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Abstract

Using the Levi-Civita connection on the noncommutative differential one-forms of
a spectral triple (B,H,D), we define the full Riemann curvature tensor, the Ricci cur-
vature tensor and scalar curvature. We give a definition of Dirac spectral triples and
derive a general Weitzenböck formula for them. We apply these tools to θ-deformations
of compact Riemannian manifolds. We show that the Riemann and Ricci tensors trans-
form naturally under θ-deformation, whereas the connection Laplacian, Clifford repre-
sentation of the curvature and the scalar curvature are all invariant under deformation.
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1 Introduction

Using the algebraic curvature of modules and the Levi-Civita connection on one forms as
defined in [MRLC], we introduce the curvature tensor for spectral triples, as well as Ricci and
scalar curvature. We then prove a general Weitzenböck formula for Dirac spectral triples,
and exemplify this by establishing the formula for θ-deformations of commutative manifolds.

One recent approach to curvature in noncommutative geometry is via heat kernel coefficients,
[CT11, CM14]. We do not pursue this approach, rather we adapt the long standing algebraic
definitions to the context of spectral triples. In particular we exploit our construction of the
Levi-Civita connection [MR24a] to define a preferred curvature.

The curvature tensors we present are concrete operators computed as ∇2 and contractions
thereof, familiar from differential geometry and algebra, see [BM20] and references therein.
Calculations of these curvatures is of comparable difficulty to the manifold case, so that for
situations with reasonable symmetry they can be done by hand.

To relate the operator of a spectral triple to the curvature, we introduce the class of Dirac
spectral triples, emulating the notion of Dirac bundle on a manifold. In this setting we can
define connection Laplacians and obtain a Weitzenböck formula. The positivity of connection
Laplacians relies on the vanishing of a divergence term, just as in the manifold case.

The formulation of a noncommutative Weitzenböck formula requires the existence of a braid-
ing on the module of two-tensors. On a manifold, the flip map plays the role of the braiding.
To justify our formula, we explain this issue in detail in Section 4.1.

While the flip map is typically not well-defined on noncommutative tensor products, there
are numerous examples of braidings in the algebraic context [BM20]. We provide examples of
braidings for θ-deformations [MR24a], and the Podleś sphere [MR24c]. In [MR24a] braidings
appeared for a related reason, and were used to obtain reality conditions on two-tensors and
uniqueness of Hermitian and torsion-free bimodule connections on the module of one-forms.

In [MR24a] we constructed the unique Levi-Civita connection for θ-deformations. Here
we show that the Levi-Civita connection of the θ-deformed manifold coincides with the θ-
deformation of the Levi-Civita connection of the manifold. This allows us to establish the
Weitzenböck formula and show that the scalar curvature remains undeformed, while the full
curvature tensor and Ricci tensor transform naturally under deformation.

Section 2 recalls the framework of [MR24a], Section 3 discusses curvature tensors, Section 4
introduces Dirac modules and proves a general Weitzenböck formula. Section 5 presents the
example of θ-deformations.
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2 Background on noncommutative forms and connections

This section sets notation and summarises the setup needed to obtain a (unique) Hermitian
torsion-free connection on the module of one-forms of a spectral triple. We do this by
reformulating the assumptions and results of [MR24a] in the context of spectral triples.

2.1 Modules of forms

Throughout this article we are looking at the differential structure provided by a spectral
triple.

Definition 2.1. Let B be a C∗-algebra. A spectral triple for B is a triple (B,H,D) where
B ⊂ B is a local [MR24a, Definition 2.1] dense ∗-subalgebra, H is a Hilbert space equipped
with a ∗-representation B → B(H), and D an unbounded self-adjoint regular operator
D : dom(D) ⊂ H→ H such that for all a ∈ B

a · dom(D) ⊂ dom(D) and [D, a] is bounded,

a(1 + D2)−1/2 is compact.

Remark 2.2. The compact resolvent condition plays no role in our constructions, but in this
paper will only be discussing examples arising from spectral triples satisfying this condition.
See [MR24a, Examples 2.4–2.6].

Given a spectral triple (B,H,D), the module of one-forms is the space

Ω1
D(B) := span {a[D, b] : a, b ∈ B} ⊂ B(H).

We obtain a first order differential calculus d : B → Ω1
D(B) by setting d(b) := [D, b]. This

calculus carries an involution (a[D, b])† := [D, b]∗a∗ induced by the operator adjoint. Thus
(Ω1

D(B), †) is a first order differential structure in the sense of [MR24a].

We recollect some of the constructions of [MR24a] for (Ω1
D(B), †). Writing T kD(B) :=

Ω1
D(B)⊗Bk, the universal differential forms Ω∗u(B) admit a representation

πD : Ωk
u(B)→ T kD(B) πD(a0δ(a1) · · · δ(ak)) = a0[D, a1]⊗B · · · ⊗B [D, ak], (2.1)

π̂D := m ◦ πD : Ωk
u(B)→ Ωk

D(B) π̂D(a0δ(a1) · · · δ(ak)) = a0[D, a1] · · · [D, ak], (2.2)

where m : T kD(B) → Ωk
D(B) is the multiplication map. Neither πD nor π̂D are maps of

differential algebras, but are B-bilinear maps of associative ∗-B-algebras, [L97, MR24a].
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The ∗-structure on Ω∗D(B) is determined by the adjoint of linear maps on H, while the
∗-structure on ⊕kT kD(B) is given by the operator adjoint and

(ω1 ⊗ ω2 ⊗ · · · ⊗ ωk)† := ω∗k ⊗B · · · ⊗ ω∗2 ⊗B ω
∗
1.

We will write ω† := ω∗ for one forms ω as well, though we will adapt this notation when we
come to θ-deformations.

The maps π : Ω∗u(B) → T ∗D and δ : Ωk
u(B) → Ωk+1

u (B) are typically not compatible in the
sense that δ need not map kerπ to itself. Thus in general, T ∗D(B) can not be made into a
differential algebra. The issue to address is that there are universal forms ω ∈ Ωn

u(B) for
which π(ω) = 0 but π(δ(ω)) 6= 0, and similarly for π̂. The latter are known as junk forms,
[C94, Chapter VI]. We denote the B-bimodules of junk forms by

JT kD(B) = {πD(δ(ω)) : πD(ω) = 0} and JkD(B) = {π̂D(δ(ω)) : π̂D(ω) = 0}.

Observe that the junk submodules only depend on the representation of the universal forms.

Definition 2.3. A second order differential structure (Ω1
D, †,Ψ) is a first order differential

structure (Ω1
D(B), †) together with an idempotent Ψ : T 2

D → T 2
D satisfying Ψ ◦ † = † ◦ Ψ

and JT 2
D(B) ⊂ Im(Ψ) ⊂ m−1(J2

D(B)). A second order differential structure is Hermitian if
Ω1

D(B) is a finitely generated projective right B-module with right inner product 〈· | ·〉B, such
that Ψ = Ψ2 = Ψ∗ is a projection. We define Λ2

D(B) := (1−Ψ)T 2
D.

A second order differential structure admits an exterior derivative dΨ : Ω1
D(B)→ T 2

D(B) via

dΨ(ρ) = (1−Ψ) ◦ π̂D ◦ δ ◦ π−1
D (ρ). (2.3)

The differential satisfies dΨ([D, b]) = 0 for all b ∈ B. A differential on one-forms allows us
to define curvature for modules, and formulate torsion for connections on one-forms.

For an Hermitian differential structure (Ω1
D(B), †,Ψ, 〈· | ·〉), the module of one-forms Ω1

D(B)
is also a finite projective left module [MR24a, Lemma 2.12] with inner product B〈ω | ρ〉 =
〈ω† | ρ†〉B. Thus all tensor powers T kD(B) carry right and left inner products. Using these we
obtain bimodule isomorphisms

−→α : T n+k
D →

−−→
Hom∗B(T kD, T

n
D), −→α (ω ⊗ η)(ρ) := ω〈η† | ρ〉

←−α : T n+k
D →

←−−
Hom∗B(T kD, T

n
D), ←−α (η ⊗ ω)(ρ) := 〈ρ† | η〉ω, (2.4)

where ρ, η ∈ T kD and ω ∈ T nD. Inner products on Ωk
D(B) do not arise automatically.

The two inner products on Ω1
D(B) give rise to equivalent norms on Ω1

D(B), and using results
of [KPW04], Ω1

D(B) is a bi-Hilbertian bimodule of finite index. To explain what this means
for us, recall [FL02] that a (right) frame for Ω1

D(B) is a (finite) collection of elements (ωj)
that satisfy

ρ =
∑
j

ωj〈ωj | ρ〉B
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for all ρ ∈ Ω1
D(B). A finite projective bi-Hilbertian module has a “line element” or “quantum

metric” [BM20] given by
G =

∑
j

ωj ⊗ ω†j . (2.5)

The line element G is independent of the choice of frame, is central, meaning that bG = Gb
for all b ∈ B, and

spanB

{∑
j

ωj ⊗ ω†j : for any frame (ωj)
}

is a complemented submodule of T 2
D. The endomorphisms −→α (G) and ←−α (G) coincide with

the identity operator on Ω1
D(B). The inner product is computed via

− g(ω ⊗ ρ) := 〈G | ω ⊗ ρ〉B = 〈ω† | ρ〉B. (2.6)

Such bilinear inner products appear in [BM20, BGJ20, BGJ21]. The element

eβ :=
∑
j

B〈ωj | ωj〉 = −g(G) ∈ B (2.7)

is independent of the choice of right frame, and is central, positive and invertible (provided
the left action of B on Ω1

D(B) is faithful). Setting Z = e−β/2
∑

j ωj⊗ω
†
j , the endomorphisms

−→α (Z ⊗ Z) and ←−α (Z ⊗ Z) of T 2
D(B) are projections.

2.2 Existence of Hermitian torsion-free connections

A right connection on a right B-module X is a C-linear map
−→
∇ : X→ X⊗B Ω1

D, such that
−→
∇(xa) =

−→
∇(x)a+ x⊗ [D, a], x ∈ X, a ∈ B.

There is a similar definition for left connections on left modules. Connections always exist
on finite projective modules. Given a connection

−→
∇ on a right inner product B-module X

we say that
−→
∇ is Hermitian [MR24a, Definition 2.23] if for all x, y ∈ X we have

−〈
−→
∇x | y〉B + 〈x |

−→
∇y〉B = [D, 〈x | y〉B].

For left connections we instead require

B〈
←−
∇x | y〉 − B〈x |

←−
∇y〉 = [D, B〈x | y〉].

If furthermore X is a †-bimodule [MR24a, Definition 2.8] like T kD, then for each right con-
nection

−→
∇ on X there is a conjugate left connection

←−
∇ given by

←−
∇ = −† ◦

−→
∇ ◦ † which is

Hermitian if and only if
−→
∇ is Hermitian.

Example 2.4. Given a (right) frame v = (xj) ⊂ X we get left- and right Grassmann
connections

←−
∇v(x) := [D, B〈x | x†j〉]⊗ x

†
j,
−→
∇v(x) := xj ⊗ [D, 〈xj | x〉B], x ∈ X.
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The Grassmann connections are Hermitian and conjugate, that is
←−
∇v = −† ◦

−→
∇v ◦ †. A pair

of conjugate connections on X are both Hermitian if and only if for any right frame (xj)
[MR24a, Proposition 2.30]

−→
∇(xj)⊗ x†j + xj ⊗

←−
∇(x†j) = 0. (2.8)

The differential (2.3) allows us to ask whether a connection on Ω1
D(B) is torsion-free, meaning

[MR24a, Section 4.1] that for any frame

1⊗ (1−Ψ)
(−→
∇(ωj)⊗ ω†j + ωj ⊗ dΨ(ω†j)

)
= 0.

For a Hermitian right connection, being torsion-free is equivalent to (1−Ψ)◦
−→
∇ = −dΨ. For

the conjugate left connection this becomes (1−Ψ) ◦
←−
∇ = dΨ, [MR24a, Proposition 4.5].

Given a right frame (ωj) ⊂ Ω1
D(B) we define

W := dΨ(ωj)⊗ ω†j and W † := ωj ⊗ dΨ(ω†j).

Definition 2.5. Let (Ω1
D(B), †,Ψ, 〈· | ·〉) be an Hermitian differential structure. Define the

projections P := Ψ⊗ 1 and Q := 1⊗Ψ on T 3
D(B). The differential structure is concordant if

T 3
D = (Im(P )∩Im(Q))⊕(Im(1−P)+Im(1−Q)). Let Π be the projection onto Im(P )∩Im(Q).

The differential structure is †-concordant if [MR24a, Definition 4.30]

(1 + Π− PQ)−1(W + PW †) = (1 + Π−QP )−1(W † +QW ). (2.9)

The condition (2.9) expresses a compatibility between Ψ, †, and the inner product, as encoded
by the frame (ωj). Importantly, despite being defined in terms of a frame, the three tensor

(1 + Π− PQ)−1(W + PW †)− (1 + Π−QP )−1(W † +QW ),

is independent of the choice of frame. In particular, the †-concordance condition, which
requires this three tensor to vanish, is frame independent [MR24a, Proposition 4.33].

Theorem 2.6. Let (Ω1
D(B), †,Ψ, 〈· | ·〉) be an Hermitian differential structure. Then there

exists an Hermitian and torsion-free (right) connection
−→
∇ : Ω1

D(B)→ T 2
D(B)

if and only if (Ω1
D(B), †,Ψ, 〈· | ·〉) is †-concordant.

To obtain such a connection we use the maps −→α ,←−α of Equation (2.4), and add to the
Grassmann connection

−→
∇v of a frame v = (ωj) the one-form-valued endomorphism −→α (A) ∈

−−→
Hom∗B(Ω1

D, T
2
D), where

A = −(1 + Π− PQ)−1(W + PW †) ∈ T 3
D.

If instead we start with the left Grassmann connection
←−
∇v we subtract the connection form

←−α (A). The two connections are conjugate.

Example 2.7. The construction for compact Riemannian manifolds yields the Levi-Civita
connection on the cotangent bundle, [MR24a, Theorem 6.15].
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2.3 Uniqueness of Hermitian torsion-free connections

For uniqueness, we need the left and right representations ←−α ,−→α as well as the definition of
a special kind of bimodule connection.

Definition 2.8. Suppose that σ : T 2
D(B)→ T 2

D(B) is an invertible bimodule map such that
† ◦ σ = σ−1 ◦ † and such that the conjugate connections

−→
∇ ,
←−
∇ satisfy

σ ◦
−→
∇ =

←−
∇ .

Then we say that σ is a braiding and that (
−→
∇ , σ) is a †-bimodule connection.

We denote by Z(M) the centre of a B-bimodule M .

Theorem 2.9. Let (Ω1
D(B), †,Ψ, 〈· | ·〉) be a concordant Hermitian differential structure.

Suppose that σ : T 2
D → T 2

D is a braiding for which the map

−→α + σ−1 ◦←−α : Z(Im(Π))→
←−→
Hom(Ω1

D, T
2
D)

is injective. If there exists a Hermitian torsion-free σ-†-bimodule connection, then it is
unique.

Even when we have the uniqueness given by Theorem 2.9 we do not have a closed formula
for the part of the connection in Im(Π), but in examples this can usually be determined. For
Riemannian manifolds, and indeed all examples so far, this part of the connection is zero.

Definition 2.10. If the †-concordant Hermitian differential structure (Ω1
D(B), †,Ψ, 〈· | ·〉)

admits a braiding σ for which there exists a Hermitian torsion-free σ-† bimodule connection,
we call it the Levi-Civita connection, and denote it by (

−→
∇G, σ).

For a compact Riemannian manifold (M, g) equipped with a Dirac bundle /S →M , we have
an associated spectral triple (C∞(M), L2(M, /S), /D). Then Ω1

/D
(C∞(M)) ∼= Ω1(M)⊗C [C94,

Chapter VI], and we let 〈· | ·〉g be the inner product on Ω1
/D
(C∞(M)) induced by g. Moreover,

the junk two-tensors in T 2
/D
(C∞(M)) ' T 2(M) coincide with the module of symmetric two

tensors [MR24a, Example 4.26]. Thus for σ : T 2
/D
(M) → T 2

/D
(M) the standard flip map we

can set Ψ := 1+σ
2

for the junk projection.

Theorem 2.11. Let (M, g) be a compact Riemannian manifold with a Dirac bundle /S →M .
Then (Ω1

/D
(C∞(M)), †,Ψ, 〈· | ·〉g) is a †-concordant Hermitian differential structure and there

exists a unique Hermitian torsion-free †-bimodule connection (
−→
∇G, σ) on Ω1

/D
(C∞(M)) ∼=

Ω1(M)⊗C. The restriction
−→
∇G : Ω1(M)⊗C→ Ω1(M)⊗C coincides with the Riemannian

connection on Ω1(M).

Other examples to which this machinary applies are θ-deformations of Riemannian manifolds
[MR24a, Section 6], as well as pseudo-Riemannian manifolds, [MR24a, Examples 2.4–2.6],
and the standard Podleś sphere [MR24c].
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3 Curvature

The definitions of curvature we use are the classical ones, and have been used in the alge-
braic context for decades. The books [L97] and [BM20] serve as excellent sources for the
background, examples and related topics.

3.1 Curvature for module connections and spectral triples

A second order differential structure (Ω1
D(B), †,Ψ) has a second order exterior derivative

dΨ : Ω1
D(B) → Λ2

D(B) = (1 − Ψ)T 2
D which allows us to use the usual algebraic definition of

curvature for a module connection.

Definition 3.1. Let (Ω1
D(B), †,Ψ) be a second order differential structure, XB a finite pro-

jective right B-module and
−→
∇X : X→ X⊗B Ω1

D(B) a connection. The curvature of X is the
map R

−→
∇X

: X→ X⊗B Λ2
D(B) defined by

R
−→
∇X

(x) = 1⊗ (1−Ψ) ◦ (
−→
∇X ⊗ 1 + 1⊗ dΨ) ◦

−→
∇X(x) ∈ X⊗B Λ2

D(B), x ∈ X.

Similarly, for a connection
←−
∇X on a left module BX we define the curvature to be

R
←−
∇X

(x) = (1−Ψ)⊗ 1 ◦ (1⊗
←−
∇X − dΨ ⊗ 1) ◦

←−
∇X(x) ∈ Λ2

D(B)⊗B X, x ∈ X.

The sign difference between the left and right curvatures is due to the fact that dΨ satisfies a
graded Leibniz rule while connections do not interact with the grading in such a way. For a
pair of conjugate connections

←−
∇ = −† ◦

−→
∇ ◦ † on a †-bimodule X the curvatures are related

via
R
−→
∇(x)† = R

←−
∇(x†). (3.1)

The next lemma provides tools for computing curvature. For a finitely generated projective
right inner product module X, we set X∗ :=

−−→
Hom∗(X,B), so that the inner product 〈· | ·〉B

on X defines an antilinear isomorphism

X→ X∗, x 7→ x∗ := 〈x|B, 〈x|B(y) := 〈x | y〉B.

Lemma 3.2. Let (Ω1
D(B), †,Ψ, 〈·|·〉) be an Hermitian differential structure, X a finite projec-

tive right inner product B-module and v = (xj) a frame for X. Any right connection
−→
∇X can

be written
−→
∇X =

−→
∇v+−→α (A) where

−→
∇v is the Grassmann connection and A ∈ X⊗BΩ1

D⊗BX
∗

is given by A =
∑

j

−→
∇(xj)⊗ x∗j . Writing A =

∑
j,k xj ⊗ Akj ⊗ x∗k we have∑

k

〈xj | xk〉BA`k = A`j,
∑
k

Akj 〈xk | x`〉B = A`j,
∑
j,k

xj ⊗ [D, 〈xj | xk〉B]⊗ x∗k = 0.

Proof. The first two statements come from the frame relation∑
j,k

xj ⊗ Akj ⊗ x∗k =
∑
j,k,l

xl ⊗ 〈xl | xj〉BAkj ⊗ x∗k =
∑
j,k,l

xj ⊗ Akj 〈xk | xl〉B ⊗ x∗l .
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The third is similar, with∑
j

−→
∇(xj)〈xj | x〉B =

∑
j,k

−→
∇(xk〈xk | xj〉B)〈xj | x〉B

=
∑
k

−→
∇(xk)〈xk | x〉B +

∑
j,k

xk ⊗ [D, 〈xk | xj〉B]〈xj | x〉B.

What follows is essentially the classical calculation showing that R
−→
∇X is a two-form-valued

endomorphism, and can be found in [L97, MRS22].

Proposition 3.3. Let (Ω1
D(B), †,Ψ, 〈·|·〉) be an Hermitian differential structure, XB a finitely

generated projective module,
−→
∇X a right connection. The curvature is a well-defined two-

form-valued endomorphism R
−→
∇X ∈ Hom∗B(X,X ⊗ Λ2

D). If v = (xj) is a frame for X and
−→
∇X =

−→
∇v +−→α (A) then

R
−→
∇X

(x) = 1⊗ (1−Ψ)
(∑
j,k,l

xk ⊗ [D, 〈xk | xj〉B]⊗ [D, 〈xj | xl〉B]〈xl | x〉B

+
∑
j,k,l

xl ⊗ Akl ⊗ A
j
k〈xj | x〉B +

∑
j,k

xk ⊗ dΨ(Ajk)〈xj | x〉B)
)

Similarly the curvature of a left connection
←−
∇X =

←−
∇v +←−α (A) is a well-defined two-form-

valued endomorphism R
←−
∇X ∈ Hom∗B(X,Λ2

D ⊗ X), and

R
←−
∇X

(x) = (1−Ψ)⊗ 1
(∑
j,k,l

B〈x | xl〉[D, B〈xl | xj〉]⊗ [D, B〈xj | xk〉]⊗ xk

+
∑
j,k,l

B〈x | xj〉Alj ⊗ Akl ⊗ xk −
∑
j,k

B〈x | xj〉dΨ(Akj )⊗ xk
)
.

Proof. In the proof we will employ the Einstein summation convention. We prove the result
for right modules. Fixing a frame (xj) of XB, write

−→
∇X(x) = xj ⊗ [D, 〈xj | x〉B] + xj ⊗ Akj 〈xk | x〉B, x ∈ XB.

Given x ∈ XB we use Lemma 3.2 repeatedly to find

R
−→
∇X

(x) = 1⊗ (1−Ψ) ◦
(−→
∇X ⊗ 1 + 1⊗ dΨ)(xj ⊗ [D, 〈xj | x〉B] + xk ⊗ Ajk〈xj | x〉B

)
= 1⊗ (1−Ψ)

(−→
∇X(xj)⊗ [D, 〈xj | x〉B] +

−→
∇X(xk)⊗ Ajk〈xj | x〉B + xk ⊗ dΨ(Ajk〈xj | x〉B)

)
= 1⊗ (1−Ψ)

(
xk ⊗ [D, 〈xk | xj〉B]⊗ [D, 〈xj | x〉B] + xk ⊗ Alk〈xl | xj〉B ⊗ [D, 〈xj | x〉B]

+ xl ⊗ [D, 〈xl | xk〉B]⊗ Ajk〈xj | x〉B + xl ⊗ Aml 〈xm | xk〉B ⊗ A
j
k〈xj | x〉B

+ xk ⊗ dΨ(Ajk)〈xj | x〉B)− xk ⊗ Ajk ⊗ [D, 〈xj | x〉B]
)
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= 1⊗ (1−Ψ)
(
xk ⊗ [D, 〈xk | xj〉B]⊗ [D, 〈xj | xp〉B]〈xp | x〉B

+ xl ⊗ [D, 〈xl | xk〉B]⊗ 〈xk | xm〉BAjm〈xj | x〉B + xl ⊗ Aml 〈xm | xk〉B ⊗ A
j
k〈xj | x〉B

+ xk ⊗ dΨ(Ajk)〈xj | x〉B)
)

= 1⊗ (1−Ψ)
(
xk ⊗ [D, 〈xk | xj〉B]⊗ [D, 〈xj | xp〉B]〈xp | x〉B

+ xl ⊗ Akl ⊗ A
j
k〈xj | x〉B + xk ⊗ dΨ(Ajk)〈xj | x〉B)

)
.

The case of a left connection follows similarly.

The advantage of using a global frame for computing curvature, even classically, is that the
topological contribution to the curvature is separated out in the Grassmann term

1⊗ (1−Ψ)
(
xk ⊗ [D, 〈xk | xj〉B]⊗ [D, 〈xj | xp〉B]

)
〈xp | x〉B

with the connection form contributions “dΨA+ A ∧ A” being purely geometric.

For a compact Riemannian manifold (M, g) equipped with a Dirac bundle /S → M and
associated spectral triple (C∞(M), L2(M, /S), /D) we have Ω1

/D
(C∞(M)) ' Ω1(M) ⊗ C and

Ψ= symmetrisation projection. It is well-known that this notion of connection coincides with
the usual one in the case of a connection on a smooth Riemannian vector bundle E → M .
Consequently, the definition of curvature applied to such a connection also recovers the usual
geometric curvature tensor.

In view of Theorem 2.11, we can recover the Riemann tensor of the manifoldM by considering
the curvature of the Levi-Civita connection. This motivates the following definition.

Definition 3.4. Let (B,H,D) be a spectral triple admitting a †-concordant Hermitian
differential structure (Ω1

D(B), †,Ψ, 〈· | ·〉) and a braiding σ : T 2
D → T 2

D for which there exists
a Hermitian torsion-free † bimodule connection (

−→
∇G, σ). The curvature tensor of (B,H,D)

is then defined to be R
−→
∇G .

3.2 Ricci and scalar curvature

The Ricci and scalar curvature are obtained from the full Riemann tensor by taking traces
in suitable pairs of variables. The analogue in our setting is the inner product with the
line element G ∈ T 2

D(B) introduced in Equation (2.5), again for suitable pairs of variables.
Similar definitions appear in [BM20, p574ff].

For a manifold, we can choose a frame coming from orthonormalising local coordinates

ωkα =
√
ϕαB

k
µ dxµα (3.2)

with the help of a partition of unity ϕα. Here we abuse notation by writing dxµ for [D, xµα]
computed locally, Bk

µdxµα = ekα is a local orthonormal frame, and where for a self-adjoint or
symmetric operator D we have (dxµ)† = −dxµ.
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Proposition 3.5. Let (M, g) be a Riemannian manifold and set B = C∞(M). Identifying
tangent and cotangent bundles of the Riemannian manifold (M, g), the curvature tensor is
(locally)

R =
∑
µ,ν,ρ,σ

dxµ ⊗R ν
σρµ dxσ ∧ dxρ ⊗ (dxν)†.

The Ricci tensor is
Ric = B〈R |G〉

and the scalar curvature is
r = 〈G | Ric〉B.

Proof. We will work over a single chart. Writing dxσ∧dxρ as 1
2
(dxσ⊗dxρ−dxρ⊗dxσ) allows us

to compute the left inner product with the identity operator G. Locally G = gαβdxα⊗(dxβ)†,
so we find (using the Einstein summation convention)

B〈R |G〉 =
1

2
dxµ ⊗R ν

σρµ dxσC(M)〈dxρ ⊗ (dxν)† | gαβdxα ⊗ (dxβ)†〉

− 1

2
dxµ ⊗R ν

σρµ dxρC(M)〈dxσ ⊗ (dxν)† | gαβdxα ⊗ (dxβ)†〉

= −1

2
dxµ ⊗Rσρµνdx

σgβνgαβg
ρα +

1

2
dxµ ⊗Rσρµνdx

ρgαβg
νβgσα

= −1

2
dxµ ⊗Rσρµνdx

σgρν +
1

2
dxµ ⊗Rσρµνdx

ρgσν

= −dxµ ⊗ dxσRσρµνg
ρν = −dxµ ⊗ dxσRσρµν = dxµ ⊗ (dxσ)†R ρ

σρµ .

The scalar curvature is then the right inner product of the Ricci curvature with the identity
operator,

〈G | B〈R |G〉〉B = 〈gαβdxα ⊗ (dxβ)† | dxµ ⊗ (dxσ)†〉BRσρµνg
ρν

= Rσρµνg
ρνgαβg

σβgαµ

= Rσρµνg
ρνgσµ

= Rσρµνg
ρνgσµ.

As a consequence of these computations, we see that we can define the Ricci and scalar
curvature for any connection on the one-forms of an Hermitian differential structure.

Definition 3.6. Let (Ω1
D(B), †,Ψ, 〈· | ·〉) be a Hermitian differential structure and

−→
∇ a right

connection on Ω1
D with curvature R

−→
∇ ∈ Ω1

D(B) ⊗ Λ2
D(B) ⊗ Ω1

D(B). The Ricci curvature of
−→
∇ is

Ric
−→
∇ = B〈R

−→
∇ |G〉 ∈ T 2

D(B)

and the scalar curvature is
r
−→
∇ = 〈G | Ric

−→
∇〉B.

These definitions mirror those of [BM20] and references therein, and agree when both apply.
We will compute these curvatures for θ-deformations of compact manifolds in Section 5, and
in [MR24c] we will examine the curvature of the Podleś sphere.
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4 Weitzenböck formula

In this section we relate the second covariant derivative to the connection Laplacian. Under
additional assumptions, mimicking the definition of Dirac bundles on manifolds, we compare
the connection Laplacian to D2.

Before introducing our definition of Dirac spectral triples, modelled on the definition for
manifolds, we clarify the role of the flip map which is present even in the commutative case.
These observations influence the general form of Weitzenböck formulae even for manifolds.

4.1 Clifford connections and braiding

The definition of Clifford connection and Dirac bundle for Riemannian manifolds as found
in [LM89, Chapter II, Section 5] tacitly makes use of commutativity in a number of ways.
Here we clarify where commutativity is used and provide motivation for the appearance of
the braiding in the definition of Dirac spectral triple (Definition 4.1).

In the setting of a Dirac bundle /S → M on a Riemannian manifold (M, g), we write X :=
Γ(M, /S) for the central bimodule of sections of /S. One of the requirements of a Dirac bundle
is that module of one-forms Ω1(M) acts as endomorphisms of X. That is, we are given a
C∞(M)-linear map Ω1(M)→ End(X).

We say that a connection ∇X is a Clifford connection if given a one form ω, the Levi-Civita
connection ∇g, and a section x ∈ X, we have

ω ⊗ x 7→ ∇X(ω · x) = ∇g(ω) · x+ ω · ∇X(x). (4.1)

In order for the right hand side of (4.1) to be well-defined on the balanced tensor product
Ω1⊗C∞(M) X (before letting the one-form part act) requires ∇g to be a right connection and
∇X to be a left connection. Of course in the commutative case, any right connection can be
turned into a left connection using the flip map X⊗C∞(M) Ω1 → Ω1⊗C∞(M)X, x⊗ω 7→ ω⊗x.

Ensuring well-definedness forces us to work with a left and a right connection, but subse-
quently, care is required when properly defining the action of the endomorphism defined
by the one form ω on Ω1 ⊗C∞(M) X. Since C∞(M) commutes with End(X) the operator
(1⊗ ω)(η ⊗ x) := η ⊗ ω · x is well-defined on Ω1 ⊗C∞(M) X. In the noncommutative setting,
this is no longer true.

The issue can be overcome by using a braiding σ : Ω1⊗C∞(M) Ω1 → Ω1⊗C∞(M) Ω1, which in
the commutative case would be the flip map. In that case

(σ(ω ⊗ η)) · x = η ⊗ ω · x = (1⊗ ω)(η ⊗ x),

and in this equation the left hand side can be generalised by using a braiding, whereas the
right hand side does not generally make sense. The classical Clifford connection condition
can thus be rewritten in terms of left and right connections as

←−
∇X(c(ω)x) = (1⊗ c)(σ ⊗ 1)(ω ⊗

←−
∇X(x) +

−→
∇G(ω)⊗ x), (4.2)

and in this form can be reinterpreted in the noncommutative context.
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4.2 Dirac spectral triples and the connection Laplacian

We now introduce a class of spectral triples for which the Weitzenböck formula holds. Given
a left inner product module X and a positive functional φ : B → C, the Hilbert space
L2(X, φ) is the completion of X in the scalar product 〈x, y〉 := φ(B〈x | y〉).

Definition 4.1. Let (B,H,D) be a spectral triple equipped with a braided Hermitian dif-
ferential structure (Ω1

D(B), †,Ψ, 〈· | ·〉, σ). Then (B,H,D) is a Dirac spectral triple over
(Ω1

D(B), †,Ψ, 〈· | ·〉, σ) if

1. for ω, η ∈ Ω1
D(B) we have

(m ◦Ψ)(ρ⊗ η) = e−βm(G)〈ρ† | η〉B = −e−βm(G)g(ρ⊗ η); (4.3)

2. there is a left inner product module X over B and a positive functional φ : B→ C such
that H = L2(X, φ) and the natural map c : Ω1

D(B)⊗B L
2(X, φ)→ L2(X, φ) restricts to

a map c : Ω1
D(B)⊗B X→ X;

3. There is a left connection
←−
∇X : X→ Ω1

D(B)⊗BX such that D = c◦
←−
∇X : X→ L2(X, φ);

4. there is a Hermitian torsion free †-bimodule connection (
−→
∇G, σ) on Ω1

D such that

D(ωx)= c ◦
←−
∇X(c(ω ⊗ x))= c ◦ (m ◦ σ ⊗ 1)(

−→
∇G(ω)⊗ x) + ω ⊗

←−
∇X(x)). (4.4)

The well-known order one condition for spectral triples gives a sufficient condition for D to
be of the form c◦

←−
∇X, [LRV12, Section 3]. The compatibility of

←−
∇X with

−→
∇G is the analogue

of the ‘Clifford connection’ condition on a Dirac bundle, [LM89, Definition 5.2]. Condition
1. captures the essential feature of Clifford multiplication, namely that the product is that
of differential forms modulo the line element G.

As discussed in subsection 4.1, the definition of Dirac bundle for manifolds exploits commu-
tativity to ensure the one-forms act in the correct order in condition 4. The bimodule map
σ plays the role of the flip map to do the same job in the noncommutative context.

Remark 4.2. One could consider the Clifford connection condition (4.4) relative to an arbi-
trary right connection

−→
∇Ω1 on Ω1

D. Computing [D, a]ωx then gives that

m(σ
−→
∇Ω1

(aω)) = [D, a]ω + am(σ
−→
∇Ω1

(ω)).

Hence
−→
∇Ω1 is forced to be a σ-bimodule connection modulo kerm.

We will consider examples of Dirac spectral triples, such as θ-deformations of classical Dirac
bundles in the present paper and the Podleś sphere in [MR24c].

Consider the left B-module X. The curvature of X is given by the covariant second derivative
(1−Ψ)⊗1◦(1⊗

←−
∇X−dΨ⊗1)◦

←−
∇X. The existence of the connection

−→
∇G on Ω1

D(B) allows us
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define a connection Laplacian, via a second derivative of the form (1⊗
←−
∇X +

−→
∇G⊗ 1) ◦

←−
∇X,

combined with the analogue of a trace map on two-tensors. By [MR24a, Proposition 2.30]

−→
∇G ⊗ 1 + 1⊗

←−
∇X : Ω1

D(B)⊗B X→ T 2
D(B)⊗B X

is well-defined. In this section we will show how to construct the connection Laplacian for
Dirac spectral triples.

Definition 4.3. Let (B, H,D) be a Dirac spectral triple with braided Hermitian differential
structure (Ω1

D(B), †,Ψ, 〈· | ·〉, σ), and
←−
∇X : X → Ω1

D ⊗B X and
−→
∇G : Ω1

D → T 2
D(B) the

associated connections. With m : T 2
D(B) → Ω2

D(B) the multiplication map, we define the
connection Laplacian of

←−
∇X relative to

−→
∇G by

∆X(x) := e−βm(G)〈G | (
−→
∇G ⊗ 1 + 1⊗

←−
∇X) ◦

←−
∇X(x)〉X ∈ X.

Note that 〈G|(
−→
∇G⊗1+1⊗

←−
∇X)◦

←−
∇X(x)〉X ∈ X since (

−→
∇G⊗1+1⊗

←−
∇X)◦

←−
∇X(x) ∈ T 2

D(B)⊗BX.
Moreover Condition 2 of Definition 4.1 guarantees that m(G) maps X to itself, so that indeed
∆X : X→ X.

For commutative manifolds and Dirac-type operators, this definition specialises to the usual
connection Laplacian when X is the module of smooth sections of a vector bundle and

−→
∇G is

the Levi-Civita connection on the cotangent bundle. The operator e−βG〈G| is the projection
onto the span of G in T 2

D, and the next Lemma describes e−βm(G) for manifolds.

Lemma 4.4. For a compact Riemannian manifold (M, g) equipped with a Dirac bundle
/S → M and associated spectral triple (C∞(M), L2(M, /S), /D), the operator e−βm(G) is the
identity, and so ∆X is the usual connection Laplacian.

Proof. On a Riemannian manifold, the line element is G =
∑

α,µ,ν ϕαgµνγ
µ ⊗ γν∗. This

is expressed using a covering of the manifold by charts Uα with partition of unity ϕα and
coordinates xµ whose differentials are represented by γ(dxµ) =: γµ (see Equation (3.2)).
Computing locally (as we may) using the Clifford relations gives∑

µ,ν

m(gµνγ
µ ⊗ γν∗) =

∑
µ,ν

gµνg
µνId = dim(M)Id

and eβ = dim(M). The formula for ∆X reduces to the classical formula for the connection
Laplacian, and so we are done.

Remark 4.5. The choice of inner product on Ω1
/D
is critical to Lemma 4.4. The Clifford

elements γµ encode the metric g used to define /D, and if we take a different Riemannian
metric h on Ω1

/D
we find m(G) =

∑
µ,ν hµνg

µνId.
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4.3 The Weitzenböck formula for Dirac spectral triples

Given a Dirac spectral triple (B, L2(X, φ),D), we can compare the action of D2 on L2(X, φ)
with the connection Laplacian.

Theorem 4.6. Let (B, L2(X, φ),D) be a Dirac spectral triple relative to (Ω1
D(B), †,Ψ, 〈·|·〉, σ)

and ∆X the connection Laplacian of the left connection
←−
∇X. If m ◦ σ ◦ Ψ = m ◦ Ψ and

Ψ(G) = G then

D2(x) = ∆X(x) + c ◦ (m ◦ σ ⊗ 1)
(
R
←−
∇X

(x)
)
, x ∈ X. (4.5)

Proof. We start our comparison of D2 and ∆X by using Equation (4.4) to write

D2(x) = c ◦ (m ◦ σ ⊗ 1)(
−→
∇G ⊗ 1 + 1⊗

←−
∇X) ◦

←−
∇X(x)))

= c ◦ (m ◦ σ ⊗ 1)
(

(Ψ⊗ 1)(
−→
∇G ⊗ 1 + 1⊗

←−
∇X) ◦

←−
∇X(x)

)
(4.6)

+ c ◦ (m ◦ σ ⊗ 1)
(
R
←−
∇X

(x) + (1−Ψ)(
−→
∇G + dΨ)⊗ 1 ◦

←−
∇X(x))

)
(4.7)

= c ◦ (m ◦ σ ⊗ 1)
(

(Ψ⊗ 1)(
−→
∇G ⊗ 1 + 1⊗

←−
∇X) ◦

←−
∇X(x)

)
+ c ◦ (m ◦ σ ⊗ 1)

(
R
←−
∇X

(x)
)
.

We will identify the term (4.6) with the connection Laplacian ∆X. By (4.3) we have

m(ω ⊗ ρ) = e−βm(G)〈ω† | ρ〉B +m(1−Ψ)(ω ⊗ ρ).

So if Ψ(ω ⊗ ρ) = ω ⊗ ρ then

c ◦ (m⊗ 1)(ω ⊗ ρ⊗ x) = e−βm(G)〈ω† | ρ〉Bx = e−βm(G)〈G | ω ⊗ ρ〉Bx.

Since m ◦ σ ◦Ψ = m ◦Ψ and Ψ(G) = G we have

c ◦ ((m ◦ σ ◦Ψ)⊗ 1)(
−→
∇G ⊗ 1 + 1⊗

←−
∇X) ◦

←−
∇X(x))

= c ◦ ((m ◦Ψ)⊗ 1)(
−→
∇G ⊗ 1 + 1⊗

←−
∇X) ◦

←−
∇X(x))

= e−βm(G)〈G | (Ψ⊗ 1)(
−→
∇G ⊗ 1 + 1⊗

←−
∇X) ◦

←−
∇X(x)〉

= e−βm(G)〈G | (
−→
∇G ⊗ 1 + 1⊗

←−
∇X) ◦

←−
∇X(x)〉 = ∆X(x)

which completes the proof.

Remark 4.7. As in Remark 4.2, one could consider the Clifford connection condition (4.4)
relative to an arbitrary right connection

−→
∇Ω1 . Equation (4.7) can then be derived and we

see that in order for the Weitzenböck formula to hold, the connection
−→
∇Ω1 is forced to be

Hermitian and torsion free modulo kerm.
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4.4 Divergence condition for positivity of the Laplacian

In geometric applications, the fact that the connection Laplacian is a positive Hilbert space
operator is essential. In this subsection we derive an abstract condition guaranteeing posi-
tivity, corresponding to the well-known fact that the integral of the divergence of a vector
field vanishes. Although we will not use this condition in the present paper, we record it for
completeness. We first observe the following.

Lemma 4.8. Suppose that (Ω1
D(B), †,Ψ, 〈· | ·〉) a Hermitian differential structure and X a

left B-inner product module. Given
←−
∇X : X → Ω1

D(B) ⊗B X an Hermitian left connection
and
−→
∇Ω1

: Ω1
D(B)→ T 2

D(B) a right connection, for x, y ∈ X we have

〈G | B〈
←−
∇Xx |

←−
∇Xy〉〉B = B〈T 2〈(

−→
∇Ω1 ⊗ 1 + 1⊗

←−
∇X) ◦

←−
∇X(x) | y〉 −

−→
∇Ω1

(Ω1〈
←−
∇Xx | y〉) |G〉.

Proof. For x ∈ X we write
←−
∇X(x) = ω(0) ⊗ x(1) as a Sweedler sum. Then we use the Leibniz

rule for
−→
∇Ω and Hermitian property for

←−
∇X to obtain

B〈T 2〈(
−→
∇Ω1 ⊗ 1 + 1⊗

←−
∇X)(ω(0) ⊗ x(1)) | y〉 |G〉

= B〈
−→
∇Ω1

(ω(0))B〈x(1) | y〉 |G〉+ B〈ω(0) ⊗ Ω1〈
←−
∇Xx(1) | y〉 |G〉

= B〈
−→
∇Ω1

(ω(0)B〈x(1) | y〉) |G〉 − B〈ω(0) ⊗ [D, B〈x(1) | y〉] |G〉

+ B〈ω(0) ⊗ B〈x(1) |
←−
∇Xy〉 |G〉+ B〈ω(0) ⊗ [D, B〈x(1) | y〉] |G〉

= B〈
−→
∇Ω1

(ω(0)B〈x(1) | y〉) |G〉+ B〈T 2〈
←−
∇Xx |

←−
∇Xy〉 |G〉.

The statement now follows by observing that for any two-tensor ρ⊗ η ∈ Ω1
D(B)⊗2 we have

B〈ρ⊗ η |G〉 = B〈ρ | η†〉 = 〈ρ† | η〉B = 〈G | ρ⊗ η〉B.

For a Dirac spectral triple (B, L2(X, φ),D), there is a unitary isomorphism of Hilbert spaces
Ω1

D(B)⊗B H ∼= L2(Ω1
D(B)⊗B X, φ) with inner product

〈ρ⊗ x, η ⊗ y〉 = φ(B〈ρ⊗ x | η ⊗ y〉) = φ(B〈ρ B〈x | y〉 | η〉) = φ(B〈ρ B〈x | y〉 ⊗ η† |G〉).

Recognising B〈
−→
∇Ω1

(B〈
←−
∇Xx | y〉X) |G〉 as a divergence term, the centrality of e−βm(G) gives

us essentially the classical argument for the positivity of the connection Laplacian.

Corollary 4.9. Let (B, L2(X, φ),D) be a Dirac spectral triple over the braided Hermitian
differential structure (Ω1

D(B), †,Ψ, 〈· | ·〉, σ). If φ(B〈
−→
∇G(ω(0)B〈x(1) | x〉X) |G〉) = 0 then

φ((〈∆X(x), x〉B) = φ
(
(e−βm(G))1/2〈

←−
∇X(x) |

←−
∇X(x)〉B(e−βm(G))1/2

)
≥ 0.
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5 Connections and curvature for θ-deformations

5.1 Background and notation

Let (M, g) be a compact Riemannian manifold equipped with a Dirac bundle /S → M and
(C∞(M), L2(M, /S), /D) the associated Dirac spectral triple (in the sense of Definition 4.1).

The space of 1-forms Ω1
/D
(M) ' Ω1⊗C acts via the Clifford action on L2(M, /S), and so carries

a †-operation induced by operator adjoint T 7→ T ∗, as well as an inner product 〈· | ·〉g induced
by the Riemannian metric g. Moreover, the standard flip map σ : T 2

/D
(M) → T 2

/D
(M) gives

the junk projection Ψ := 1+σ
2

and (Ω1
/D
(M), ∗,Ψ, 〈· | ·〉g) is a Hermitian differential structure.

We briefly recall the necessary ingredients to deform this differential structure and refer to
[MR24a, Section 6.1] for details and proofs.

Given a smooth group homomorphism α : T2 → Isom(M, g), we obtain a unitary representa-
tion U : T2 → B(L2(M, /S)) commuting with /D and such that AdU restricts to a group of ∗-
automorphisms of C∞(M). The representation U is necessarily of the form U(s) = eis1p1+is2p2

where the pi are the self-adjoint generators of the one-parameter groups associated to the
coordinates s1, s2 of T2. The ∗-algebra of smooth vectors C∞α (L2(M, /S)) ⊂ B(L2(M, /S))
consists of elements T that can be written as a norm convergent series

T =
∑

(n1,n2)∈Z2

Tn1,n2 ,

where the family of homogeneous components T(n1,n2) is of rapid decay.

We choose λ = eiθ ∈ T and define a new ∗-algebra structure on the ∗-algebra of smooth
vectors C∞α (L2(M, /S)) ⊂ B(L2(M, /S)). On homogenous elements S, T ∈ B(L2(M, /S)) with
degrees n(S) = (n1(S), n2(S)) ∈ Z2 and n(T ) = (n1(T ), n2(T )) ∈ Z2, we define a new
multiplication and adjoint † via

S ∗ T = λn2(S)n1(T )ST, T † = λn1(T )n2(T )T ∗

where ST and T ∗ are the existing composition and adjoint respectively. Extending linearly
gives a new ∗-algebra structure on C∞α (L2(M, /S)), and we denote by C∞(Mθ) the vector
space C∞(M) with this new ∗-algebra structure. The map defined for homogenous elements
T by

L : C∞α (L2(M, /S))→ B(L2(M, /S)), T 7→ Tλn2(T )p1 ,

extends to a ∗-representation, and (C∞(Mθ), L
2(M, /S), /D) is a spectral triple.

For a pair (S, T ) of homogenous operators define

Θ(S, T ) := λn2(S)n1(T )−n2(T )n1(S) = Θ(n(S), n(T )). (5.1)

The map σθ : T 2
/D
(Mθ)→ T 2

/D
(Mθ) defined on homogeneous forms ω, η by

σθ(ω ⊗ η) := Θ(ω, η)(η ⊗ ω), (5.2)
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is a well-defined bimodule map and Ψθ := 1+σθ
2

is an idempotent that projects onto the junk
two-tensors. Lastly, the formula

〈ω | η〉θ := λ(n1(ω)−n1(η))n2(ω)〈ω | η〉, ω, η ∈ Ω1
/D(Mθ), (5.3)

equips Ω1
/D
(Mθ) with a positive definite Hermitian inner product for which Ψθ is self-adjoint.

Theorem 5.1 ([MR24a], Theorem 6.12). LetM be a compact Riemannian manifold, /S →M
a Dirac bundle, T2 → Isom(M) a smooth group homomorphism and eiθ ∈ T. For Ψθ the
θ-deformed junk projection and 〈· | ·〉θ the θ-deformed inner product, (Ω1

/D
(Mθ), †,Ψθ, 〈· | ·〉θ)

is a †-concordant Hermitian differential structure. Moreover for σθ : T 2
/D
(Mθ)→ T 2

/D
(Mθ) the

θ-deformed flip map (5.2) there exists a unique Hermitian torsion-free †-bimodule connection
(
−→
∇Gθ , σθ) on Ω1

/D
(Mθ).

In [MR24a] the Levi-Civita connection
−→
∇Gθ was constructed explicitly using an homogeneous

frame for the Hermitian differential structure (Ω1
/D
(Mθ), †,Ψθ, 〈· | ·〉θ). In subsection 5.2, we

will show how to deform connections
−→
∇ 7→

−→
∇θ on suitable T2-equivariant bundles. Then

in subsection 5.3 we apply this method, and the uniqueness guaranteed by Theorem 5.1,
to show that in fact

−→
∇Gθ =

−→
∇G
θ , where

−→
∇G is the Levi-Civita connection of the original

manifold.

5.2 θ-deformation of inner product bimodules and connections

We will give a general procedure for θ-deformations of T2-equivariant bimodules over ∗-
algebras B, as well as connections thereon. In order to accommodate general Dirac bundles
in the subsequent sections (which may or may not be †-bimodules) we work in the setting
of equivariant inner product bimodules.

Definition 5.2. Let B be a local algebra (in the C∗-algebra B) equipped with an action
of T2 by ∗-automorphisms such that B is contained in the C1-subalgebra of B for the T2

action. A T2-equivariant inner product B-bimodule is a triple (X, B〈· | ·〉, 〈· | ·〉B), where X is
a bimodule over B equipped with a left inner product B〈· | ·〉 and right inner product 〈· | ·〉B
in which it becomes a left- and right T2-equivariant pre-Hilbert C∗-module over B.

As in the case of right modules, setting X∗ :=
−−→
Hom∗(X,B) and ∗X :=

←−−
Hom∗(X,B), the inner

products define antilinear isomorphisms

X→ X∗, x 7→ x∗ := 〈x|B, X→ ∗X, x 7→ ∗x := B|x〉.

Given a †-bimodule Y over B, the bimodules X ⊗B Y ⊗B X∗ and ∗X ⊗B Y ⊗B X become
†-bimodules for the operations

(x1 ⊗ y ⊗ x∗2)† := x2 ⊗ y† ⊗ x∗1, (∗x1 ⊗ y ⊗ x2)† := ∗x2 ⊗ y† ⊗ x1.

Given a right frame (xi) for X, (x∗i ) is a left frame for X∗ and a left frame (yj) for X gives a
right frame ∗yj for ∗X.
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Lemma 5.3. Let (X, B〈· | ·〉, 〈· | ·〉B) be a T2-equivariant inner product bimodule over the local
∗-algebra B. For a, b ∈ B and x, y ∈ X all homogeneous, the formulae

a ∗ x := λn2(a)n1(x)ax, x ∗ b := λn2(x)n1(b)xb,

〈x | y〉θ := λ(n1(x)−n1(y))n2(x)〈x | y〉B, θ〈x | y〉 := λ(n2(y)−n2(x))n1(y)
B〈x | y〉

make the linear space X into a T2-equivariant inner product bimodule over Bθ, which we
denote by Xθ. Here Bθ is the deformation of B as a module over itself. The module X

admits homogeneous frames and any homogeneous frame for X is a frame for Xθ.

Proof. This is proved just as in [MR24a, Lemmas 6.4 and 6.5, Corollary 6.6], where the same
facts were verified for the θ-deformed one-forms Ω1

/D
(Mθ).

Notation. To alleviate notation, we adopt the following abbreviations for the remainder of
this section. We write ⊗ := ⊗B and ⊗θ := ⊗Bθ .

Given a T2-equivariant inner product right B-module X and a T2-equivariant inner product
bimodule Y, the tensor product X⊗B Y is an equivariant inner product right module for the
action

αz(x⊗ y) := αX
z (x)⊗ αY

z (y), z ∈ T2.

Analogous statements hold for the case where X is a bimodule and Y is a left module. We
prove that the interior tensor product commutes with deformation in the following sense.

Lemma 5.4. Let X,Y be T2 equivariant B-bimodules. The map TX,Y
θ defined for homogeneous

elements x, y by

TX,Y
θ : (X⊗B Y)θ → Xθ ⊗Bθ Yθ, x⊗ y 7→ λ−n2(x)n1(y)x⊗θ y,

is an isomorphism of inner product right, left or bimodules.

Proof. For homogeneous b ∈ B we have

TX,Y
θ (xb⊗ y) = λ−n2(x)n1(y)−n2(b)n1(y)xb⊗θ y

= λ−n2(x)n1(y)−n2(b)n1(y)−n2(x)n1(b)x ∗ b⊗θ y
= λ−n2(x)n1(y)−n2(b)n1(y)−n2(x)n1(b)x⊗θ b ∗ y
= λ−n2(x)n1(y)−n2(x)n1(b)x⊗θ by
= λ−n2(x)n1(by)x⊗θ by
= TX,Y

θ (x⊗ by),

so TX,Y
θ is compatible with the balancing relations on X⊗B Y and Xθ ⊗Bθ Yθ. Since T

X,Y
θ is a

bilinear map on X× Y compatible with the balancing, it gives rise to a well-defined map on
X⊗B Y.
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Similarly, we prove that TX,Y
θ preserves the inner products. Let xj, yj be homogeneous ele-

ments of X,Y for j = 1, 2. Then

〈TX,Y
θ (x1 ⊗ y1) | TX,Y

θ (x2 ⊗ y2)〉 = λn2(x1)n1(y1)−n2(x2)n1(y2)〈y1 | 〈x1 | x2〉θ ∗ y2〉θ
= λn2(x1)n1(y1)−n2(x2)n1(y2)λ(n1(x1)−n1(x2))n2(x1)λ(n1(y1)−n1(y2)+n1(x1)−n1(x2))n2(y1)〈y1 | 〈x1 | x2〉 ∗ y2〉
=λn2(x1)n1(y1)−n2(x2)n1(y2)+(n1(x1)−n1(x2))n2(x1)+(n1(y1)−n1(y2)+n1(x1)−n1(x2))n2(y1)λ(n2(x2)−n2(x1))n1(y1)

× 〈y1 | 〈x1 | x2〉y2〉
= λ(n1(x1)+n1(y1)−n1(x2)−n1(y2))(n2(x1)+n2(y1))〈x1 ⊗ y1 | x2 ⊗ y2〉
= 〈x1 ⊗ y1 | x2 ⊗ y2〉θ.

Thus TX,Y
θ is an isometric and so injective right module map, and as it has dense range as

well, it is a unitary isomorphism.

In order to study second covariant derivatives and curvature tensors, we need to be able to
deform threefold tensor products.

Lemma 5.5. Let X,Y,Z be T2-equivariant B-bimodules. We have an equality of linear maps(
1⊗θ T Y,Z

θ

)
◦ TX,Y⊗Z

θ =
(
TX,Y
θ ⊗θ 1

)
◦ TX⊗Y,Z

θ : (X⊗ Y⊗ Z)θ → Xθ ⊗θ Yθ ⊗θ Zθ.

Denote this linear map by Hθ : (X⊗ Y⊗ Z)θ → Xθ ⊗θ Yθ ⊗θ Zθ.

Proof. Evaluating both maps on a simple tensor of homogeneous x ∈ X, y ∈ Y and z ∈ Z

yields

1⊗θ T Y,Z
θ ◦ TX,Y⊗Z

θ (x⊗ y ⊗ z) = 1⊗θ T Y,Z
θ (λ−n2(x)(n1(y)+n1(z))x⊗θ (y ⊗ z))

= λ−n2(x)(n1(y)+n1(z))λ−n2(y)n1(z)x⊗θ y ⊗θ z

and

TX,Y
θ ⊗θ 1 ◦ TX⊗Y,Z

θ (x⊗ y ⊗ z)θ = TX,Y
θ ⊗θ 1(λ−(n2(x)+n2(y))n1(z)(x⊗ y)⊗θ z)

= λ−(n2(x)+n2(y))n1(z)λ−n2(x)n1(y)x⊗θ y ⊗θ z.

Comparison of the phase factors and extending by linearity completes the proof.

Definition 5.6. Let (B,H,D) be a T2-equivariant spectral triple [Y10], and Ω1
D the first

order differential forms, which are equivariant for a T2-action. Given T2-equivariant right,
respectively left connections

−→
∇ : X→ X⊗B Ω1

D and
←−
∇ : X→ Ω1

D ⊗B X

the deformed connections are the maps
−→
∇θ : Xθ → Xθ ⊗Bθ (Ω1

D)θ,
−→
∇θ(x) = TX,Ω1

θ (
−→
∇(x)),

←−
∇θ : Xθ → (Ω1

D)θ ⊗Bθ Xθ,
←−
∇θ(x) = TΩ1,X

θ (
←−
∇(x)).

20



It is a straightforward verification that deformed connections are indeed connections. For
x ∈ X and b ∈ B we have

−→
∇θ(x ∗ b) = TX,Ω1

θ (
−→
∇(x ∗ b)) = λn2(x)n1(b)TX,Ω1

θ (
−→
∇(xb))

= λn2(x)n1(b)TX
θ (
−→
∇(x)b+ x⊗ [D, b])

= TX,Ω1

θ (
−→
∇(x)) ∗ b+ λn2(x)n1(b)TX,Ω1

θ (x⊗ [D, b])

=
−→
∇θ(x) ∗ b+ x⊗θ [D, b],

and similarly for left connections.

5.3 Deformation of the Levi-Civita connection

Let (M, g) be a compact Riemannian manifold, /S → M a T2-equivariant Dirac bundle
and (C∞(M), L2(M, /S), /D) the associated T2-equivariant spectral triple. Furthermore let
(Ω1

/D
(M), ∗,Ψ, 〈· | ·〉) be the Hermitian differential structure of the equivariant spectral triple

(C∞(M), L2(M, /S), /D), and
−→
∇G the associated Levi-Civita connection.

We will now show that the Levi-Civita connection
−→
∇Gθ of the deformed Hermitian differential

structure (Ω1
/D
(Mθ), †,Ψθ, 〈· | ·〉θ) indeed arises as the deformation of the classical Levi-Civita

connection, so that
−→
∇Gθ =

−→
∇G
θ . We will achieve this by showing that

−→
∇G
θ is an Hermitian

torsion-free σθ-bimodule connection, and so coincides with
−→
∇Gθ by Theorem 5.1. For brevity,

we will write Ω1 := Ω1
/D
(M) and Ω1

θ := Ω1
/D
(Mθ).

We first consider the deformation of
−→
∇G ⊗ 1 + 1 ⊗

←−
∇X. This sum is a well-defined map

Ω1⊗X→ Ω1⊗Ω1⊗X by [MR24a, Proposition 2.30], and we want to compare it to the (also
well-defined) map

−→
∇G
θ ⊗θ 1 + 1⊗θ

←−
∇X
θ : Ω1

θ ⊗θ Xθ → Ω1
θ ⊗θ Ω1

θ ⊗θ Xθ.

Lemma 5.7. With H as in Lemma 5.5 there is an equality of maps
−→
∇G
θ ⊗θ 1 + 1⊗θ

←−
∇X
θ = Hθ ◦ (

−→
∇G ⊗ 1 + 1⊗

←−
∇X) ◦ (TΩ1,X

θ )−1 : Ω1
θ ⊗θ Xθ → Ω1

θ ⊗θ Ω1
θ ⊗θ Xθ.

Proof. Using the definition of the deformed connection
−→
∇G
θ , for homogeneous ω, x we have

−→
∇θ(ω)⊗θ x = (TX,Ω1

θ ⊗θ 1)(
−→
∇(ω)⊗θ x)

= λn2(ω)n1(x)(TX,Ω1

θ ⊗ 1) ◦ TX⊗Ω1,X
θ (

−→
∇(ω)⊗ x)

= λn2(ω)n1(x)Hθ(
−→
∇(ω)⊗ x).

Similarly we find that

ω ⊗θ
←−
∇θ(x) = λn2(ω)n1(x)(1⊗θ TΩ1,X

θ ) ◦ TX,Ω1⊗X
θ (ω ⊗θ

←−
∇θ(x)) = λn2(ω)n1(x)Hθ(ω ⊗

←−
∇(x)),

which proves the claim.
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Lemma 5.8. Let (ωj) ⊂ Ω1 be an homogeneous frame, and Gθ =
∑

j ωj ⊗θ ω
†
j ∈ Ω1

θ ⊗θ Ω1
θ

the deformed metric. Then the deformation
−→
∇G
θ of the Levi-Civita connection

−→
∇G satisfies

(
−→
∇G
θ ⊗θ 1 + 1⊗θ

←−
∇G
θ )(Gθ) = 0

and so
−→
∇G
θ is Hermitian.

Proof. Observe that Gθ = TΩ1,Ω1

θ (G), so that by Lemma 5.7 we have

(
−→
∇θ ⊗θ 1 + 1⊗θ

←−
∇θ)(Gθ) = Hθ(

−→
∇ ⊗ 1 + 1⊗

←−
∇)(G) = 0.

We obtain the following description of the deformed exterior derivative.

Lemma 5.9. Let ω ∈ Ω1
/D
(M). Then dθ(ω) = TΩ1,Ω1

θ (d(ω)). Moreover the braiding and junk

projection satisfy σθ = TΩ1,Ω1

θ ◦ σ ◦ (TΩ1,Ω1

θ )−1 and Ψθ = TΩ1,Ω1

θ ◦Ψ ◦ (TΩ1,Ω1

θ )−1.

Proof. For all θ, the exterior derivative of a form a ∗ [D, b] with a, b homogenous is given by

dθ(a ∗ [D, b]) = (1−Ψθ)[D, a]⊗ [D, b] =
1

2
([D, a]⊗ [D, b]−Θ(a, b)[D, b]⊗ [D, a]) .

Now since a[D, b] = λ−n2(a)n1(b)a ∗ [D, b] and λ−n2(a)n1(b)Θ(a, b) = λ−n2(b)n1(a) we obtain

dθ(a[D, b]) =
1

2

(
λ−n2(a)n1(b)[D, a]⊗ [D, b]− λ−n2(b)n1(a)[D, b]⊗ [D, a]

)
,

and extension by linearity then gives the asserted formula. The relations for σ and Ψ are
straightforward verifications.

Lemma 5.10. Let
−→
∇G be the undeformed Levi-Civita connection. The deformed connection−→

∇G
θ is torsion-free.

Proof. Lemma 5.8 shows that the deformed connections are Hermitian. Writing Tθ = TΩ1,Ω1

θ

and recalling that Ψθ = Tθ ◦ Ψ ◦ T−1
θ , we can use Lemma 5.9 and the torsion-free property

for
←−
∇G to see that

dθ = Tθ ◦ dΨ = Tθ ◦ (1−Ψ) ◦
←−
∇G = (1−Ψθ) ◦

←−
∇G
θ

whence
−→
∇θ is torsion-free.

Lemma 5.11. The deformed adjoints †1⊗θ1 on Ω1
θ ⊗θ Ω1

θ and †2,θ on (Ω1 ⊗Ω1)θ respectively
are related by †1⊗θ1 = Tθ ◦ †2,θ ◦ T−1

θ where Tθ = TΩ1,Ω1

θ .
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Proof. We check that the diagram

Ω1
θ ⊗θ Ω1

θ

T−1
θ //

†1⊗θ1
��

(Ω1 ⊗ Ω1)θ

†2,θ
��

Ω1
θ ⊗θ Ω1

θ
T−1
θ

// (Ω1 ⊗ Ω1)θ

commutes by computing on elementary tensors of homogeneous one-forms. Recalling that

†2,θ(ω ⊗ ρ) = λ(n2(ω)+n2(ρ))(n1(ω)+n1(ρ))ρ∗ ⊗ ω∗ = λ(n2(ω)+n2(ρ))(n1(ω)+n1(ρ))†2(ω ⊗ ρ),

we have

ω ⊗θ ρ
T−1
θ //

†1⊗θ1
��

λn2(ω)n1(ρ)ω ⊗ ρ
†2,θ
��

λn2(ρ)n1(ρ)+n2(ω)n1(ω)ρ∗ ⊗θ ω∗
T−1
θ

// λ−n2(ω)n1(ρ)+(n2(ρ)+n2(ω))(n1(ρ)+n1(ω))ρ∗ ⊗ ω∗

So †1⊗θ1 = Tθ ◦ †2,θ ◦ T−1
θ

Theorem 5.12. The Levi-Civita connection
−→
∇Gθ on Ω1

/D
(Mθ) is the deformation

−→
∇G
θ of the

Levi-Civita connection
−→
∇G on Ω1

/D
(M).

Proof. We make use of Theorem 5.1 and prove that the deformed connection
−→
∇G
θ is Her-

mitian, torsion-free and a †-bimodule connection for the braiding σθ. By uniqueness of the
Levi-Civita connection, this will show that

−→
∇Gθ =

−→
∇G
θ . Lemmas 5.8 and 5.10 showed that

−→
∇G
θ is Hermitian and torsion-free, so we need only prove that it is a †-bimodule connection.

To show that
−→
∇G
θ is a †-bimodule connection, it suffices to prove that

−→
∇G
θ (ω) = −σθ ◦ †1⊗θ1 ◦

−→
∇G
θ (ω†).

Using Lemma 5.11 and (writing Tθ = TΩ1,Ω1

θ ) σθ = Tθ ◦ σ ◦ T−1
θ we have

−σθ ◦ †1⊗θ1 ◦
−→
∇G
θ ◦ †1,θ(ω) = −σθ ◦ †2,θλn2(ω)n1(ω) ◦

−→
∇G
θ (ω∗)

= −Tθ ◦ σ ◦ λ−n2(ω)n1(ω)†2,θ ◦
−→
∇G(ω∗)

= −Tθ(σ ◦ λ−n2(ω)n1(ω)λn2(ω)n1(ω)†2 ◦
−→
∇G(ω∗))

= −Tθ(σ ◦ †2 ◦
−→
∇G(ω∗))

= Tθ(
−→
∇G(ω))

=
−→
∇G
θ (ω),

since
−→
∇G is a †-bimodule connection. Hence

−→
∇G
θ is the unique Hermitian torsion-free †-

bimodule connection, and hence agrees with
−→
∇Gθ .
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In the case of free actions of T2, [BGJ20, BGJ21] defined the Levi-Civita connection directly
as the deformed connection and proved existence and uniqueness. Hence Theorem 5.12 shows
that our Levi-Civita connection agrees with theirs.

5.4 Invariance of the scalar curvature

We now proceed to show that the scalar curvature rθ ∈ C∞(Mθ) remains undeformed in the
sense that rθ = r0 = r in the linear space C∞(M). We also show that the full curvature
tensor and Ricci tensor transform naturally under deformation. First we record a lemma
about contractions with Gθ.

Lemma 5.13. Let ω, ρ, η, τ ∈ Ω1 be homogeneous with n(ω) +n(ρ) +n(η) +n(τ) = 0. Then

θ〈Hθ(ω ⊗ ρ⊗ η)⊗θ τ |Gθ〉 = TΩ1,Ω1

θ (ω ⊗ ρ) 0〈η ⊗ τ |G〉.

Proof. This is just a computation. With ω, ρ, η, τ as in the statement we have

θ〈Hθ(ω ⊗ ρ⊗ η)⊗θ τ |Gθ〉 = θ〈T
Ω1,Ω1

θ ◦ TΩ1⊗Ω1,Ω1

θ (ω ⊗ ρ⊗ η)⊗θ τ |Gθ〉

= θ〈T
Ω1,Ω1

θ (ω ⊗ ρ)⊗θ η ⊗θ τ |Gθ〉λ−(n2(ω)+n2(ρ))n1(η)

= TΩ1,Ω1

θ

(
(ω ⊗ ρ) ∗ θ〈η ⊗θ τ

† |Gθ〉
)
λ−(n2(ω)+n2(ρ))n1(η)

= TΩ1,Ω1

θ

(
(ω ⊗ ρ) θ〈η ⊗θ τ |Gθ〉

)
λ(n2(ω)+n2(ρ))n1(τ)

= TΩ1,Ω1

θ

(
(ω ⊗ ρ) θ〈η | τ

†〉
)
λ(n2(ω)+n2(ρ))n1(τ)

= TΩ1,Ω1

θ

(
(ω ⊗ ρ) 0〈η | τ

†〉
)
λ(n2(ω)+n2(ρ)+n2(τ)+n2(η))n1(τ)

= TΩ1,Ω1

θ (ω ⊗ ρ) 0〈η ⊗ τ |G〉

where in the last step we used the assumption on the degrees of the one-forms.

Theorem 5.14. For a one-form ρ ∈ Ω1
/D
(M) = Ω1

/D
(Mθ) we have

R
←−
∇Gθ (ρ) = Hθ(R

←−
∇G(ρ)), Ric

←−
∇Gθ = TΩ1,Ω1

θ (Ric
←−
∇G) and r

←−
∇Gθ = r

←−
∇G .

Proof. We saw in Lemma 5.7 that

(
−→
∇Gθ ⊗θ 1 + 1⊗θ

←−
∇Gθ) ◦

←−
∇Gθ = Hθ((

−→
∇G ⊗ 1 + 1⊗

←−
∇G) ◦

←−
∇G).

Since (1− Pθ) = (TΩ1,Ω1

θ (1−Ψ)(TΩ1,Ω1

θ )−1)⊗θ 1, one now checks directly that

R
←−
∇Gθ (ρ) = (1− Pθ)(

−→
∇Gθ ⊗θ 1 + 1⊗θ

←−
∇Gθ) ◦

←−
∇Gθ(ρ)

= Hθ((1− P )(
−→
∇G ⊗ 1 + 1⊗

←−
∇G) ◦

←−
∇G(ρ))

= Hθ(R
←−
∇G(ρ)).
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For the Ricci curvature, we write

R
←−
∇Gθ (ωj)⊗θ ω†j = Hθ(R(ωj))⊗θ ω†j .

Since
−→
∇G,
←−
∇G, dΨ are all degree zero, we see that R

←−
∇Gθ (ωj) ⊗θ ω†j is degree zero. We can

now compute the Ricci curvature of
←−
∇Gθ using Lemma 5.13

Ric
←−
∇Gθ = θ〈R

←−
∇Gθ |Gθ〉 =

θ
〈Hθ(R

←−
∇G(ωj))⊗θ ω†j |Gθ〉 = TΩ1,Ω1

θ (Ric
←−
∇G).

Finally the scalar curvature is given by

r
←−
∇Gθ = 〈Gθ | Ric

←−
∇Gθ 〉θ = 〈TΩ1,Ω1

θ (G) | TΩ1,Ω1

θ (Ric
←−
∇G)〉θ = 〈G | Ric

←−
∇G〉0 = r

←−
∇G .

5.5 Dirac spectral triple and Weitzenböck formula

To establish the Weitzenböck formula for θ-deformations of manifolds, we now consider the
deformation of Clifford connections.

Recall that for a θ-deformed Dirac bundle /S → M we have the maps mθ : T 2
/D
(Mθ) →

B(L2(M, /S)), cθ : Ω1
/D
(Mθ) ⊗C∞(Mθ) Γ(M, /S)θ → Γ(M, /S)θ, σθ : T 2

/D
(Mθ) → T 2

/D
(Mθ) and

gθ : T 2
/D
(Mθ) → C∞(Mθ). For later computations we describe how these maps interact with

Tθ and Hθ of Lemmas 5.4 and 5.5.

Lemma 5.15. Let /S →M be a T2-equivariant Dirac bundle over the compact Riemannian
manifold (M, g), (C∞(M), L2(M, /S), /D) the associated T2-equivariant Dirac spectral triple
and X := Γ(M, /S) the module of smooth sections of /S → M . With TΩ1,Ω1

θ , TΩ1,X
θ and Hθ =

HΩ1,Ω1,X
θ as in Lemmas 5.4 and 5.5 we have

1. m = mθ ◦ TΩ1,Ω1

θ ;
2. g = gθ ◦ TΩ1,Ω1

θ ;
3. c = cθ ◦ TΩ1,X

θ ;
4. (1⊗θ cθ) ◦Hθ = TΩ1,Xθ ◦ (1⊗ c);
5. σθ ⊗θ 1 = Hθ(σ ⊗ 1)H−1

θ .

Proof. These are all straightforward verifications using the definitions.

Proposition 5.16. The θ-deformed Clifford connection condition
←−
∇ /S
θ ◦ cθ = (1⊗θ cθ)(σθ ⊗θ 1)(1⊗θ

←−
∇ /S
θ +
−→
∇Gθ ⊗θ 1), (5.4)

holds on the module Xθ.

Proof. Using Lemma 5.15 we compute and compare
←−
∇ /S
θ ◦ cθ = (TΩ1,X

θ )(
←−
∇ /S ◦ c)(TΩ1,X

θ )−1,
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and

(1⊗θ cθ)(σθ ⊗θ 1)(1⊗θ
←−
∇ /S
θ +
−→
∇Gθ ⊗θ 1)

= (TΩ1,X
θ )(1⊗ c)H−1

θ Hθ(σ ⊗ 1)H−1
θ Hθ(1⊗

←−
∇ /S +

−→
∇G ⊗ 1)(TΩ1,X

θ )−1

= (TΩ1,X
θ )(1⊗ c)(σ ⊗ 1)(1⊗

←−
∇ /S +

−→
∇G ⊗ 1)(TΩ1,X

θ )−1.

Since ←−
∇ /S ◦ c = (1⊗ c)(σ ⊗ 1)(1⊗

←−
∇ /S +

−→
∇G ⊗ 1),

the statement follows.

Proposition 5.17. Let /S →M be a T2-equivariant Dirac bundle. The connections
−→
∇Gθ and←−

∇ /S
θ make (C∞(Mθ), L

2(M, /S), /D) into a Dirac spectral triple over (C∞(Mθ), †,Ψθ, 〈· | ·〉θ).

Proof. We start with Condition 1 of Definition 4.1. We have that Gθ = TΩ1,Ω1

θ (G), so by
Lemma 5.15 we have

mθ(Gθ) = mθ ◦ TΩ1,Ω1

θ (G) = m(G) = dimM Id/S. (5.5)

Using Equation (2.7) and Lemma 5.15 we have

eβθ = −gθ(Gθ) = −gθ(Tθ(G)) = −g(G) = eβ. (5.6)

Given ρ, η ∈ Ω1
/D
(Mθ) we have

mθ ◦Ψθ = mθ ◦ TΩ1,Ω1

θ ◦Ψ ◦ (TΩ1,Ω1

θ )−1 = m ◦Ψ ◦ (TΩ1,Ω1

θ )−1 = g ◦ (TΩ1,Ω1

θ )−1 = gθ.

Condition 2 holds since c : Ω1 ⊗ X→ X and cθ = c ◦ TΩ1,X
θ so that

cθ : Ω1
θ ⊗θ Xθ → Xθ.

For Condition 3, we have

/D = c ◦
←−
∇ /S = cθ ◦ TΩ1,X

θ ◦
←−
∇ /S = cθ ◦

←−
∇ /S
θ .

Condition 4 follows by applying cθ to Equation 5.4.

Theorem 5.18. Let /S →M be a T2-equivariant Dirac bundle over a compact Riemannian
manifold (M, g) and (C∞(Mθ), L

2(M, /S), /D) an associated θ-deformed spectral triple. Then
the connection

←−
∇ /S
θ satisfies the Weitzenböck formula

/D
2 −∆

/S
θ = cθ ◦ (mθ ◦ σθ ⊗ 1)(R

←−
∇ /S
θ ).

Proof. In view of Theorem 4.6 and Proposition 5.17, we need only verify that mθ ◦σθ ◦Ψθ =
mθ ◦ Ψθ and Ψθ(Gθ) = Gθ. Since σθ = 2Ψθ − 1 the first condition is immediate. Using
Lemma 5.15 again yields

σθ(Gθ) = TθσT
−1
θ (Tθ(G)) = Tθ(σ(G)) = Tθ(G) = Gθ,

which completes the proof.
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We prove another result about contractions with Gθ.

Lemma 5.19. For homogeneous ω, ρ ∈ Ω1 and x ∈ X we have

〈Gθ |HΩ1,Ω1,X
θ (ω ⊗ ρ⊗ x)〉Xθ = 〈G | ω ⊗ ρ〉Xx = 〈G | ω ⊗ ρ⊗ x〉X.

Proof. We compute using the definitions of the deformed inner product and multiplication
from Lemma 5.3, and the maps Tθ and Hθ from Lemmas 5.4 and 5.5 to find

〈Gθ |HΩ1,Ω1,X
θ (ω ⊗ ρ⊗ x)〉Xθ = 〈TΩ1,Ω1

θ (G) | TΩ1,Ω1

θ ⊗θ 1 ◦ TΩ1⊗Ω1,X
θ (ω ⊗ ρ⊗ x)〉Xθ

= λ−(n2(ω)+n2(ρ))n1(x)〈TΩ1,Ω1

θ (G) | TΩ1,Ω1

θ ⊗θ 1(ω ⊗ ρ)⊗θ x〉Xθ
= λ−(n2(ω)+n2(ρ))n1(x)〈TΩ1,Ω1

θ (G) | TΩ1,Ω1

θ (ω ⊗ ρ)〉Xθ ∗ x

= 〈TΩ1,Ω1

Xθ
(G) | TΩ1,Ω1

θ (ω ⊗ ρ)〉Xθx
= 〈G | ω ⊗ ρ〉Xx = 〈G | ω ⊗ ρ⊗ x〉X

as claimed.

Proposition 5.20. Let /S → M be a T2-equivariant Dirac bundle over a compact Rieman-
nian manifold (M, g), X = Γ(M, /S) and (C∞(Mθ), L

2(M, /S), /D) the associated θ-deformed
spectral triple. The connection Laplacian ∆

/S
θ : Γ(M, /S) → L2(M, /S) remains undeformed,

that is ∆
/S
θ = ∆/S.

Proof. First consider the map (
−→
∇Gθ
θ ⊗θ 1 + 1⊗θ

←−
∇ /S
θ ) ◦
←−
∇ /S
θ : Xθ → Ω1

θ⊗θ Ω1
θ⊗θ Xθ, and recall

that

(
−→
∇G
θ ⊗θ 1 + 1⊗θ

←−
∇ /S
θ ) ◦
←−
∇ /S
θ (x) = Hθ(

−→
∇G ⊗ 1 + 1⊗

←−
∇ /S)(Tθ)

−1 ◦ Tθ(
←−
∇ /S(x))

= Hθ((
−→
∇G ⊗ 1 + 1⊗

←−
∇ /S) ◦

←−
∇ /S(x)).

To obtain the connection Laplacian for X, we contract with Gθ =
∑

j T
Ω1,Ω1

θ (ωj⊗ω∗j ). Using
Lemma 5.19 we have

〈Gθ | (
−→
∇Gθ
θ ⊗θ 1 + 1⊗θ

←−
∇ /S
θ ) ◦
←−
∇ /S
θ (x)〉Xθ = 〈Gθ |HΩ1,Ω1,X

θ (
−→
∇G ⊗ 1 + 1⊗

←−
∇ /S) ◦

←−
∇ /S(x)〉Xθ

= 〈G | (
−→
∇G ⊗ 1 + 1⊗

←−
∇ /S) ◦

←−
∇X(x)〉X.

Now since e−βθm(Gθ) = e−βm(G), we have

∆
/S
θ (x) = e−βθm(Gθ)〈Gθ | (

−→
∇Gθ
θ ⊗θ 1 + 1⊗θ

←−
∇ /S
θ ) ◦
←−
∇ /S
θ (x)〉Xθ

= e−βm(G)〈G | (
−→
∇G ⊗ 1 + 1⊗

←−
∇ /S) ◦

←−
∇ /S(x)〉X

= ∆/S(x).

Corollary 5.21. Let /S be a T2-equivariant Dirac bundle over a Riemannian spin mani-
fold (M, g) and (C∞(Mθ), L

2(M, /S), /D) an associated θ-deformed spectral triple. Then the
Clifford representation of the curvature of ∇/S

θ remains undeformed, that is

cθ ◦ ((mθ ◦ σθ)⊗θ 1)(R
←−
∇ /S
θ ) = c ◦ ((m ◦ σ)⊗ 1)(R

←−
∇ /S

).
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In particular, if /S is the spinor bundle of a manifold, the Lichnerowicz formula says that
cθ ◦ ((mθ ◦ σθ)⊗ 1)(R

←−
∇ /S
θ ) = rθ/4 = r/4 as elements of the linear space C∞(M).

Proof. This follows from the invariance of /D2 −∆/S and Theorem 5.14.
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