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Abstract

We use spectral flow to present a new proof of Levinson’s theorem for Schrédinger
operators on R” with smooth compactly supported potential. Our proof is valid in all
dimensions and in the presence of resonances. The statement is expressed in terms of the
spectral shift function and the “high energy corrected time delay” following Guillopé and
others.

1 Introduction

Much work has been done in recent years investigating the topological nature of Levinson’s
theorem from quantum scattering theory, both as an index theorem [3, 5, 24, 25, 33, 34, 35]
and as an index pairing [1, 2, 4]. In this paper we prove Levinson’s theorem for Hamiltonians
Hy, H on R™ by using spectral flow from Hy to H. By applying the operator pseudodifferential
calculus to the spectral flow formula of [15], we obtain a proof of the integral form of Levin-
son’s theorem in all dimensions and in the presence of zero energy resonances. The dominant
contribution is from the eta invariants of the endpoints Hy, H, and can be computed using
the Birman-Krein formula. In particular, we give a new approach to the relationship between
the spectral shift function and spectral flow, extending work of Azamov, Carey, Dodds and
Sukochev [8, 9]. Our main result (see Theorem 4.2) is

Theorem (Levinson’s theorem). Suppose that V- € C°(R™). Then the number N of eigenval-
ues (counted with multiplicity) of H = Ho + V is given by
1 o
N = g [ (SN S ) = ) A= Bu(V) + N
where Nyes 1S the contribution from resonances as defined in Theorem 2.15 and the polynomial
pn and constant B, are defined in Lemma 2.10 and Definition 2.11.

The layout of the paper is as follows. In Section 2.1 we recall the definition of spectral flow due
to Phillips [30, 31] and the general formula for the spectral flow along a path of unbounded
operators from [15]. In Section 2.2 we summarise the stationary scattering theory for the
Hamiltonians Hp, H and in Section 2.3 we recall the spectral shift functon and its defining
properties, including the Birman-Krein trace formula. In Section 2.4 we describe the high-
energy behaviour of the spectral shift function from [1] and the pseudodifferential expansion
of the resolvent from [14].
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In Section 3 we use the scattering techniques of Section 2 to analyse the spectral flow formula in
two components. The first is an ‘integral of one-form’ type term in Section 3.1 and the second
is a Birman-Krein contribution in Section 3.2. Finally, in Section 4 we obtain a formula for
the spectral flow in terms of scattering data and as a consequence prove Levinson’s theorem.

Acknowledgements This work is supported by the ARC Discovery grant DP220101196 and
AA was supported by an Australian Government RTP scholarship. We would like to thank
Alan Carey and Galina Levitina for useful input.

2 Background and notations

2.1 Spectral flow

The concept of spectral flow was used by Atiyah, Patodi and Singer in [6, 7] as a tool to
develop APS index theory. Spectral flow is intuitively defined as the net number of eigenvalues
which change sign along a path of self-adjoint operators, with the convention that an eigenvalue
changing from negative to positive will provide a contribution of 1 to the spectral flow. We use
the definition due to Phillips [30, 31]. Phillips’ definition of spectral flow is valid in the much
broader setting of semifinite von Neumann algebras with faithful normal semifinite traces, and
while we do not need the full power of such a definition, we do need the ability to handle
operators with continuous spectrum.

Consider the compact operators K(H) C B(H) with trace Tr and let 7 : B(H) — B(H)/K(H)
denote the projection onto the Calkin algebra. Let x = X[o,) be the characteristic function
of the interval [0,00). Let (7})c[o1) be any norm-continuous path of bounded self-adjoint
Fredholm operators in B(H), so that m(7;) is a norm continuous path of invertibles. Then
7 (x (Ty)) = x (7 (13)). Since the spectrum of the 7 (7}) are bounded away from zero, the path
X (7 (1)) is continuous. By compactness (and [11, Lemma 4.1]) we can choose a partition
0=ty <ty <---<tp=1such that

1

I (O (13) =7 (X (L))l < 5

for all t,s € [ti—1,t;] and 1 < ¢ < k. Defining the projection P; = x (13,) we find that
P;_1P; : BH — P;_1H is Fredholm. We recall the following definition, due to Phillips [30, 31].

Definition 2.1. Let H be a Hilbert space. For t € [0, 1] let (7}) be any norm-continuous path
of bounded self-adjoint Fredholm operators in B(JH). For a partition 0 =ty < t; < -+ <t =1
of the interval [0, 1] define the operators P; = x (T%,). Then we define the spectral flow of the
path (7;) by

k
sf(Ty) =) _Index (P,_1P;).
=1

We note that the above definition of spectral flow is independent of the choice of partition
[27, 30, 31] and agrees with the topological definition used in [6, 7] when both make sense. For
unbounded operators, we make the following definition of spectral flow [13].

Definition 2.2. Let H be a Hilbert space with trace Tr. Let (D;) be a graph norm continuous
path of unbounded self-adjoint Fredholm operators on H. Define the function F': R — [—1,1]



by F(z) =z(1+ x2)7%. The spectral flow along the path (D;) is defined by
sf(Dy) = st(F(Dy)).

Throughout the rest of this section [0,1] > ¢ +— D, stands for a path of unbounded self-
adjoint linear Fredholm operators acting on some dense domain in H = L?(R"). We denote by
(F}) = (F(Dy)) the bounded transform of the path (D;). We must also impose a smoothness
assumption on D; to use analytic formulae for the spectral flow.

Definition 2.3. 1. A path [0,1] > ¢ — Dy is called I-differentiable at the point ¢t = tg if
and only if there exists a bounded linear operator 1" such that

lim
t—to

t71(Dy — Dyy)(Id + D2) "7 — TH ~0.

In this case we set Dto =T(Id+ tho)%. The operator D; is a symmetric linear operator
with domain Dom(D;) [15, Lemma 25].

2. If the mapping t — Dt(Id—i—D?)_% is defined and continuous with respect to the operator
norm, then we call the path ¢ — D; a continuously I'-differentiable or a C% path.

The most general analytic spectral flow formula for the case of unbounded operators on a
Hilbert space is given by the following theorem [15, Theorem 9]. The sign of the second term
in (2.1) below appears incorrectly in [15, Theorem 9.

Theorem 2.4. Let [0,1] 3 t — Dy be a piecewise C{ path of linear operators and Fy € B(XH)
be Fredholm with ||Fy|| < 1. Let g : R — R be a positive C? function such that

1 [pg(z)de =1;
2. fol HDtg(Dt)Hl dt < oo; and

3. G(D1) — 3B1 — G(Dy) + 3By € LY(H), where Bj = 2x[g00)(D;) — 1, and G is the
antiderivative of g such that G(+oo) = +1.

Then

1
. 1 1
sf(Dy) = / Tr (Dtg(Dt)> dt — Tr (G(Dl) — 5B1—G(Do) + 2Bg> . (2.1)
0
In our applications of this formula we will take D; = Hy + ald + tV where Hj is the free
Hamiltonian, « a carefully chosen constant and V' a suitable potential. We now describe these
ingredients.

2.2 Stationary scattering theory

We consider the scattering theory on R™ associated to the operators

)
Hy=— 8—2:— and H = Hy+V,
jzlaxj



where the (multiplication operator by the) potential V' is a smooth compactly supported and
real-valued function. With (-,-) the Euclidean inner product on R", we denote the Fourier
transform by

T LARY) - LAR"),  [5f]() = (27)"3 / e=i(0) £(2) da.

n

Note that the Fourier transform F is an isomorphism from H*! to H%® for any s,t € R.

We denote by B(Hi,Ha), K(Hy,Hs) and L1(FH;,Hs) the bounded, compact and trace class
operators from H; to Ho. For z € C\ R, we let

Ro(z)=(Ho—2)"', R(z)=(H-2)"1

The operator Hy has purely absolutely continuous spectrum, and in particular no kernel. The
operator H can have finitely many eigenvalues which are negative, or zero [36, Theorem 6.1.1].

Several Hilbert spaces recur, and we adopt the notation (following [21, Section 2] which contains
an excellent discussion on the relations between the spaces and operators we introduce here)

H=L*R"), P=L*S""), Hepee=L*R",P)=L*RT)RP.

Here Hgpee provides the Hilbert space on which we can diagonalise the free Hamiltonian Hy.

Since V' is bounded, H = Hy+V is self-adjoint with Dom(H) = Dom(Hy). Since V € C°(R"),

the wave operators
Wy = s-lim e g~iHo
t—+o0

exist and are asymptotically complete [36, Theorem 1.6.2]. The wave operators are partial
isometries satisfying WiWi = Id and WiWI = P,., the projection onto the absolutely
continuous subspace for H. The scattering operator is the unitary operator

S =W, (2.2)

which commutes strongly with the free Hamiltonian Hy. For our analysis of the scattering
operator, we describe the explicit unitary which diagonalises the free Hamiltonian.

Definition 2.5. Define the operator which diagonalises the free Hamiltonian Hy as
Fo:H = Hopee by [Fofl(\w) =2722"T [Ffl(A2w).

By [21, p. 439] the operator Fp is unitary and for A € [0,00), w € S""! and f € Hpee We have
[FoHoFj fl(Aw) = Af(Aw) = Af(\ w).

As a consequence of the relation SHy = HS, there exists a family {S(\)} er+ of unitary
operators on P = L2(S"!) such that for all A\ € RT,w € S* ! and f € H we have

[FoSfI(A, w) = SN [FofI(A w)-

For historical reasons, we refer to S()\) as the scattering matrix at energy A € RT since in
dimension n = 1 the operator S(\) is an Ma(C)-valued function.



Note that the operators Hy and H are not Fredholm, since 0 is in the essential spectrum of
both. To use the spectral flow formula of Theorem 2.4 we make the following adjustment for
the rest of this article. Let v < 0 be the furthest eigenvalue of H from zero. We fix a > —2v+1,
so that the operators Hy(a) = Hyp + o and H(«) = H + « define Fredholm operators. As a
consequence, the path

[0,1] 3t — Hy+tV + o =: Hy(«)

defines a Cf. path of Fredholm operators with H;(a) = V. The operator Hy(a) has purely
absolutely continuous spectrum o(Hp(«)) = [a,00) and the operator H(a) has absolutely
continuous spectrum o4.(H (o)) = o(Hp()). In addition, the operator H(a) has a finite
number of distinct eigenvalues 0 < A () < Aa(a) < - < Ag(a) < « of finite multiplicity.
The eigenvalues satisfy \j(a) = A\j+a, with Ay < Ay < --- < Ag < 0 the distinct eigenvalues of
H. We write M()\;) = M(\j(c)) for the multiplicity of the eigenvalue \; and use the notation
Ny for the multiplicity of the zero eigenvalue for H. We also write

K
N => M)
j=1

for the total number of eigenvalues of H (counted with multiplicity). Let Pu.(Ho(«)) denote
the projection onto the absolutely continuous spectrum for Hy(a). The wave operators

Wi(a) = slim (@t p, (Hy(a)) = Wy

t—+o0

exist and are asymptotically complete by the invariance principle [32, Theorem XI.11]. Direct
calculation gives the following diagonalisation for Hy(a).

Lemma 2.6. The operator Fy, : H — L?([a,0)) @ L2(S"™1) given by
[Faf](Avw) = [FOf]()‘ - aaw)
satisfies

[FaHO(a)f](/\>w) = )‘[Fozf]()‘a W)'

The scattering operator S = W} W_ is unitary and commutes with Hy(a) and so there exists
a family {Sa(\)}re[a,00) Of unitary operators on L?(S"~!) such that

[FaSfI(Aw) = Sa(M[Fafl(A w).
In fact, we have So(A) = S(A — ) for all A € [a,00). Pointwise we have S,(\) — Id €
LYHL2(S™ 1)), [36, Proposition 8.1.5].
2.3 The spectral shift function and the Birman-Krein trace formula

We now recall the spectral shift function [12, 26] for the pair (H(«), Hp(«)) and some of its
defining properties (see [36, Theorems 0.9.2 and 0.9.7]). The proofs in [36] only consider o = 0,
however extend directly to a > 0 by translation.



Theorem 2.7. Suppose that V€ C(R™), a > 0 and let S be the corresponding scattering
operator. Then there exists a unique (up to an additive constant) real-valued piecewise-C'!
function &,(-, H, Hy) : R — R such that

Tr(f(H () = F(Ho(0))) = | €\ H.Ho) /(%) A (23
at least for all f € C*(R) with two locally bounded derivatives and satisfying
d m+1 _ —1—¢
= () = 0 (24)

as A — oo, for some € > 0 and m > 5. We specify & (-, H, Ho) uniquely by the convention
&a(N, H, Hy) = 0 for X\ sufficiently negative. Thus for A < a, {4(+, H, Hy) satisfies the relation

K
Ea(\ H, Ho) = = > M(Me() X[y (a),00) (N,
k=1
where we we have indexed the distinct eigenvalues of H(a) as M\ (a) < -+ < Ag(«) and each

Aj(a) has multiplicity M(Xj(c)). Furthermore, we have & (-, H, Ho)(a,00) € C'(a,00) and for
A > « the relations

Det(Sa(N) = e 2N and  Tr (Sa(\)*S4(N) = —2migl ()
hold. Furthermore, we have £4,(N\) = (A — «) for almost all A € R.

We call &,(-, H, Hp) the spectral shift function for the pair (H(a), Hp(«)) and will often just
write &, = & (-, H, Hp). We also write £ = &). Using integration by parts we can rewrite the
definining property (2.3) in a sometimes more convenient fashion, known as the Birman-Krein
trace formula [18, Theorem III.4].

Lemma 2.8. Suppose that V € C°(R™), a > 0 and let Sy, & be the corresponding scattering
operator and spectral shift function. Then for all f € C2°(R) we have

K
T (H(@) ~ F(Hola)) = 5 [ FOVTE (SaO)"SL00) A+ Y FO@)M (M)
k=1
+ £(0) (€alom) — Eala) — M(a))

where we have defined &, (a£) = lim &, (a £ ¢).

e—0t

In fact by Theorem 2.7 we have, with N the total number of eigenvalues of H counted with
multiplicity and Ny = M («) the number of zero eigenvalues for H, the relation &,(a—) =
—N + Ny. We can then rewrite the Birman-Krein trace formula as

K
TH(f(H(0)) ~ f(Ho(0)) = 5 / FOVTE (8207 SA() dA+ 37 FOw(@) M (Ak(e)
k=1

a) (=N —&alat)).



2.4 Resolvent expansions and limiting behaviour of the spectral shift function

For k € NU{0} and f € C2°(R™) we introduce the notation f*) = [Hy, [Ho,[-- -, [Ho, f]- -],
where the expression has & commutators. We recall the following pseudodifferential expansion
of the resolvent [1, Lemma 4.8] (see also [14, Lemma 6.11]).

Lemma 2.9. Suppose that V. € C*(R™). For all MK > 0 and z ¢ o(H) we have the
expansion

M K
R(z)=(H—-2)"'= Z Z Con (k) (=1)mHkly k) Ly k) Ry ()ymHEHL L P (2)
m=0 \ |k|=0

+ (=D)MH(Ro(2)V)MHIR(2),

where the remainder Py, (z) is a pseudodifferential operator of order at most —2m — K — 3.
The combinatorial coefficients Cy, (k) are given by

(m + [k])!

O k) = T oG + D)y + ke + 2) - (R )

Note that the operator V(1) ...V (km) is a differential operator of order at most |k| with smooth
compactly supported coeflicients and thus we may write

|k
vk L yem) — Z 9r. 0, (2.5)
181=0
where the multi-indices 5 are of length n and g, 3 € C°(R").
We now recall the high-energy behaviour of the spectral shift function and its derivative [1,

Lemma 2.15, Theorem 4.15 and Remark 4.16].

Lemma 2.10. Suppose that V € C(R"). Then for 1 < £ < |5| there exist coefficients
Co(n, V), ce(n, V), Bn(V) such that

1252
0= lim | —2mig(A) — 2mifn(V) — D Con, V)Rt
/=1

—00

125t
= lim [ —2mi'(\) = > er(n, V)AT !

A—00
(=1

The coefficients are related by c¢(n,V) = (% —€) Ce(n, V). For 1 < ¢ < |22] and M,K € N
with M + K > n we define the set

Qum,x(0) = {(m,k,8) €{0,1,..., M} x {0,1,...,K}" x {0,1,...,K}" : |B| < |k|,

18l
and m + |k| + 5 t}



The coefficients Cy(n, V') are given by

(1)L 20) Oy (K (—4) 81T (%) ) <%)

C[(na V) = Z
(kB (m+ Dm+ DT (% = m— k| + 5) @mn - Jre

and

0, if n is odd,

1 . .
70z (n, V), if n is even.

Bn(v) = {

Definition 2.11. Define the functions P,,p, : (0,00) — C by
—1

125
Po(N) =2miB, (V) + Y Co(n, V)A2 ™,
(=1

1251
PN = D c(n,V)A2 = P(A).
/=1

We call P, the high-energy polynomial for £ and p,, the high-energy polynomial for &'

Remark 2.12. Recall the spectral shift functions &, &, for the pairs (H, Hy) and (H(«), Ho()).
Since £,(A) = £(A — «) for all almost all A\ € R we have that the high-energy polynomial for
o is Py(- — ) and likewise for ¢ and p,,(- — ).

We can explicitly compute the lowest order polynomials (see [10, 16]), finding P; = 0, and

mi) Vol(§' e
_ (2mi)A2Vol(S?) Ny (2miAE o
Py(\) = 2(27)3 /RBV( )dz = =5 /}Rd V(z)dz,
Py(N) 2(2m)4 /R4 V(x)dz + 1(2m)1 /R4V( )2 dz.

The integrability properties of the derivative of the spectral shift function on R™ are well-
known, see [22, Theorem 5.2] and [1, Lemma 4.12].

Lemma 2.13. Suppose that V € C°(R™). Then the function Tr (S(-)*S’()) — pn is integrable
on RT. In particular, if n = 1,2 we have Tr (S(-)*S’(+)) € LY(RT).

We now define zero-energy resonances, a low-energy phenomena known to provide obstructions
to generic behaviour in scattering theory in low dimensions.

Definition 2.14. Suppose that V' € C°(R"™). If n # 2 we say there is a resonance if there exists
a non-zero bounded distributional solution to Hy = 0. If n = 2 we say there is a p-resonance if
there exists a non-zero distributional solution 1 to Ht = 0 with ¢ € LY(R?)NL>(R?) for some
g > 2. We say that there is an s-resonance if there exists a non-zero bounded distributional
solution ¢ to Hy = 0 with 1 ¢ L4(R?) for all ¢ < oo.



General bounds on the resolvent of H [20] show that there can be no resonances for dimension
n > 5.

We now recall the value of the spectral shift function at zero in all dimensions from [1, Corollary
5.11].

Theorem 2.15. Suppose V€ C°(R™). Then the value of the spectral shift function at zero
is given by £(0+) = —N — Nyes, where Nyes = 0 unless

%, if n = 1 and there are no resonances,
N — Ny, if n = 2 and there are IV, = 0,1, 2 p-resonances,
res — 1 .
35 if n = 3 and there are resonances,
1 if n =4 and there are resonances.

We note that the proof of Theorem 2.15 in [1] is as a corollary of Levinson’s theorem, however
the result can be obtained directly using perturbation determinant methods in odd dimensions
(see [28], [29] and [18, Theorem 3.3]).

3 Spectral flow for Schrodinger operators

In this section we analyse the spectral flow formula of Theorem 2.4 applied to the path Hy(«)
by making a particular choice of the function g and then taking residues.

Define for Re(s) > § the constants Cs = [ (1 4+ u?)~* du. The functions s — C; have a pole
at s = % with residue equal to one. For Re(s) > % we define the eta function s : R — C by

1 > 92 &)
775(93) = 0/1 x(1+ wxz)fswfé dw = C’/ (1 + 1)2)73 ds,

s

where the second expression is valid only for x > 0. We can now use the function 75 to obtain
a useful form of Theorem 2.4.

Lemma 3.1. Let [0,1] 3 t — Dy be a piecewise C} path of linear operators with D,(1+ D?)~s
trace-class for all s > 7. Then

Sf(Dt) =

1 . ~ C.
Res < /O Tr (Dt(Id + D?) ) dt + 5 Tr (ns(D1) — ns(Do) + Piex(Dy) — PKerwo))) . (3.1)

1
§=3

Proof. For s > %, let g : R — R be given by gs(z) = C;'(1 + z?)~*. Note that the

antiderivative G of g5 with G(£o0) = j:% is given by

1 1 [*
Gs(z) = -5+ C/ (1 +u?)~* du.

The function g is even and so Gy is odd. For z > 0 we have G4(z) = § — 37;(z), while for
z < 0 we have G(z) = —% — 4n,(z). Thus applying Theorem 2.4 to gs, G, and multiplying
both sides by Cj yields

1
. . C,
Cssf(Dy) = /o Tr (Dt(ld + D7) ) dt + — Tr (ns(D1) = ns(Do) + Pier(Dy) — Pier(Dy)) -

(3.2)



The left-hand side of Equation (3.2) is a meromorphic function of s with a simple pole at s = %
and thus defines a meromorphic continuation of the right-hand side of Equation (3.2) with a
simple pole at s = % As a result, taking the residue at s = % gives Equation (3.1). ]

Equation (3.1) is the starting point for our analysis of the spectral flow along the path Hy(«).
There are two separate types of terms to be considered. The first is the “integral of one-form”
term which is evaluated in Section 3.1 using the pseudodifferential expansion of Lemma 2.9
and the second is the 7 contribution which is evaluated in Section 3.2 using the Birman-Krein
trace formula.

3.1 The “integral of one form” term

We use the pseudodifferential expansion of Lemma 2.9 to compute an expansion for the integral
of one form term in Theorem 2.4. After a fixed number of terms (depending on the dimension
n) the remainder term will be holomorphic at s = % and can be discarded. We begin with a
residue computation.

Lemma 3.2. For { € N, a > 0 we have

Res (/00 UL 4 (04 )" du) _ § <£—' 1> (—1)eé'1az—j—1r (J+1>
0 -

=4 ar (3+1)T(3)

Proof. Fix s € C with Re(s) > “Tl. We make the substitution v = u 4+ o and apply the
binomial expansion to obtain

/00 w1+ (u4 ) du = /oo(v — )14+ 0v?) S do
0 o

= g <£ ; 1) (—a)f=971 /:O v (14025 dv
_ j; (ﬁ . 1) (=)t /Ooo V(14 0%) du
S e [t

Since the integrals from 0 to « are over a finite region, they are holomorphic at s = % and thus
have vanishing residue. So we compute for 0 < j < ¢ — 1 that

j+1 j+1
i 2\—s L R = —s F(J )F(S_JQ)
v (1+0%) " dv == w2z (14+w) *dw= :
0 0

2 2I(s
Taking the residue at s = % we find
o (~1)% EELp (1) .
Rels (/ ’Uj(l 4 v2)—s dv> — 21“(%4—1)71“(% ) if j is even,
5=2 \JO 0, otherwise,
from which the result follows. O

10



To evaluate some further traces, we need to be able to integrate polynomials over S*~1. We
use the following result [17].

Lemma 3.3. Let 8 be a multi-index of length n and let Pg : R" — C be given by Pg(x) =
2P = azfl . xﬁ” Then

0, if some 3; is odd,
Pyl dw = § 2r(20)-r(252)

st r (=) 7

if all 3; are even.

We now contribute the residue of the contribution from the “integral of one form” term to the
spectral flow.

Proposition 3.4. Suppose that V € C°(R™) and o > —2v. Then for n odd we have

Res (/01 Te (V (1 + (Ho + 1V +0)?) ™) dt> ~0.

1
$=3

If n is even we have

Res (/01 Tr (V (Id + (Ho +tV + a)Q)_S) dt)

)Cg(n,V),

with the Cy(n, V') the high-energy coefficients defined in Equation (2.6).

Proof. For a > 0 and Re(s) > % we define the function ¢4 s : R — C by

S

Pas(®) = (14 (z+a)?) ",

using the principal branch of the logarithm. The function ¢, s is holomorphic in the half-plane
Re(z) > —a. Let a € (—%,0) so that a < A for all ¢t € [0,1] and A € o(Hy + tV) and define
the vertical line v = {a +iv : v € R}. For ¢ € [0, 1] we use Cauchy’s integral formula to write

1
Vo s(Hy+1V) = —— / Ya,s(2)(Ho +tV — z)7ldz. (3.3)
211 y

Denoting R;(z) = (Ho +tV — 2)~! we have by Lemma 2.9 that for all M, K > 0 that

M K
Ry(z)=> | t" > (=)™ e, (e)vE) ... v Ry ()™ FF 4 P e (2)
m=0 |k|=0

+ (=DM Ry () V)M Ry (),

11



where P, k+(z) has order (at most) —2m — K — 3. We can now write Equation (3.3) as

K
wo(H L 1ymK (k) . (m)/ - mt [kl +1
Pos(Ho +1V) = =5 — Z < > (- Co(k)V v e (2)Ro(2) dz

=0 |k|=0
(_1)MtM+1
211

+/(pa,s(2)Pm,K7t<Z) dZ) +

M
- ¢m Z KLy ) Ly k) / ers(2) Ro(z) ™ HFH g
v

/ Gors(2) (Ro(2)V) M+ Ry (2) dz
;

_2m
m=0 |k|=0

+ E(M,K,t,a,s).
Using again Cauchy’s integral formula we can compute that

1
2mi

1 dm+'k'soa,s|
(m + k)] dgmtikl ==t

90045( )RO(Z)m+\k|+1 ds = —

Thus we have the expression

m—i—\k\tm

dm+lkl

E‘E( (k1) k) & Paus

SDOZS H0+tv 0‘ I m+‘k|) V 1 V dzm'Hkl ’z:Ho_'_E(M,K,t,OC,S).
m=0 |k|=0

Choose M = |n] and for 0 < m < M let K = M —m. Since V1) ... V(kn) ig a differential
operator of order |k|, we can write

||

|8]=0

where ( is a multi-index of length n and g3 € C2°(R™). Then we can use Lemma 3.3 to
compute

(k) (k:m)d IIS%S || \k:\%é’s
Tr [ VV -V W|Z:HO Z Tr ngﬁa W|z:Ho

|8]=0
|K|

= (2m)" w'zzo ( | vi@s da:) ( [ gt P 2) 4 )

|| 2(_i)\ﬁlr Bitl) . (Lntl —
) (Lvema) ([ )
Beven

|| IBIF lsl - dm .
-2 Srzng ([ vimtoae) ([ ),
5even

12



where the sum is over multi-indices 5 with all 3; even. First, suppose that m+ [k| < %\M —1.
Integrating by parts in the u integral (m + |k|) times we find

z:Ho)

- (—i)Bl(—1)m+HD (%) T (ﬂn+1
) Iﬁzjo (2m)"T (%)

B even

0o qmtlk| ntls]
) (/O W (u 2 1) Qpa,s(u) du

|k| (_Z‘)W\(_l)m—i-\k\r (%) T (ﬂn—i-l

B wz_:o (2m)T (52— m — [kl)

B even

X </ unz‘ﬁ‘*m*‘k‘*lwavs(u) du> .
0

Note that the boundary terms from the integration by parts vanish since %‘m —m—|k|]—1> 0.
We first consider n odd and make the estimate

[ e < [T T
0 0

= 1 /OO vnjm*mglk‘*l(l + v)fRe(S) dv
0

dmtIk|
(kl) e (km)&
Tr (VV vl =

Since n is odd, we have

1 m+|kl] n+|3
h . Z
2+ 2 4 ¢

for all possible m, k, 8 and thus we find

B T Y
Res u 2 Ya,s(u)du | =0,
S=3 0

2

from which we deduce that

Res (/01 Tr (V (Id + (Ho +tV + a)2)‘5> dt) = Res (/01 Tr (VE(M, K, t,a,s) dt) ,

_1 1
§=3 $=3

which we show is zero below. We now consider n even. An application of Lemma 3.2 gives

Res </0 (u%‘m_m_lk‘_lwms(u) du>
5=3

+ + . ;
mHBL (|1 1) 28 —m— (k| =1, mHEL g k| —j— 1 <j+1>

_ (ﬂm—m—kv4>“>
- ' 4F(g+1)r(%)

J

<.
Il
o

13



1. If n is even, we integrate by parts %IBI -1

Next, we consider the case m + |k| > %lm -
times in the u-integral to obtain
n+|B8| n+|B|
*® n_y dm+|k|g0as nt8l_q [ d -1 ntlBl dmrlkl+1-=45 Pa.s
v ) = (=D i v e (w) | du
0 du™ o \du =2 ! dym k1=
n+|8]

dymHel+ 1= 252
n+|8|

" 00 dm+\k|+1f s
e (2412) | E as
0 n+|B|

_ (Cayap (2B M g,
2 dymHe+ 1= =0

n+|8]|
< —--1

shows that the contribution is holomorphic at s = % So we find

1 . (k) 0 )dmﬂk\(pas
Res /0 T | VVFU LY mW‘z:Ho dt

_1
§=3

which is holomorphic at s = . If n is odd, then a similar estimate to the case m+|k| <

nHB o — k| - 1)

-y ngmikll ([ vemawar) (57"

18/=0 j=0
B even J even
()8l (—1) =52 m k=5 o 5B = k|1 (@) T (@) r (@)
X - .
(2m)"(m + 1)T (% + 1) r(r (%‘m P |ky)

For ¢ € N define the set
JKP < {0,1,..., K} 2 |B] < |k,

Qum,x(0) ={(m,k,8) € {0,1,...,M} x{0,1,...

m+ | k| + ’m =/(}.
Recalling the coefficients Cy(n V) of the high-energy polynomial for £ of Equation (2.6) we

have that

M 1 K _1\m+k| m+|k|

m 1 d a,s

% (k)( ) Tr (VV(kl) ‘e V(km)diﬁfm’E:Ho di
Zm

D ]
R

m=0k|=0 |8|=0
B even J even
()8l (1) " k=15 o 5 =] —j—-1p 512+1> .T (@) r (%)
X
(27)"(m + 1)0 (% + 1) r(i)r (”3'5' —m— \k:\)
)gfefgqareﬂfqﬂ (%)
Cf(nv V)

Il
0|3
M
o~
Y
N3
=
~
N~
T
[
i~
—
\)
3
-~
S—
)1
A/~
Nl
+
[S—
N~
)1
—~
N[ =
SN—

~
Il
—
T,
Il
o



We now consider the contribution from the remainder term E(M, K, t,a,s). There are two
types of terms to consider. The first are those involving Py, i +(z). Since V € C°(R™) we can
factorise V' = qiq2 with ¢q1,¢q2 € C°(R"™). Since Py, i +(2) has order at most —2m — K — 3,
there exists C' > 0 such that

K 3
‘}RO(Z)_m_7_7Q2Pm,K,t(Z)" <C.
Note also that

’ ’quO(z)m-i-%-i-%

which follows from a careful application of the Rellich lemma. Combining these we make the
estimate

|

which is finite for Re(s) +m+ & + 2 > L 4+ 1. Recalling that Re(s) > & and we have chosen
M = n and K = M — m guarantees convergence. A similar argument to [14, Lemma 7.4]
shows that this contribution is holomorphic at s = %, as is the contribution from the terms
containing R;(z). Thus for both n even and odd, we find

/ Pa,s(2) P, it (2) dz
v

= C/(l +((ata)+v%) " 2 (@ 4+ 0?) T E T d,
1 R

1
Res </ Tr (VE(M,K,t,«a,s) dt) =0,
0

1
§=3

which completes the proof. O

3.2 The Birman-Krein term

In this subsection we use the Birman-Krein trace formula to determine the kernel and 7 con-
tributions to the spectral flow.

Lemma 3.5. By construction, the projections Pxer(f(a)) @nd Pker(Hy(a)) are both zero.

Since the kernel terms both vanish we are now able to evaluate the n contributions. We note
that by Proposition 3.4 the residue of the integral of one form contribution to Equation (3.1)
at s = % exists, and thus so does the residue of the Birman-Krein contribution at s = %

Lemma 3.6. Suppose that V€ C°(R™). Then the n contribution to the Hamiltonian spectral
flow is given by

Res (. (Te(ns(H (@) = 1, (Ho())) )

1
5=3

1 o0
= N+ Nyes + Res <2m / Cuns(A)Tr(Sa(V)*SL (M) d)\> ,
S=§ le%

where N is the number of eigenvalues of H = Ho + V', counted with multiplicity, and Nyes is
the contribution from resonances as defined in Theorem 2.15.
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Proof. Choose s > % + 1, so that Equation (2.4) is satisfied for 7, and thus the Birman-
Krein trace formula can be applied to 7s . Enumerate the distinct eigenvalues of H(«a) as
0 < Ai(a) <--- < Ag(a) < a. We prove the result in the case A\x(a) = a, that is in the case
that zero is an eigenvalue for H = Ho + V. Apply the Birman-Krein trace formula to obtain

00 K-1
T (. (H(@) = ma(Ho(@))) = 5 [ O T(Sa()"SLOD A+ 3 MOw(a))m(w(a)
@ k=1

+ M(a)ns(@) +ns(@) (fala—) = Calat) — M(a)),

where £, is the spectral shift function for the pair (H(«a), Ho(cw)) and M (\j(a)) denotes the
multiplicity of the eigenvalue \j(«) for the operator H(a). Recall that by construction, we
have £, (\) = £(A — «) so that &, (a£) = £(0+£). Thus after multiplying by Cs we have

2mi J,

CsTr (ns(H () — ns(Ho(e))) 1s(A)Tr(Sa(A) "S5 (X)) dA (3-4)

K
+Cs > MA(@)ns(Ae(@)) + Cans(@) (£(0—) = £(0+) — No) -
k=1

Observe that for = 7 0 we have Res (Csns(z)) = sign(x).
=32
The left hand side of Equation (3.4) has a residue at s = % if and only if the first term on

the right hand side does. Note that by Theorem 2.15 we have £(0—) — £(0+) — No = Nyes. It

remains to take the residue at s = %

By construction we have \j(«) > 0 for all j and thus

G, [ "
= Res (27:2 / Ns(A)Tr(Sa(A)*SL(N)) dX + Z M (X\g)Csns(Ak(a)) + C’Sns(a)Nres>
2 @ k=1

1 o
™ (e

1
§=3

as claimed. O

We can now compute the residue of the Birman-Krein integral contribution to the spectral
flow with the aid of a technical result.

Lemma 3.7. Fiz 8 >0 and f,g: R" — C with f — g € LY(R"). Suppose in addition that

Res (cs /6 TN - ) dA)

1
§=3

exists. Then

es (0 [T - a)a) = [T - i+ Res (0 [T noig0 - g)ar).

§=3 2
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Proof. Adding zero gives

Res (c /ﬁ T OO B) dA) (3.5)

5—5

3—5

—Res<c /Bwns<A><f<A—ﬂ> 6(r — B)) dA+0/ ne(N)g(A — ﬂ)dx>

One straightforwardly checks that Res,_; /o ns(7) = 1 for all > 0. Then an application of the
dominated convergence theorem allows us to compute that

Res (/00 Ns(N)(f(A =) — g(A — ﬁ))d)x) = OORelsns(/\)(f()\ —B) — g(A— ) dA
8 il

- /:(f(A —8)—g(r— ) dr

Since the residue of the first term on the right-hand side of Equation (3.5) exists, so does the
residue of the second term on the right-hand side. Making the substitution u = A— /3 completes
the proof. O

Proposition 3.8. Suppose that V € C°(R"™) and o« > —2v. Then for n odd we have

"
Re (5 [ TS0 S i) = g [ (s s 0) = )

If n is even we have

nes (575 SOV SO AA) = 5 [ (TS5 )~ )
2 5 e () had oo (452)
T ;0 (2.7' > 22m)0 (§+1)T (3) crm

where the Cy(n, V') are the high-energy coefficients for P, defined in Equation (2.6)

Proof. Note that by Lemma 2.13 the map [0,00) 3 XA — Tr(S(N)*S'(N\)) — pn(N) is integrable
on [0,00) and thus we can apply Lemma 3.7 to obtain

Res (26;” /a T (Te(Sa (M) SL ) ms(N) d)\>

S:§

1 o0

=— [ (Tr(SN*S'(N) = pa()) dA+ — Res <o / T = a)ns(V) dA) .

2mi Jy 2mi 3_%

Thus it remains to compute

Cs [ %) ce(n,V) o0
Res <27:1/ (A — a)ns(N) d)\> = Res 27;2‘ Cs/ (A —a) 1 () dA
s=3 @ §=3 /=1 «
5] ce(n, V) o0
= Res 8 C’S/ wr (w4 a) du
s=1 \ = 2mi 0



We show that the residue of each of the terms in the sum exist individually, so that the
to find

summation can be passed through the residue. First we consider n odd. We integrate by parts
Cs / w2t

s(u+ a du—/ / 14 0?%)”
u+cx
2/ 00 00
_|ue /
[ o 2t
1

w2 {1+ (u4 a)?) ¢ du
Hs du +

3—6/0 wE (1 + (ut )
(4-5+3)T(-5+5-53)

+ holo(s)

Sdvdu

- (1+v*)*dv
4

[\
r1
—
»
~—
D=

—(14u*) " du
where holo is a function holomorphic at s =

l\)\)—l

[
[

. Since n is odd, we have 1 — 7 + 5 §éZ and thus

Cs [ ‘2 ce(n, V)

s (O — A dX | = N T T
Res (505 [ 2O )

, Res(Cs/ eI (u+a)du>
2wt =1 0

=1 2

=0.

Now we consider n even. In this case we integrate by parts to write

/wﬁ—aﬁ4*muﬁu=—

Oy
1

— s(A) dA
/ o) d An (A)
a / A—a)2 7 (1 + A2)~*dr
7 —tJa
We now use the binomial expansion to obtain

2y
/(A—a)—“ s(A) dX =

_ < > *H—j/ M1+ A%)7s
5 — 6
Returning to the residue calculation we ﬁnd
Res

gé@%ému—aﬂ44m0> )

«

dA.

=0
2y n_ygd n_y_j j+1
1 JF(L)
s ()
n . . 9
50 =\ o (§+1)T (3)
J even

from which the statement follows by observing the relation c¢;(n, V)

= (% —0) Cy(n, V).
18



4 The spectral flow formula and Levinson’s theorem

In this section we return to the spectral flow formula of Equation (3.1) applied to the path
H(a) and, using the results of Section 3 we can prove Levinson’s theorem in all dimensions.

Theorem 4.1. Suppose that V- € C°(R™) and o« > —2v. Then the spectral flow along the
path Hy() is given by

) = 5N+ Nreo) + 7 [ (TrSO)"S'0) = pu() dA = 35,(V)

4mi

Proof. Lemma 3.1 and Lemma 3.6 give that

1
(1)) = Res (O, [T (V1 + Hafa)?) ) de-+ ST (1) = ne(Hofa) )

Suppose first that n is odd. Applying Proposition 3.4 to the first term on the right-hand side
and Proposition 3.8 to the second term gives

ST, (@) = (N + Nyog) 4 —

2 /OOO (Te(S(N)*S"(N) = pa(N)) dX.

4mi

Now we consider n even. Applying again Propositions 3.4 and 3.8 gives

LT 5\ (—D)E e lIT %)
+ 5 (2 . > ; Cﬂ(nv V)
= = N eemr(f+)r()
j even
3 370\ (Rl T <%>
+ (2 ) ; Cf(”? V)
=1 j=0 J 4(2mi)T (% + 1) r(3)
j even

=1 j=0
j even
L) B (C)ERadar (1) i
=32 2 %, — —Cin,V) = 58u(V),
=1 j=0 J 2(2mi)T <§ + 1) T (3)
J even
where we have used the definition of 5,(V) in Equation (2.7). O

We are now able to prove Levinson’s theorem as a consequence of spectral flow along the path
Ht(Oé).
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Theorem 4.2 (Levinson’s theorem). Suppose that V. € C(R™). Then the number N of
eigenvalues (counted with multiplicity) of H = Ho + V is given by

N L
27

| (TS0 00) = ) @A = V) + N
0
where Nyes 15 as defined in Theorem 2.15.

Proof. By construction we know that for o > —2r we have
sf(Hy(a)) = 0, (4.1)

since there is no spectrum which moves through zero from right to left as the path is traversed
from Hyp(a) to H(«). Substituting Equation (4.1) into the result of Theorem 4.1 and solving
for N completes the proof. O
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