟪X ∣R

Ð→∇(η) ∣ ϕ(∂2) ⋅ ϕ(∂1)⟫∗

= 2⟪ϕ(∂1) ⋅ ϕ(∂2) ∣ (R
Ð→∇(η))† ∣X†⟫.

We know that (R
Ð→∇(ω))† = R

←Ð∇(ω†) for all ω ∈ Ω1
d(A) (see [MR24b, Section 3.1]) and moreover

† ○Ð→R(∂1, ∂2) = † ○ (Ð→∇∂1
Ð→∇∂2 −

Ð→∇∂2
Ð→∇∂1 −

Ð→∇ [∂1,∂2]) =
←Ð
R(∂1, ∂2) ○ †

since † ○Ð→∇∂ =
←Ð∇∂ ○ † (see Proposition 4.13). Therefore setting ω ∶= η† and Y ∶=X†, we find that

⟪ω ∣←ÐR(∂1, ∂2)Y ⟫ = 2⟪ϕ(∂1) ⋅ ϕ(∂2) ∣R
←Ð∇(ω) ∣ Y ⟫.
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4.7 Isospectral deformations

We now briefly show that, using our approach, we can recover the pseudo-Riemannian calculi con-
structed in [AW17] on the noncommutative 2-torus T2

θ and noncommutative 3-sphere S3θ, from general
results on θ-deformed spectral triples in [BGM20] and [MR24a]. These manifolds possess the property
that the isometric T2-action on M used to define θ-deformations is a free action. This is crucial for the
proof given in [BGM20], because free torus actions yield centred bimodules for the deformed algebra, and
likewise for the proof of Theorem 4.24.

For a compact Riemannian manifold (M,g) equipped with a Dirac bundle /S → M , we have an
associated spectral triple (C∞(M), L2(M, /S), /D). Then Ω1

/D(C
∞(M)) ≅ Ω1(M) ⊗ C [C94, Chapter

VI], and we let ⟨⋅ ∣ ⋅⟩g be the inner product on Ω1
/D(C

∞(M)) induced by g. The junk two-tensors in
T 2
/D(C

∞(M)) ≃ T 2(M) coincide with the module of symmetric tensors [MR24a, Example 4.26]. Thus for
σ ∶ T 2

/D(M)→ T 2
/D(M) the standard flip map we can set Ψ ∶= 1+σ

2 for the junk projection.

Theorem 4.27. Let (M,g) be a compact Riemannian manifold with a Dirac bundle /S → M . Then
(Ω1
/D(C

∞(M)), †,Ψ, ⟨⋅ ∣ ⋅⟩g) is a centred Hermitian differential calculus and there exists a unique Hermitian
torsion-free †-bimodule connection (Ð→∇G, σ) on Ω1

/D(C
∞(M)) ≅ Ω1(M)⊗C. The restriction to real forms

Ð→∇G ∶ Ω1(M)→ Ω1(M)⊗Ω1(M) coincides with the (classical) Levi-Civita connection on Ω1(M).

Applying θ-deformation for a free torus action yields a noncommutative algebra C∞(Mθ) for which
the data (C∞(Mθ), L2(M, /S), /D) is still a spectral triple, and the associated one-forms Ω1

/D(Mθ) are a
centred bimodule.

Theorem 4.28 ([BGM20]). Let M be a compact spin Riemannian manifold with a free isometric torus
action. Let /S be a Dirac bundle on M and /D be the associated Dirac operator. Then the bimodule
Ω1
/D(Mθ) of differential one-forms over the θ-deformed spectral triple (C∞(Mθ), L2(M, /S), /D) is a centred

bimodule.

Thus we can use the correspondences between vector fields and forms that we have exhibited in this
paper in the case of θ-deformations coming from free torus actions, in particular, the 2-torus and 3-
sphere. All we need is the existence of Levi-Civita connections on these θ-deformed spectral triples. More
specifically, we need the existence of a †-bimodule connection for the canonical braiding σ on our centred
bimodule of differential forms. This is proved as [BGM20, Theorem 5.4].

Theorem 4.29 ([BGM20]). Let M be a compact spin Riemannian manifold with a free isometric torus
action. Then there exists a unique Hermitian and torsion-free †-bimodule connection (Ð→∇ θ, σ) on the
θ-deformed spectral triple (C∞(Mθ), L2(M, /S), /D).

This result is also a consequence of Theorem 6.12 in [MR24a], which guarantees the existence and
uniqueness of the Hermitian and torsion-free connection for a general θ-deformed spectral triple (even
when the torus action is not necessarily free). To see this, we simply note that the braiding σθ considered
in [MR24a, Section 6.2] coincides with the canonical braiding when Ω1

/D(Mθ) is centred. Indeed, if ω and
η are central homogeneous forms in Ω1

/D(Mθ) then σθ(ω ⊗ η) = Θ(ω, η)η ⊗ ω = η ⊗ ω. We also note that
[MR24a] proves the identity Ψθ = 1

2(1 + σθ) for general θ-deformations.
All the assumptions of Theorem 4.20 are thus satisfied by θ-deformed spectral triples coming from

free toral actions. Hence we can state the following result.

Corollary 4.30. Let M be a compact spin Riemannian manifold with a free isometric torus action.
Then (←ÐX (C∞(Mθ)), ⟨⋅∣⋅⟩C∞(Mθ) ,Dϕ,

←Ð∇) is a (right) real pseudo-Riemannian calculus with strongly non-
degenerate inner product, where ←Ð∇ is the affine connection induced by the unique (left) Levi-Civita
connection on Ω1

/D(Mθ).
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A Finitely generated projective inner product †-bimodules
In this appendix we collect some general results for abstract finitely generated projective strongly

non-degenerate inner product bimodules.

Definition A.1. A †-bimodule over the ∗-algebra A is an A-bimodule X that is equipped with an
antilinear involution † ∶ X → X such that (axb)† = b∗x†a∗. An inner product †-bimodule is a †-bimodule
X equipped with a pairing

⟨⋅ ∣ ⋅⟩A ∶ X ×X → A, (x, y)↦ ⟨x ∣ y⟩A,

such that

1. ⟨x ∣ ya⟩A = ⟨x ∣ y⟩Aa;

2. ⟨x ∣ y⟩∗A = ⟨y ∣ x⟩A;

3. ⟨ax ∣ y⟩ = ⟨x ∣ a∗y⟩;

4. ⟨⋅ ∣ ⋅⟩ is strongly non-degenerate: the map x ↦ (y ↦ ⟨x† ∣ y⟩A) is an isomorphism X → ÐÐ→HomA(X ,A)
of left A-modules.

Remark A.2. A strongly non-degenerate inner product is weakly non-degenerate, in the sense that the
map x↦ (y ↦ ⟨x ∣ y⟩A) is injective.

We will omit the subscript A on inner products below.

Lemma A.3. Let X be a finitely generated projective right module with a strongly non-degenerate inner
product ⟨⋅ ∣ ⋅⟩ (satisfying 1,2 and 4 of Definition A.1). Then there exist a finite set of pairs {(xi, x′i)}ni=1 ⊂
X ×X such that

x =
n

∑
i=1

xi⟨x′i ∣ x⟩ =
n

∑
i=1

x′i⟨xi ∣ x⟩

for all x ∈ X . We call {(xi, x′i)}ni=1 ⊂ X ×X a generating pair.

Proof. Choose a finite generating set {xi} for X , that is for each x ∈ X there exist ai ∈ A such that
x = ∑i xiai. Consider the surjective bimodule map

π ∶ An → X , (ai)↦∑
i

xiai.

Since X is projective there is a splitting s ∶ X → An, s(x) = (si(x)), with si ∈ Hom(X ,A). Now since X
carries a strongly non-degenerate inner product, there exist x′i ∈ X such that si(x) = ⟨x′i ∣ x⟩ and thus

x =∑
i

xi⟨x′i ∣ x⟩.

For every z we have

⟨∑
i

x′i⟨xi ∣ x⟩ ∣ z⟩ =∑
i

⟨x ∣ xi⟩⟨x′i ∣ z⟩ = ⟨x ∣∑
i

xi⟨x′i ∣ z⟩⟩ = ⟨x ∣ z⟩,

so that by non-degeneracy x = ∑i x
′
i⟨xi ∣ x⟩ as well.

Remark A.4. If A is dense and spectral invariant inside a C∗-algebra A, then any positive definite (hence
weakly non-degenerate) finitely generated projective right inner product module admits a frame [FL02,
MR24a]. This a set {xi} such that {(xi, xi)} satisfies the conclusion of Lemma A.3 (that is, xi = x′i). The
proof of existence of such a frame requires some analysis, afforded by the spectral invariance assumption.
Existence of frames, in turn, implies strong non-degeneracy of the inner product.
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Remark A.5. Given a pair of sequences {(xi, x′i)} as in Lemma A.3, the two tensor∑i xi⊗x′i is a generalised
quantum metric relative to the inner product ⟨⋅ ∣ ⋅⟩ in the sense of [BM20, Definition 1.5]. Such sequences
are an algebraic analogue of the notion of frame in a Hilbert C∗-module, and have appeared in the algebra
literature, for instance [BM11], and recently in [AH25].

Corollary A.6. Let X and Y be finitely generated projective strongly non-degenerate right inner product
modules. For every T ∈ HomA(X ,Y) there exists T ∗ ∈ HomA(Y,X ) such that for x ∈ X and y ∈ Y we
have ⟨Tx ∣ y⟩ = ⟨x ∣ T ∗y⟩.

Proof. Let {(xi, x′i)} be a generating pair for X and set T ∗y ∶= ∑i xi⟨Tx′i ∣ y⟩. Then

⟨x ∣ T ∗y⟩ =∑
i

⟨x ∣ xi⟩⟨Tx′i ∣ y⟩ =∑
i

⟨Tx′i⟨xi ∣ x⟩ ∣ y⟩ = ⟨Tx ∣ y⟩,

as claimed.

All tensor powers X⊗m carry right and left inner products, defined inductively via

⟨x1 ⊗ y1 ∣ x2 ⊗ y2⟩ ∶= ⟨y1 ∣ ⟨x1 ∣ x2⟩y2⟩.

Using these inner products we obtain bimodule maps

Ð→α ∶ X⊗(n+k) →ÐÐ→HomA(X⊗k,X⊗n), Ð→α (x⊗ y)(z) ∶= x⟨y† ∣ z⟩A
←Ðα ∶ X⊗(n+k) →←ÐÐHomA(X⊗k,X⊗n), ←Ðα (x⊗ y)(z) ∶= A⟨z ∣ y†⟩x, (A.1)

where y, z ∈ X⊗k and x ∈ X⊗n. The following is an extension of Proposition 3.4 and should be viewed as
abstract raising and lowering indices on tensors via the musical isomorphisms.

Proposition A.7. Let X be a finitely generated projective †-bimodule with a strongly non-degenerate
inner product. Then for all n, k ≥ 0, the maps Ð→α and ←Ðα are isomorphisms. In particular, the inner
product on each X⊗k is strongly non-degenerate.

Proof. Given a generating pair {(xi, x′i)}i∈I for X indexed by the finite set I. Consider the set

{(xi1 ⊗⋯⊗ xik , x
′
i1 ⊗⋯⊗ x′ik)}j=(i1,⋯,ik)∈Ik (A.2)

and any elementary tensor ξ = ξ1 ⊗⋯⊗ ξk and compute

∑
j∈Ik

xj⟨x′j ∣ ξ⟩ = ∑
j∈Ik−1

∑
n∈I

xj ⊗ xn⟨x′n ∣ ⟨x′j ∣ ξ1 ⊗⋯⊗ ξk−1⟩ξk⟩ = ∑
j∈Ik−1

xj ⊗ ⟨x′j ∣ ξ1 ⊗⋯⊗ ξk−1⟩ξk.

Now employ induction to conclude that (A.2) is a pair of generating sequences for X⊗k. The inverses of
the maps Ð→α and ←Ðα are given by

Ð→α −1(T ) = ∑
j∈Ik

Txj ⊗ x′j ,
←Ðα −1(T ) ∶= ∑

j∈Ik
x′j ⊗ Txj ,

which proves the claim.

We now restrict ourselves further to the case of centred bimodules, that is, modules generated by their
centre. Recall that a braiding on a †-A-bimodule X is an invertible map σ ∶ X ⊗AX → X ⊗AX such that
σ−1 ○ † = † ○ σ. The following result is due to Skeide and we recall it here for convenience.

Proposition A.8. [S96] On a centred †-bimodule X over A, there exists a unique braiding σcan which
satisfies σcan(x⊗ y) = y ⊗ x whenever x or y ∈ Z(X ). This braiding is an involution.
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Proof. Uniqueness follows from bilinearity of σcan. Indeed, Z(X ) generates X so two-tensors of the form
x⊗ y with x and y central generate X ⊗A X as a bimodule. Existence follows from the fact that the flip
map x ⊗ y ↦ y ⊗ x is well-defined when x and y are central, and central elements generate X . If x is
central and y = ∑i eiai = ∑i aiei, with ei central and ai ∈ A, then

σcan(x⊗ y) =∑
i

aiσ(x⊗ ei) =∑
i

aiei ⊗ x = y ⊗ x.

Clearly σcan = (σcan)−1 on central forms, so by bi-A-linearity σcan is an involution on X ⊗AX . It satisfies
the braiding condition σcan ○ † = † ○ (σcan)−1 = † ○ σcan.

In the case of a centred bimodule X with a symmetric inner product we can improve on Lemma A.3.

Lemma A.9. Let X be a centred finitely generated projective †-bimodule with non-degenerate inner product
⟨⋅ ∣ ⋅⟩ such that g ○ σcan = g. Then there exists a finite set of pairs {(xi, x′i)}ni=1 ⊂ Z(X ) ×Z(X ) ⊂ X ×X of
central elements such that {(x†

i , x
′†
i )}ni=1 = {(xi, x′i)}ni=1 and for all x ∈ X we have

x =∑
i

xi⟨x′i ∣ x⟩ =∑
i

x′i⟨xi ∣ x⟩ =∑
i

x†
i ⟨x
′†
i ∣ x⟩ =∑

i

x′†i ⟨x
†
i ∣ x⟩.

Proof. Since X is centred we can find central sequences {(xi, x′i)} satisfying the conclusion of Lemma A.3.
To obtain †-invariant sets, choosing x′i as above we have

∑
i

x†
i ⟨x
′†
i ∣ x⟩ =∑

i

⟨x′†i ∣ x⟩x
†
i =∑

i

⟨x† ∣ x′i⟩x
†
i = (∑

i

xi⟨x′i ∣ x†⟩)
†

= x.

Therefore
x = 1

2
(∑

i

xi⟨x′i, x⟩ + xi†⟨x
′†
i , x⟩) .

Thus the set {( xi√
2
,
x

†
i√
2
), ( x′i√

2
,
x
′†
i√
2
)} satisfies the conclusion of the Lemma.
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