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Abstract. We present an extension of the notion of in-splits from symbolic dynamics to topo-
logical graphs and, more generally, to C∗-correspondences. We demonstrate that in-splits pro-
vide examples of strong shift equivalences of C∗-correspondences. Furthermore, we provide a
streamlined treatment of Muhly, Pask, and Tomforde’s proof that any strong shift equivalence of
regular C∗-correspondences induces a (gauge-equivariant) Morita equivalence between Cuntz–
Pimsner algebras. For topological graphs, we prove that in-splits induce diagonal-preserving
gauge-equivariant ∗-isomorphisms in analogy with the results for Cuntz–Krieger algebras. Ad-
ditionally, we examine the notion of out-splits for C∗-correspondences.

1. Introduction

This paper studies noncommutative dynamical systems—defined as C∗-correspondences over
not necessarily commutative C∗-algebras— building on previous work [Pim97, Kat04a, Kat04b,
MPT08, KK14, DEG21, CDE23]. Inspired by classical constructions of state splittings in sym-
bolic dynamics [Wi73], we introduce in-splits and out-splits for C∗-correspondences. We prove
that these operations change the C∗-correspondence, but leave the abstract dynamical system
invariant, up to a notion of strong shift equivalence (conjugacy) as defined by Muhly, Pask, and
Tomforde. This strong shift equivalence is reflected in the associated Cuntz–Pimsner C∗-algebras
as gauge-equivariant Morita equivalence.

Symbolic dynamics [LM95] is a powerful tool in the study of smooth dynamical systems (such
as toral automorphisms or Smale’s Axiom A diffeomorphisms) that works by discretising time
using shift spaces. Every subshift of finite type can be represented by a finite directed graph.
The conjugacy problem for subshifts of finite type is fundamental: when are two shifts of finite
type the same? Williams [Wi73] showed that two subshifts of finite type are conjugate if and
only if the adjacency matrices A and B of their graph representations are strong shift equivalent.
That is, there are adjacency matrices A = A1, . . . ,An = B such that for each i = 1, . . . , n − 1
there are rectangular matrices with nonnegative integer entries R and S such that Ai = RS and
SR = Ai+1.

Williams’ motivation was the observation that state splittings of graph representations change
the graph but leave the associated shift space invariant up to conjugacy. The data of a state
splitting is reflected in matrices R and S as above, and Williams proved the decomposition
theorem: any conjugacy is a finite composition of elementary conjugacies coming from state
splittings. Deciding whether two subshifts are conjugate can be difficult in practice, and it is an
open problem in symbolic dynamics to determine whether strong shift equivalence is decidable.
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In [CK80], Cuntz and Krieger associated a C∗-algebra OA, now known as a Cuntz–Krieger
algebra, to a subshift with adjacency matrixA and showed that it is a universal simple C∗-algebra
when A is irreducible and not a permutation. The C∗-algebra OA comes equipped with an
action of the circle group T—the gauge action—and a canonical commutative subalgebra—the
diagonal. Cuntz and Krieger proved that conjugate subshifts induce Morita equivalent Cuntz–
Krieger algebras.

Recently, Carlsen and Rout [CR17] completed the picture: A and B are strong shift equivalent
if and only if there is a ∗-isomorphism Φ: OA ⊗ K → OB ⊗ K that is both gauge-equivariant
and diagonal-preserving (K is the C∗-algebra of compact operators on separable Hilbert space).
Cuntz–Krieger algebras have been generalised in many ways (e.g. directed graphs and their
higher-rank analogues, see [Rae05] and references therein), and we emphasise Pimsner’s con-
struction from a C∗-correspondence [Pim97], later refined by Katsura [Kat04b], and applied by
Katsura to his topological graphs [Kat04a].

We mention in passing that there are other moves on graphs: Parry and Sullivan’s symbol
expansions [PS75] and the Cuntz splice both related to flow equivalence as well as more advanced
moves [ER19] which were utilised in the geometric classification of all unital graph C∗-algebras
[ERRS16]. We leave open whether these moves have analogues for correspondences.

In the general setting of C∗-correspondences (a right Hilbert C∗-module with a left action
[Lan95]), we do not have access to a notion of conjugacy, but Muhly, Pask, and Tomforde
[MPT08] introduced strong shift equivalence in direct analogy with Williams’ work. For regular
C∗-correspondences, they showed that the induced Cuntz–Pimsner algebras are Morita equiva-
lent (we verify that this Morita equivalence is in fact gauge-equivariant in the sense of [Com84]).
It is an interesting open problem whether the weaker notion of shift equivalence introduced in
[KK14] (see also [CDE23]) also implies gauge-equivariant Morita equivalence.

For directed graphs, an in-split is a factorisation of the range map, and the range map induces
the left action on the graph correspondence. An in-split of a general correspondence is then
formulated as a factorisation of the left action subject to natural conditions. Similarly, an out-
split is a factorisation of the source map which is reflected in the right-module structure of
the graph correspondence, and we define an out-split of a general correspondence accordingly,
although this appears less natural than the in-split. Our notions of splittings of correspondences
provide examples of strong shift equivalences. They exhibit the same asymmetry as in the
classical setting (cf. [BP04]): an out-split induces a gauge-equivariant Morita equivalence, while
an in-split induces a gauge-equivariant ∗-isomorphism of Cuntz–Pimsner algebras. We leave open
the problem of whether an arbitrary strong shift equivalence of correspondences is a composition
of splittings.

We specialise our splittings to the case of topological graphs and in this case the analogy
with directed graphs is almost complete. For general ‘non-commutative dynamics’ defined by
C∗-correspondences over not-necessarily commutative C∗-algebras, the analogy is as complete as
it can be. It is unreasonable to expect complete characterisations of strong shift equivalence in
terms of Cuntz–Pimsner algebras akin to the Carlsen–Rout result, due to the lack of a diagonal
subalgebra for a general correspondence.

In Section 2 we recall what we need about C∗-modules, correspondences, and their associated
C∗-algebras. Along the way we provide some proofs for results that seem to be missing from
the literature. Section 3 recalls strong shift equivalence of correspondences and refines the main
result of Muhly, Pask, and Tomforde [MPT08, Theorem 3.14]. In-splits for topological graphs
and general correspondences are introduced in Section 4. Within this section we also extend
the idea of diagonal subalgebra to topological graphs and show that the gauge equivariant
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∗-isomorphisms between a topological graph correspondence and any of its in-splits is diagonal-
preserving. Finally, Section 5 defines and gives the basic properties of non-commutative out-
splits.

2. Correspondences and Cuntz–Pimsner algebras

In this preliminary section we provide background information and establish notation for what
we need to know about C∗-correspondences and their C∗-algebras (Toeplitz–Pimsner algebras
and Cuntz–Pimsner algebras), frames, and topological graphs.

2.1. C∗-modules and correspondences. We follow conventions of [Lan95] for C∗-modules,
and Pimsner [Pim97] and Katsura [Kat04b] for the algebras defined by C∗-correspondences.

A right Hilbert A-module XA is a right module over a C∗-algebra A equipped with an A-valued
inner product (· | ·)A such that XA is complete with respect to the norm induced by the inner
product. The module XA is full if (XA | XA)A = A. We denote the C∗-algebra of adjointable
operators on XA by EndA(X), the C∗-ideal of generalised compact operators by End0

A(X), and
the finite-rank operators by End00

A (X). The finite-rank operators are generated by rank-one
operators Θx,y satisfying Θx,y(z) = x · (y | z)A, for all x, y, z ∈ XA.

Definition 2.1. Let XB be a right Hilbert B-module, and let φX : A → EndB(X) be a
∗-homomorphism. The data (φX ,AXB) is called an A–B-correspondence (or just a correspon-
dence), and if φX is understood we will write AXB. If A = B we refer to (φX ,AXA) as a
correspondence over A.

A correspondence (φX ,AXB) is nondegenerate if φX(A)X = X, and following [MPT08, Defini-
tion 3.1], we say the correspondence is regular if the left action is injective (i.e. ker(φX) = {0})
and by compacts (i.e. φX(A) ⊆ End0

B(X)).

Throughout we assume that A and B are both σ-unital C∗-algebras and that all Hilbert modules
are countably generated, although many of our results do not critically rely on these assumptions.

There is a natural notion of morphism between correspondences.

Definition 2.2. Let (φX ,AXA) and (φY ,BYB) be correspondences. A correspondence morphism
(α, β) : (φX ,AXA) → (φY ,BYB) consists of a ∗-homomorphism α : A → B and a linear map
β : X → Y satisfying:

(i) (β(ξ) | β(η))B = α((ξ | η)A) for all ξ, η ∈ X;
(ii) β(ξ · a) = β(ξ) · α(a), for all a ∈ A and ξ ∈ X; and
(iii) β(φX(a)ξ) = φY (α(a))β(ξ), for all a ∈ A and ξ ∈ X.

A correspondence morphism is injective if α is injective (in which case β is isometric) and it is a
correspondence isomorphism if α and β are isomorphisms. Composition of morphisms is defined
by (α, β) ◦ (α′, β′) = (α ◦ α′, β ◦ β′). If (φY ,BXB) = (IdB,BBB) is the identity correspondence
[EKQR06] over the C∗-algebra B, then we call (α, β) a representation of (φX ,AXA) in B.

A representation (α, β) of a C∗-correspondence (φX , XA) is said to admit a gauge action if there
is a strongly continuous action γ(α,β) of T on C∗(α, β) := C∗(α(A) ∪ β(XA))— the C∗-algebra
generated by the image of (α, β) in B—by ∗-automorphisms such that γ(α,β)

z (α(a)) = α(a) for
all a ∈ A, and γ(α,β)

z (β(x)) = zβ(x) for all x ∈ X.
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Definition 2.3. The Toeplitz algebra TX of a C∗-correspondence (φ,AXA) is the universal
C∗-algebra for representations of (φX ,AXA) in the following sense. There exists a representa-
tion (ιA, ιX) : (φX ,AXA) → TX such that TX = C∗(ιA, ιX), and for any other representation
(α, β) : (φX ,AXA)→ B in a C∗-algebra B, there is a unique ∗-homomorphism α× β : TX → B
such that (α× β) ◦ ιA = α and (α× β) ◦ ιX = β.

To a correspondence (φX ,AXA) we associate its covariance ideal

JφX := φ−1
X (End0

A(X)) ∩ ker(φX)⊥,

which is an ideal in A (cf. [Kat04b, Definition 3.2]). The covariance ideal is the largest ideal of
A such that the restriction of φX to it is both injective and has image contained in End0

A(X).
We will often consider covariant morphisms (defined below) which respect the covariance ideal.

A correspondence morphism (α, β) : (φX ,AXA) → (φY ,BYB) induces a ∗-homomorphism of
compacts β(1) : End0

A(X)→ End0
B(Y ) satisfying β(1)(Θx1,x2) = Θβ(x1),β(x2) for all x1, x2 ∈ X.

Definition 2.4. A morphism (α, β) : (φX ,AXA)→ (φY ,BYB) is covariant if

β(1) ◦ φX(c) = φY ◦ α(c) for all c ∈ JφX .

In particular, we must have α(JφX ) ⊆ JφY . If (φY ,BXB) = (IdB,BBB) is the identity corre-
spondence over B, then we call (α, β) a covariant representation of (φX ,AXA) in B.

Definition 2.5. The Cuntz–Pimsner algebra OX of a C∗-correspondence (φ,AXA) is the uni-
versal C∗-algebra for covariant representations of (φX ,AXA) in the following sense. There exists
a universal covariant representation (ιA, ιX) : (φX ,AXA)→ OX such that OX = C∗(ιA, ιX), and
for any other covariant representation (α, β) : (φX ,AXA) → B on a C∗-algebra B, there is a
unique ∗-homomorphism α× β : OX → B such that (α× β) ◦ ιA = α and (α× β) ◦ ιX = β.

The universal covariant representation (ιA, ιX) admits a gauge action γX : T y OX that we shall
refer to as the canonical gauge action.

Lemma 2.6. Let (α, β) : (φX ,AXA)→ (φY ,BYB) be a covariant correspondence morphism, and
let (ιA, ιX) and (ιB, ιY ) be universal covariant representations of OX and OY , respectively. Then
there is an induced gauge-equivariant ∗-homomorphism α× β : OX → OY satisfying

(α× β) ◦ ιA = ιB ◦ α and (α× β) ◦ ιX = ιY ◦ β.

If α is injective, then α× β is injective.

Remark 2.7. The relation (α × β) ◦ ι(1)
X = ι

(1)
Y ◦ β also follows easily from the lemma and the

definition of the induced (1) maps on compacts.

Proof. The composition (ιB, ιY )◦(α, β) is a covariant representation of (φX , XA) on OY , so by the
universal property (and a slight abuse of notation) there is a ∗-homomorphism α×β : OX → OY
satisfying (α× β) ◦ ιA = ιB ◦ α and (α× β) ◦ ιX = ιY ◦ β. If a ∈ A, then

(α× β) ◦ γXz (ιA(a)) = ιB ◦ α(a) = γYz ◦ (α× β)(ιA(a)),

for all z ∈ T, and if x ∈ XA, then

(α× β) ◦ γXz (ιX(x)) = z(α× β)(ιX(x)) = γYz ◦ (α× β)(ιX(x)),

for all z ∈ T. This shows that α×β is gauge-equivariant. If α is injective, then (ιA ◦α, ιX ◦β) is
an injective representation that admits a gauge action so α×β is injective by the gauge invariant
uniqueness theorem [Kat04b, Theorem 6.4]. �
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To talk about Morita equivalence we isolate a special kind of correspondence.

Definition 2.8. An A–B-imprimitivity bimodule between C∗-algebras A and B is a correspon-
dence (φ,AXB) with an additional left A-valued inner product such that the right B action is
adjointable for the left inner product, and X is full as a left and as a right module. Moreover

φ(A(x|y))z = x · (y|z)B x, y, z ∈ X.

If such an imprimitivity bimodule exists then A and B are Morita equivalent.

There is also a group-equivariant version of Morita equivalence due to Combes, [Com84]. To
describe equivariant Morita equivalence and the gauge action of the circle on Cuntz–Pimsner
algebras we recall some definitions and results.

Definition 2.9. Let G be a locally compact Hausdorff group and let A be a G-C∗-algebra with
strongly continuous action α : G → Aut(A). An action of G on an A-module XA is a strongly
continuous action g 7→ Ug of G on XA by C-linear isometries such that

(i) Ug(x · a) = Ug(x)αg(a) for all x ∈ X and a ∈ A; and
(ii) (Ugx | Ugy)A = αg((x | y)A) for all x, y ∈ X.

If (φ,BXA) is a correspondence and B is a G-C∗-algebra with action β : G → Aut(B), then U
is an action on the correspondence if U is an action on XA and in addition Ugφ(b) = φ(βg(b))Ug
for all b ∈ B. The action is covariant, if in addition βg(JX) = JX .

Remark 2.10. The operators Ug on XA are typically not A-linear due to condition (i).

Lemma 2.11. If (U,α) is an action of G on the right module XA, then there is an induced
strongly continuous action α : G → Aut(End0

A(X)) defined by αg(T ) := AdUg(T ) = UgTUg−1.
For rank-1 operators αg(Θx,y) = ΘUgx,Ugy.

An action of a group on a correspondence induces a “second quantised” action on both the
associated Toeplitz and Cuntz–Pimsner algebras. This is an immediate consequence of the
universal properties of both Toeplitz and Cuntz–Pimsner algebras.

Lemma 2.12 (cf. [LN04]). If (U,α) if an action of G on an A-correspondence (φ,AXA), then
there is an induced action σ : G→ Aut(TX) on the Toeplitz-Pimsner algebra such that

σg(ιA(a)) = ιA(αg(a)) and σg(ιX(x)) = ιX(Ugx)
for all g ∈ G, a ∈ A, and x ∈ X. If the action (U,α) is covariant, then σ descends to an action
σ : G→ Aut(OX).

Example 2.13. The action of the circle T on a correspondence (φ,AXA) defined by
Uz(x) = zx, αz(a) = a, x ∈ X, a ∈ A, z ∈ T

happens to have each Uz adjointable, and induces the gauge actions on TX and OX .

Definition 2.14. Let A and B be C∗-algebras and suppose that γA : Gy A and γB : Gy B are
strongly continuous actions of a locally compact Hausdorff group G. Following Combes [Com84],
we say that γA and γB are Morita equivalent if:

(i) there is an A-B-imprimitivity bimodule AXB;
(ii) there is a strongly continuous action of G on X by C-linear isometries Ug; and
(iii) the above action of G on X restricts to an action on A = End0

B(X) which coincides with
γA, and it restricts to an action on B = End0

A(X) which coincides with γB.
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Equivalently, γA and γB are Morita equivalent if there exists a C∗-algebra C such that A and
B are (isomorphic to) complementary full corners in C, and C admits an action γC such that
γA is γC |A and γB is γC |B, cf, [Com84, Section 4].

2.2. Frames. An important technical and computational tool for Hilbert C∗-modules is the
concept of a frame. This is as close as one can get to an orthonormal basis in a C∗-module, and
it serves similar purposes. In fact, Kajiwara, Pinzari, and Watatani refer to frames as bases,
see [KPW04]. In the signal analysis literature, see for instance [FL02, Lue18], what we call a
frame is also known as a standard normalised tight frame.

Definition 2.15. Let XA be a right A-module. A (right) countable frame for XA is a sequence
(xj)j∈N in XA such that

∑∞
j=1 Θxj ,xj converges strictly to the identity operator in EndA(X).

Equivalently, we have x =
∑∞
j=1 Θxj ,xjx for all x ∈ XA with the sum converging in norm.

For the strict topology, see [Lan95], but for our purposes it is enough to know that the strict
topology coincides with the ∗-strong topology on bounded sets.

If (xj)j∈N is a frame for XA, then XA is generated as a right A-module by xj , so X is countably
generated. Conversely, any countably generated C∗-module over a σ-unital C∗-algebra A admits
a countable frame, cf. [KPW04, Proposition 2.1].

The following result is well-known to experts, but we were unable to find a reference. As the proof
is non-trivial, we include it for completeness. We thank Bram Mesland for helpful suggestions.

Proposition 2.16. Let XA be a countably generated right Hilbert A-module and let (φ,AYB)
be a countably generated A–B-correspondence. Let (xi)i∈N be a countable frame for XA and let
(yj)j∈N be a countable frame for YB. Then (xi ⊗ yj)i,j∈N is a countable frame for X ⊗φ Y .

To prove Proposition 2.16 we require some technical lemmas.

Lemma 2.17. Let A be a C∗-algebra. Suppose a, b ∈ A are positive elements such that a ≤ b ≤ 1
in the minimal unitisation A+. Then for each h ∈ A we have ‖ah− h‖ ≤ ‖bh− h‖.

Proof. This follows from the calculation

‖ah− h‖2 = ‖(a− 1)h‖2 = ‖h∗(a− 1)2h‖ = sup{φ(h∗(a− 1)2h)}
≤ sup{φ(h∗(b− 1)2h)} = ‖bh− h‖2,

where the supremum is taken over all states φ on A and 1 ∈ A+. �

Lemma 2.18. Let XA, (φ,AYB), (xi)i∈N, and (yi)i∈N be as in the statement of Proposition 2.16.
Then for each N,M ∈ N, ∥∥∥ M∑

i=1

N∑
j=1

Θxi⊗yj ,xi⊗yj

∥∥∥ ≤ 1.

Proof. Let `2(Y ) := `2(N)⊗C Y with the standard right B-module structure. For each N ∈ N,
we wish to define a linear, right B-linear, map ψN : X ⊗φ Y → `2(Y ) on elementary tensors by

(ψN (x⊗ y))i =
{
φ((xi | x)A)y if i ≤ N ;
0 otherwise.
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Observe that

‖ψN (x⊗ y)‖2`2(Y ) =
∥∥∥ N∑
i=1

(φ((xi | x)A) · y | (φ((xi | x)A) · y)B
∥∥∥

=
∥∥∥ N∑
i=1

(y | φ((x | xi)A(xi | x)A)y)B
∥∥∥ =

∥∥∥(y ∣∣∣ φ(x ∣∣∣ N∑
i=1

Θxi,xix
)
A
y
)
B

∥∥∥
≤ ‖x‖2‖y‖2

∥∥∥ N∑
i=1

Θxi,xi

∥∥∥ ≤ ‖x‖2‖y‖2,
so that ‖ψN‖ ≤ 1. Hence, ψN extends to a bounded linear map ψN : X ⊗φ Y → `2(Y ). Observe
that ψN is adjointable with adjoint ψ∗N ((zi)i) =

∑N
i=1 xi ⊗ zi. Embedding ψN in the “bottom

left” corner of the C∗-algebra EndB((X ⊗φ Y )⊕ `2(Y )) shows that ‖ψ∗N‖ = ‖ψN‖ ≤ 1.

Now for each M ∈ N let TM =
∑M
j=1 Θyj ,yj . Observe that TM acts diagonally on `2(Y ) and that

as an operator on YB we have ‖TM‖EndB(Y ) ≤ 1. Then for (zi)i ∈ `2(Y ),

‖TM ((zi)i)‖2 =
∥∥∥ ∞∑
n=1

(TMzi | TMzi)B
∥∥∥ ≤ ∥∥∥ ∞∑

n=1
‖TM‖2EndB(Y )(zi | zi)B

∥∥∥
≤ ‖TM‖2EndB(Y )‖(zi)i‖

2 ≤ ‖(zi)i‖2,

where the first inequality follows from [Lan95, Proposition 1.2.]. Thus, ‖TM‖EndB(`2(Y )) ≤ 1.
Since we can write

M∑
i=1

N∑
j=1

Θxi⊗yj ,xi⊗yj = ψ∗N ◦ TM ◦ ψN

the result follows. �

Proof of Proposition 2.16. It suffices to show that (
∑

(i,j)∈Σ Θxi⊗yj ,xi⊗yj )Σ⊂⊂N2 is an approxi-
mate identity for End0

B(X ⊗φ Y ), where the sequence is indexed by finite subsets Σ of N2. Fix
ε > 0. We first claim that for each ξ ∈ X ⊗φ Y there exists M,N ∈ N such that

(2.1)
∥∥∥ M∑
i=1

N∑
j=1

Θxi⊗yj ,xi⊗yjξ − ξ
∥∥∥ < ε.

It suffices to consider the case where ξ = η ⊗ ζ for some η ∈ XA, ζ ∈ YB. Take M large enough
so that ∥∥∥ M∑

i=1
Θxi,xiη − η

∥∥∥ < ε

2

and take N large enough so that

∥∥∥ N∑
j=1

Θyj ,yjφ((xi | η)A)ζ − φ((xi | η)A)ζ
∥∥∥ < ε

2M
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for all 1 ≤ i ≤M . It follows that∥∥∥ M∑
i=1

N∑
j=1

Θxi⊗yj ,xi⊗yjξ − ξ
∥∥∥ =

∥∥∥ M∑
i=1

N∑
j=1

xi ⊗ yj · (yj | φ((xi | η)A)ζ)B − η ⊗ ζ
∥∥∥

≤
∥∥∥ M∑
i=1

N∑
j=1

xi ⊗ yj · (yj | φ((xi | η)A)ζ)B −
M∑
i=1

xi ⊗ φ((xi | η)A)ζ
∥∥∥

+
∥∥∥ M∑
i=1

xi ⊗ φ((xi | η)A)ζ − η ⊗ ζ
∥∥∥

≤
M∑
i=1
‖xi‖

∥∥∥ N∑
j=1

yj · (yj | φ((xi | η)A)ζ)B − φ((xi | η)A)ζ
∥∥∥+ ε

2 < ε.

We now claim that for each T ∈ End0
B(X ⊗φ Y ) there is a sequence (Mk, Nk)∞k=1 in N2, with

each of (Mk)k and (Nk)k strictly increasing, such that

(2.2)
Mk∑
i=1

Nk∑
j=1

Θxi⊗yj ,xi⊗yjT → T

as k → ∞. If T is a rank-one operator, then (2.2) holds for T , as follows from the claim (2.1),
which we have proved. By taking finite sums, the claim is also true for finite-rank T .

Fix ε > 0. Suppose that T ∈ End0
B(X ⊗φ Y ) is arbitrary, and take a finite rank operator S

such that ‖T − S‖ < ε
3 . Let M,N ∈ N be such that ‖

∑M
i=1

∑N
j=1 Θxi⊗yj ,xi⊗yjS − S‖ < ε

3 . Then
Lemma 2.18 implies that,∥∥∥ M∑

i=1

N∑
j=1

Θxi⊗yj ,xi⊗yjT − T
∥∥∥

≤
∥∥∥ M∑
i=1

N∑
j=1

Θxi⊗yj ,xi⊗yj

∥∥∥‖T − S‖+
∥∥∥ M∑
i=1

N∑
j=1

Θxi⊗yj ,xi⊗yjS − S
∥∥∥+ ‖T − S‖ < ε.

To finish, fix ε > 0, let T ∈ End0
C(X ⊗φ Y ), and take K large enough so that∥∥∥MK∑
i=1

NK∑
j=1

Θxi⊗yj ,xi⊗yjT − T
∥∥∥ < ε.

Lemma 2.17 shows that for any finite set Σ ⊆ N2 with {(i, j) | 1 ≤ i ≤ Mk, 1 ≤ j ≤ Nk} ⊆ Σ
we have ‖

∑
(i,j)∈Σ Θxi⊗yj ,xi⊗yjT − T‖ < ε. Consequently, (

∑
(i,j)∈Σ Θxi⊗yj ,xi⊗yj )Σ⊂⊂N2 is an

approximate identity for End0
C(X ⊗φ Y ), and (xi ⊗ yj)i,j is a frame for X ⊗φ Y . �

2.3. Topological graphs. Topological graphs and their C∗-algebras were introduced by Kat-
sura [Kat04a] as a generalisation of directed graphs and their C*-algebras. Any (partially
defined) local homeomorphism on a locally compact Hausdorff (sometimes known as a Deaconu–
Renault system) space may be interpreted as a topological graph and, in turn, any topological
graph admits a boundary path space whose shift map gives a Deaconu–Renault system. The
C∗-algebra of the topological graph is ∗-isomorphic to the C∗-algebra of its associated Deaconu–
Renault system, cf. [Kat21, Kat09].

Definition 2.19. A topological graph E = (E0, E1, r, s) is a quintuple consisting of second
countable locally compact Hausdorff spaces E0 of vertices and E1 of edges, together with a
continuous range map r : E1 → E0, and a local homeomorphism s : E1 → E0 called the source.
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Two topological graphs E = (E0, E1, rE , sE), F = (F 0, F 1, rF , sF ) are (graph) isomorphic if
there are homeomorphisms

µ : E0 → F 0 and ν : E1 → F 1

such that µ ◦ sE = sF ◦ ν and µ ◦ rE = rF ◦ ν.

If E0 and E1 are countable discrete sets, then E is a directed graph.

Remark 2.20. The term topological graph is sometimes also used to refer to the more general
notion of a topological quiver (see [MT05]). In a topological quiver the condition that s is a
local homeomorphism is weakened to s being an open map with the additional requirement of
a compatible family of measures on the fibres of s. We do not work in this generality.

In [Kat21, Section 4], Katsura studies the boundary path space E∞ = (E0
∞, E

1
∞, r∞, s∞) of a

topological graph E. This is again a topological graph and σE := s∞ : E1
∞ → E0

∞ is a partially
defined local homeomorphism. Two topological graphs E and F are then said to be conjugate
if the Deaconu–Renault systems on their boundary path spaces are conjugate, i.e. if there is a
homeomorphism h : E1

∞ → F 1
∞ such that h ◦ σE = σF ◦ h and h−1 ◦ σF = σE ◦ h−1.

The space of paths of length n in a topological graph is the n-fold fibred product

En := E1 ×s,r · · · ×s,r E1 =
{
e1e2 · · · en ∈

n∏
E1 | s(ei) = r(ei+1)

}
.

equipped with the subspace topology of the product topology.

Definition 2.21. To a topological graph E = (E0, E1, rE , sE), Katsura [Kat04a] associates a
C0(E0)-correspondence X(E) as follows. Equip Cc(E1) with the structure of a pre-C0(E0)–
C0(E0)-correspondence by

x · a(e) = x(e)a(s(e))
a · x(e) = a(r(e))x(e)

(x | y)C0(E0)(v) =
∑
s(e)=v

x(e)y(e),

for all x, y ∈ Cc(E1), a ∈ C0(E0), e ∈ E1, and v ∈ E0. The completion X(E) is a C0(E0)–
C0(E0)-correspondence called the graph correspondence of E, and the Cuntz–Pimsner algebra
OX(E) is called the C∗-algebra of the topological graph E.

We fix some terminology to discuss regular and singular points of topological graphs.

Definition 2.22. Let ψ : X → Y be a continuous map between locally compact Hausdorff
spaces. We consider the following subsets of Y :

• ψ-sources: Yψ−src := Y \ ψ(X)
• ψ-finite receivers: Yψ−fin := {y ∈ Y : ∃ a precompact open neighbourhood V of y

such that ψ−1(V ) is compact}
• ψ-infinite receivers: Yψ−inf := Y \ Yψ−fin
• ψ-regular set: Yψ−reg := Yψ−fin \ Yψ−src
• ψ-singular set: Yψ−sing := Y \ Yψ−reg = Yψ−inf ∪ Yψ−src.

Remark 2.23. If E = (E0, E1, r, s) is a topological graph then we use the range map r : E1 → E0

to construct subsets of E0 according to Definition 2.22. In this context we drop the map r and,
for instance, write E0

reg = E0
r−reg.
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A topological graph E is said to be regular if E0
sing = ∅.

We recall that the behaviour of the left action φ : C0(E0)→ End0
C0(E0)(X(E)) is reflected in the

singular structure of E. In particular, the covariance ideal is given by Jφ = C0(E0
reg), so that

regular topological graphs induce regular graph correspondences, cf. [Kat04a].

A frame for the graph correspondence is relatively easy to describe.

Example 2.24. Let E = (E0, E1, r, s) be a topological graph. Since E1 is second countable
and locally compact its paracompact; so admits a locally finite cover {Ui}i∈I by precompact
open sets such that the restrictions s : Ui → s(Ui) are homeomorphisms onto their image. Let
{ρi}i∈I be a partition of unity subordinate to {Ui}i∈I and let xi = ρ

1/2
i . We claim that (xi)i∈I

is a frame for X(E). For each x ∈ Cc(E1) and e ∈ E1,∑
i

(xi · (xi | x)C0(E0))(e) =
∑
i

∑
s(f)=s(e)

xi(e)xi(f)x(f) =
∑
i

ρi(e)x(e) = x(e).

Since x has compact support, finitely many of the Ui cover supp(x). Hence,∥∥∥∑
i

(xi · (xi | x)C0(E0))− x
∥∥∥2

= sup
v∈E0

∑
s(e)=v

∣∣∣∑
i

(xi · (xi | x)C0(E0))(e)− x(e)
∣∣∣2 → 0.

Since Cc(E1) is dense in X(E) it follows that (xi)i∈I is a frame for X(E).

3. Strong shift equivalence

Strong shift equivalence was introduced by Williams in [Wi73] as an equivalence relation on
adjacency matrices: finite square matrices with nonnegative integral entries in the context of
shifts of finite type [LM95]. Two adjacency matrices A and B are elementary strong shift
equivalent if there exist rectangular matrices R and S with nonnegative integral entries such
that

A = R S and B = S R.
This is not a transitive relation. To amend this we say that A and B are strong shift equivalent if
there are square matrices A = A1, . . . ,An = B such that Ai is elementary strong shift equivalent
to Ai+1 for all i = 1, . . . , n − 1. The raison d’être for this equivalence relation is the following
classification theorem due to Williams: recalling that a shift of finite type may be represented
by an adjacency matrix, a pair of two-sided shifts of finite type are topologically conjugate if
and only if the adjacency matrices that represent the systems are strong shift equivalent.

Muhly, Pask, and Tomforde [MPT08] introduce strong shift equivalence for C∗-correspondences,
which we recall below. They show that the induced Cuntz–Pimsner algebras of strong shift
equivalent correspondences are Morita equivalent. Kakariadis and Katsoulis [KK14] later intro-
duced the a priori weaker notion of shift equivalence of C∗-correspondences, and similar notions
were further studied by Carlsen, Dor-On, and Eilers [CDE23].

Definition 3.1 ([MPT08, Definition 3.2]). Correspondences (φX ,AXA) and (φY ,BYB) are el-
ementary strong shift equivalent if there are correspondences (φR,ARB) and (φS ,BSA) such
that

X ∼= R⊗B S and Y ∼= S ⊗A R.
They are strong shift equivalent if there are correspondences X = X1, . . . , Xn = Y such that Xi

is elementary strong shift equivalent to Xi+1 for all i = 1, . . . , n− 1.
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In [CDE23, Remark 3.6], Carlsen, Dor-On, and Eilers observe that if adjacency matrices are
strong shift equivalent in the sense of Williams, then their C∗-correspondences are also strong
shift equivalent in the sense of Muhly, Pask, and Tomforde. The converse is still not known.

In this section we show that there is a gauge equivariant Morita equivalence of the Cuntz–
Pimsner algebras of strong shift equivalent correspondences in the sense of Definition 2.14. In
the process, we revisit the Morita equivalence proof of [MPT08] and break it into a series of
instructive lemmas. The first records how Cuntz–Pimsner algebras behave with respect to direct
sums of correspondences.

Lemma 3.2. Let (φX ,AXA) and (φY ,BYB) be correspondences. The inclusion (jA, jX) of
(φX ,AXA) into the A ⊕ B-correspondence (φX⊕Y ,A⊕BX ⊕ YA⊕B) is a covariant correspon-
dence morphism that induces a gauge-equivariant and injective ∗-homomorphism jA×jX : OX →
OX⊕Y .

Proof. It is clear that (jA, jX) is a correspondence morphism, and for covariance we must show
that j(1)

X ◦ φX(c) = φX⊕Y ◦ jA(c) for all c ∈ JX . Let (xi)i be a frame for X and (yj)j a frame
for Y . A frame for X ⊕ Y is given by the direct sum of the frames for X and Y . Let PX denote
the projection in EndA⊕B(X ⊕ Y ) onto X so that PX =

∑
i ΘjX(xi),jX(xi), with the sum taken

in the strict topology. It follows that

j
(1)
X ◦ φX(c) =

∑
i

ΘjX(φX(c)xi),jX(xi) = φX⊕Y (jA(c))
∑
i

ΘjX(xi),jX(xi)

= φX⊕Y (jA(c))PX = φX⊕Y ◦ jA(c),

for all c ∈ JX . Lemma 2.6 implies that the induced ∗-homomorphism jA × jX : OX → OX⊕Y is
gauge-equivariant and injective. �

Lemma 3.3. If (φX ,AXB) and (φY ,BYC) are C∗-correspondences, then JφX⊗Y ⊆ JφX .

Proof. It follows from [Pim97, Corollary 3.7] that if φX(a)⊗ IdY ∈ End0
C(X⊗Y ), then φX(a) ∈

End0
A(X · φ−1

Y (End0
B(Y ))). It is clear that ker(φX) ⊆ ker(φX ⊗ IdY ) so ker(φX ⊗ IdY )⊥ ⊆

ker(φX)⊥. The result now follows. �

Let (φX ,AXA) be a correspondence and N a positive integer. With φX⊗N := φX ⊗ IdN−1 the
pair (φX⊗N , X⊗N ) is a correspondence over A. Given a representation (α, β) : (φX ,AXA) → B
we denote by β⊗N : X⊗N → B the induced map β⊗N (x1 ⊗ · · · ⊗ xN ) = β(x1) · · ·β(xN ), for all
x1⊗· · ·⊗xN ∈ X⊗N and note that (α, β⊗N ) is a representation of (φX⊗N , X⊗N ) in B, [Kat04b,
§2]. We let β(N) := (β⊗N )(1) : End0

A(X⊗N )→ B.

Our next lemma records how the Cuntz–Pimsner algebra of (φX⊗N , X⊗N ) embeds in the Cuntz–
Pimsner algebra of (φX , XA). However, we note that this embedding is not gauge-equivariant
in the usual sense.

Lemma 3.4. Let (φX ,AXA) be a nondegenerate correspondence and let (ιA, ιX) : (φX ,AXA)→
OX be a universal representation. Then for each N ∈ N, (ιA, ι⊗NX ) : (φX⊗N ,AX⊗NA )→ OX is an
injective covariant representation. In particular, there is an induced injective ∗-homomorphism
τN : OX⊗N → OX such that τN ◦ ιX⊗N = ι⊗NX .

Furthermore, let γ : T → Aut(OX) denote the gauge action on OX and let γ : T → Aut(OX⊗N )
denote the gauge action on OX⊗N . Consider the N -th power γN : T→ Aut(OX⊗N ) of the gauge
action on OX⊗N : so γNz (ιA(a)) = ιA(a) and γNz (ιX(x)) = zN ιX(x) for all a ∈ A and x ∈ X⊗N .
Then τN ◦ γNz = γz ◦ τN for all z ∈ T.
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Proof. We need to verify that (ιA, ι⊗NX ) is covariant. It follows from Lemma 3.3 that Jφ
X⊗N

⊆
JφX . Recall that a rank-1 operator in End0

A(X · Jφ
X⊗N

) may be written in the form Θx·a,y

for x, y ∈ XA and a ∈ Jφ
X⊗N

. Then Θx·a,y ⊗ IdN−1 ∈ End0
A(X⊗N ) since Jφ

X⊗N
⊆ Jφ

X⊗N−1 .
Moreover, if (xi) is a frame for X⊗(N−1)

A , then

Θx·a,y ⊗ IdN−1 =
∑
i

Θx⊗φ(a)xi,y⊗xi .

We proceed by induction, the base case being covariance of (ιA, ιX), which is given. Sup-
pose for induction that (ιA, ι⊗N−1

X ) is covariant. This is equivalent to the fact that ιA(a) =∑
i ι

(N−1)
X (ΘφX(a)ei,ei) for all a ∈ JX⊗(N−1) . (cf. [Pim97, Remark 3.9]). Using the inductive

hypothesis at the second to last equality, it follows that for any x, y ∈ XA and a ∈ Jφ
X⊗N

,

ι
(N)
X (Θx·a,y ⊗ IdN−1) = ι

(N)
X

(∑
i

Θx⊗φ(a)xi,y⊗xi

)
=
∑
i

ιX(x)ι⊗(N−1)
X (φ(a)xi)ι⊗(N−1)

X (xi)∗ιX(y)∗

= ιX(x)ι(N−1)
X

(∑
i

Θφ(a)xi,xi

)
ιX(y)∗ = ιX(x)ιA(a)ιX(y)∗ = ι

(1)
X (Θx·a,y).

It follows that for any T ∈ End0
A(X · Jφ

X⊗N
) we have ι(1)

X (T ) = ι
(N)
X (T ⊗ IdN−1). Covariance of

(ιA, ιX) now implies that for all a ∈ Jφ
X⊗N

,

ιA(a) = ι
(1)
X (φX(a)) = ι

(N)
X (φX(a)⊗ IdN−1)

so that (ιA, ι⊗NX ) is covariant. The universal property of OX⊗N yields a ∗-homomorphism
τN : OX⊗N → OX satisfying τN ◦ ιA = ιA and τN ◦ ιX⊗N = ι⊗NX .

By considering local N -th roots, the fixed point algebras O
γ
X⊗N

and O
γN

X⊗N
can be seen to

coincide. Moreover, it is straightforward to see that τN ◦ γNz = γz ◦ τN for all z ∈ T. With
minimal adjustments, the proof of the Gauge-Invariant Uniqueness Theorem found in [Kat04b,
Theorem 6.4] carries over to the action γN , so since (ιA, ι⊗NX ) is an injective representation it
follows that τN is injective. �

The next theorem is the main result of [MPT08]: strong shift equivalent C∗-correspondences
(that are nondegenerate and regular) have Morita equivalent Cuntz–Pimsner algebras. Here we
simply sketch the proof to make it clear that the Morita equivalence Muhly, Pask, and Tomforde
construct in fact implements a gauge-equivariant Morita equivalence. This is certainly known
(or at least anticipated) by experts but we consider it worthwhile to mention it.

Theorem 3.5 ([MPT08, Theorem 3.14]). Suppose (φX ,AXA) and (φY ,BYB) are nondegenerate
and regular correspondences. If they are strong shift equivalent, then the Cuntz–Pimsner algebras
OX and OY are gauge-equivariantly Morita equivalent.

Proof. It suffices to assume that XA and YB are elementary strong shift equivalent. Choose
nondegenerate and regular correspondences (φR,ARB) and (φS ,BSA) (cf. [MPT08, Section 3])
such that

XA
∼= R⊗B S and YB ∼= S ⊗A R.

By Lemma 3.2 we have covariant morphisms (jA, jX) : (φX ,AXA) → (φX⊕Y ,A⊕BX ⊕ YA⊕B)
and (jB, jY ) : (φY ,BYB)→ (φX⊕Y ,A⊕BX ⊕ YA⊕B).

Let Z = S⊕R be the correspondence over A⊕B with the obvious right module structure and left
action φZ : A⊕B → EndA⊕B(Z) given by φZ(a, b)(s, r) = (φS(b)s, φR(a)r) for all (a, b) ∈ A⊕B
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and (r, s) ∈ Z.1 Then Z⊗2 is isomorphic to X ⊕ Y as A ⊕ B-correspondences by [MPT08,
Proposition 3.4].

By Lemmas 3.2 and 3.4 there are inclusions λX : OX → OZ and λY : OY → OZ such that the
diagram

OX

OX⊕Y ∼= OZ⊗2 OZ

OY

τ2

jB×jY

jA×jX

λX

λY

commutes.

As in [MPT08, Lemma 3.12], we may construct full complementary projections PX and PY in
the multiplier algebra Mult(OZ) (using approximate identities in A and B, respectively) such
that λX(OX) = PXOZPX and λY (OY ) = PY OZPY are full and PX + PY = 1Mult(OZ).

For gauge equivariant Morita equivalence (see Definition 2.14) we will produce a circle action
on OZ which restricts to to the gauge actions on OX and OY . The action on OZ will not be the
gauge action, as the gauge action on OZ runs at ‘half-speed’ compared to the gauge actions on
OX and OY .

Define an action of T on Z = S ⊕R by

Uz(s, r) = (s, zr), (s, r) ∈ Z, z ∈ T.

Conjugation by the second quantisation of Uz on the Fock module of Z gives an action on the
Toeplitz algebra of Z, which descends to OZ , [LN04] and Lemma 2.12.

Since X = R ⊗B S and Y = S ⊗A R, we see that the induced action on Z⊗2 ∼= X ⊕ Y is the
sum of the actions of T on X and Y given on x ∈ X and y ∈ Y by

x 7→ zx, y 7→ zy, z ∈ T.

These actions induce the gauge actions of OX and OY , respectively. �

Remark 3.6. Regularity of correspondences is not required for Lemmas 3.2 and 3.4. We note
however, that regularity plays a crucial role in the proof of Theorem 3.5, namely in constructing
the projections PX and PY . There are counterexamples to Theorem 3.5 when either X or Y is
not regular (see [MPT08]).

4. In-splits

In this section, we recall the notion of in-splits for directed graphs, and extend the notion to
both topological graphs and C∗-correspondences.

4.1. In-splits for topological graphs. Let us start by recalling the classical notion from
symbolic dynamics of in-splittings. Let E = (E0, E1, r, s) be a countable discrete directed
graph. Fix a vertex w ∈ E0 which is not a source (i.e. r−1(w) 6= ∅) and let P = {Pi}ni=1 be a
partition of r−1(w) into a finite number of nonempty sets such that at most one of the partition
sets Pi is infinite.

1Muhly, Pask, and Tomforde call Z the bipartite inflation.
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Following [BP04, Section 5], the in-split graph of E associated to P is the directed graph Er(P)
defined by

E0
r (P) = {v1 | v ∈ E0, v 6= w} ∪ {w1, . . . , wn},

E1
r (P) = {e1 | e ∈ E1, s(e) 6= w} ∪ {e1, . . . , en | e ∈ E1, s(e) = w},

rP(ei) =
{
r(e)1 if r(e) 6= w

wj if r(e) = w and e ∈ Pj ,

sP(ei) = s(e)i,

for all ei ∈ E1
r (P).

Remark 4.1. If E is a finite graph with no sinks and no sources, then the bi-infinite paths on E
define a two-sided shift of finite type (an edge shift). The in-split graph Er(P) is again a finite
graph with no sinks and no sources, and the pair of edge shifts are topologically conjugate. In
fact, if A and A(P) denote the adjacency matrices of E and Er(P), respectively, then there are
rectangular nonnegative integer matrices R and S such that A = RS and SR = A(P). That is,
the matrices are strong shift equivalent, cf. [LM95, Chapter 7].

Example 4.2. Consider the directed graphs

w v
g

h

f

e

and

w1 v1

w2

g1

h1

f1

f2

e1

e2
.

Note that the loop e is both an incoming and an outgoing edge for w. Partition r−1(w) into
P = {P1,P2} with P1 = {e, h} and P2 = {g}. The right-most graph above is then the in-split
graph with respect to P. The outgoing edges from w are coloured to highlight their duplication
in the in-split graph.

The adjacency matrices of the graph and its in-split are

A =
(

1 1
2 0

)
and B =

1 0 1
1 0 1
1 1 0

 ,
respectively, and the rectangular matrices

R =

1 0
1 0
1 1

 and S =
(

1 0 1
0 1 0

)

satisfy B = RS and SR = A. This is an example of an (elementary) strong shift equivalence.

Suppose E is a graph and let E(P) be an in-split graph. Define a finite-to-one surjection
α : E0

r (P) → E0 by α(vi) = v for all v ∈ E0
r (P) (forgetting the labels) and use the partition to

define a map ψ : E1 → E0
r by

ψ(e) =
{
r(e)1 if r(e) 6= w,

wi if r(e) = w and e ∈ Pi,
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for all e ∈ E1. Note that since w is not a source, α maps sources bijectively to sources, and
since at most one set in P contains infinitely many edges, it also follows that α maps infinite
receivers bijectively to infinite receivers.

Our first observation is that r = α ◦ ψ, so that an in-split may be thought of as a factorisation
of the range map r : E1 → E0 through the new vertex set E0

r (P). For our second observation,
consider the fibred product

E1
r := E1 ×s,α E0(P) = {(e, vi) ∈ E1 × E0(P) : s(e) = vi}

The map from E1(P) to E1
r given by ei 7→ (e, s(e)i) induces a graph isomorphism between E(P)

and Er. These observations allow us to define in-splits for more general topological graphs.
Definition 4.3. An in-split (or range-split) of a topological graph E = (E0, E1, r, s) is a triple
I = (α,E0

I , ψ) consisting of

(i) a locally compact Hausdorff space E0
I ,

(ii) a continuous map ψ : E1 → E0
I , and

(iii) a continuous and proper surjection α : E0
I → E0 that restricts to a homeomorphism

between E0
I,ψ−sing and E0

sing,

such that α ◦ ψ = r.
Remark 4.4. For directed graphs the continuity assumptions of an in-split I = (α,E0

I , ψ) are
automatic. The properness of α can be reinterpreted as requiring that |α−1(v)| < ∞ for all
v ∈ E0. In the case of directed graphs the notion of in-split introduced in Definition 4.3 directly
generalises that of [BP04, Section 5] (with source and range maps flipped).

We associate a new topological graph to an in-split.
Lemma 4.5. Let E = (E0, E1, r, s) be a topological graph and let I = (α, Y, ψ) be an in-split of
E. Then EI = (E0

I , E
1
I , rI , sI) is a topological graph, where

(i) E1
I := E1×s,α E0

I = {(e, v) ∈ E1×E0
I | s(e) = α(v)} equipped with the subspace topology

of the product E1 × E0
I ; and

(ii) rI(e, v) = ψ(e) and sI(e, v) = v, for all e ∈ E1 and v ∈ E0
I .

Moreover, E0
I,rI−sing and E0

sing are homeomorphic via α.

Proof. The space E1
I is locally compact as a closed subspace of E1×E0

I and the maps rI and sI
are clearly continuous. To see that sI is open, take open sets U in E1 and V in E0

I and consider
the basic open set W = (U × V ) ∩ E1

I in E1
I . Then sI(W ) = α−1(s(U)) ∩ V which is open in

E0
I , so sI is open.

To see that sI is locally injective, fix (e, v) ∈ E1
I . Since s is locally injective, there exists an open

neighbourhood U of e in E1 such that s|U is injective. Let V be any open neighbourhood of v in
E0
I . Then W = (U × V ) ∩ E1

I is an open neighbourhood of (e, v) in E1
I . If (e′, v′), (e′′, v′′) ∈ W

are such that v′ = sI(e′, v′) = sI(e′′, v′′) = v′′, then s(e′) = α(v′) = s(e′′) so that e′ = e′′. We
conclude that sI is a local homeomorphism and so EI is a topological graph.

For the final statement we show that the rI -singular and ψ-singular subsets of E0
I coincide, and

then appeal to the fact that α restricts to a homeomorphism between E0
I,ψ−sing and E0

sing. First
observe that since α is surjective, we have rI(E1

I ) = ψ(E1) and so E0
I,rI−src = E0

I,ψ−src.

Now fix a precompact open set V ⊆ E0
I , and observe that

r−1
I (V ) = {(e, v) ∈ E1

I | ψ(e) ∈ V }.
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First suppose that r−1
I (V ) is compact. Let p1 : E1×s,α E0 → E1 denote the projection onto the

first factor and observe that p1(r−1
I (V )) = ψ−1(V ) since α is surjective. Moreover, the set is

compact since p1 is continuous, so E0
I,rI−fin ⊆ E0

I,ψ−fin.

Now suppose that ψ−1(V ) is compact. Since α is proper and s is continuous, α−1(s(ψ−1(V )))
is compact in E0

I . Since E0 is Hausdorff, E1
I is a closed subspace of E1 × E0

I . Consequently,

r−1
I (V ) = ψ−1(V )×s,α α−1(s(ψ−1(V ))) = (ψ−1(V )× α−1(s(ψ−1(V )))) ∩ E1

I

is a closed subspace of the compact product ψ−1(V )×α−1(s(ψ−1(V ))), and therefore compact.
It follows that, E0

I,fin = E0
I,ψ−fin and so E0

I,sing = E0
I,ψ−sing as desired. �

Remark 4.6. Let E be a regular topological graph (so E0
sing = ∅) and I = (α,E0

I , ψ) an in-split of
E. The condition that α restricts to a homeomorphism on singular sets implies that E0

I,reg = E0
I

so EI is also regular. In particular, ψ is both proper and surjective in this case.

Definition 4.7. We call EI = (E0
I , E

1
I , rI , sI) the in-split graph of E via I.

Williams’ [Wi73] original motivation for introducing state splittings—such as in-splits—was that
even if the in-split graph is different, the dynamical systems they determine (the edge shifts)
are topologically conjugate. We proceed to prove that this is also the case for our in-splits for
topological graphs. It is interesting to note that our approach provides a new proof of this fact
even in the classical case of discrete graphs. To do this we need some lemmas.

Lemma 4.8. Let I = (α,E0
I , ψ) be an in-split of a topological graph E = (E0, E1, r, s). The

projection onto the first factor α1 : E1
I = E1×s,αE0

I → E1 is continuous, proper, and surjective.
Moreover, the following diagram commutes:

E0
I E1

I

E0 E1

α α1

rI

r

ψ .

Proof. It is clear that α1 is continuous, and surjectivity follows from surjectivity of α. If K is a
compact subset of E1, then

α−1
1 (K) = K ×s,α α−1(s(K)) = (K × α−1(s(K))) ∩ E1

I .

Since α is proper and s continuous, α−1
1 (K) is a closed subset of the compact set K×α−1(s(K)),

so α1 is proper. Commutativity of the diagram follows from the definition of rI . �

We recall that the n-th power of a topological graph E is the topological graph E(n) :=
(E0, En, r, s) where r(e1 · · · en) := r(e1) and s(e1 · · · en) := s(en). We record how taking powers
of topological graphs interacts with in-splits.

Lemma 4.9. Let E = (E0, E1, r, s) be a topological graph and I = (α,E0
I , ψ) an in-split of

E. Then EnI ' En ×s,α EI0 for all n ≥ 1, where s : En → E0 is given by s(e1 · · · en) = s(en).
Moreover, if ψ(n) : En → E0

I is the map defined by ψ(n)(e1 · · · en) = ψ(e1), then the n-th power
graph E(n)

I be obtained from E(n) via the in-split I(n) = (α,E0
I , ψ

(n)).

Proof. First, observe that

EnI = {(e1, v1, . . . , en, vn) | ei ∈ E1, vi ∈ E0
I , s(ei) = α(vi), and vi = ψ(ei+1) for all i ≥ 1}.
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Since α◦ψ = r it follows that the map (e1, v1, . . . , en, vn) 7→ (e1 · · · en, vn) from EnI to En×s,αE0
I

is a homeomorphism with inverse (e1 · · · en, vn) 7→ (e1, ψ(e2), e2, . . . , ψ(en), en, vn). The final
statement follows immediately. �

We now show that in-splits of regular topological graphs induce topological conjugacies. Recall
that for a regular topological graph E the infinite path space is given by

E∞ =
{
e1e2 . . . ∈

∞∏
i=1

E1 | s(ei) = r(ei+1)
}

with a cylinder set topology making it a locally compact Hausdorff space. The shift map
σE : E∞ → E∞ is the local homeomorphism defined by σE(e1e2 . . .) = e2e3 . . ..

Theorem 4.10. Let E = (E0, E1, r, s) be a regular topological graph and let I = (α,E0
I , ψ) be an

in-split of E. Then the dynamical systems on the infinite path spaces (σE , E∞) and (σEI , E∞I )
are topologically conjugate.

Proof. Use Lemma 4.9 to identify EnI with En ×s,α E0
I . For each n ≥ 1 let rn : En+1 → En be

the map given by rn(e1 · · · en+1) = e1 · · · en. Then rnI : En+1
I → En satisfies rnI (e1 · · · en+1, vn) =

(e1 · · · en, ψ(en+1)). Define ψn : En+1 → EnI by ψn(e1 . . . en+1) = (e1 · · · en, ψ(en+1)), and let
αn : EnI → En be the projection onto the first factor. It is then routine to verify that the
diagram

(4.1)
E0
I E1

I E2
I · · · E∞I

E0 E1 E2 · · · E∞

rI

r r1

r2
I

r2

α
ψ

α1
ψ1

r1
I

α2 α∞ ψ∞
ψ2

commutes, where α∞ and ψ∞ are induced by the universal properties of the projective limit
spaces E∞ ' lim←−(En, rn) and E∞I ' lim←−(EnI , rnI ). In particular, E∞I and E∞ are homeomorphic
via α∞ and ψ∞.

For conjugacy, we make the key observation that if sn : En+1 → En is given by sn(e1 · · · en+1) =
e2 · · · en+1, then the shift σE : E∞ → E∞ is the unique map making the diagram

E1 E2 E3 · · · E∞

E0 E1 E2 · · · E∞

r1

r r1

r3

r2

s s1

r2

s2 σE

commute. With a similar commuting diagram for the shift σEI : E∞I → E∞I , it follows from
(4.1) that α∞ ◦ σEI = σE ◦ α∞. �

Remark 4.11. The condition that the topological graphs be regular should not be essential.
A similar argument—though more technically demanding—should work for general topological
graphs by replacing the path space E∞ with the boundary path space and using the direct limit
structure of the boundary path space outlined in either [Mun20, §3.3.1] or [Kat21].

Remark 4.12. We have seen that any in-split induces a conjugacy of the limit dynamical systems.
In the case of shifts of finite type, this was first proved by Williams [Wi73] where he also showed
that the converse holds: any conjugacy is a composition of particular conjugacies that are
induced from in-splits and their inverses. We do not know whether a similar result could hold
in the case of topological graphs.
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Examples 4.13. Let E be a regular topological graph.

(i) We refer to I = (IdE0 , E0, r) as the identity in-split since EI is graph isomorphic to E.
(ii) We refer to I = (r, E1, IdE1) as the complete in-split of E. The topological graph

associated to I has vertices E0
I = E1 and edges

E1
I = E1 ×s,r E1 = {(e′, e) ∈ E1 × E1 : s(e′) = r(e)}

that may be identified with E2, the composable paths of length 2. The range and source
maps satisfy rI(e′, e) = IdE1(e′) = e′ and sI(e′, e) = e, for all (e′, e) ∈ E1

I . We denote
this in-split graph by Ê = (E1, E2, r̂, ŝ) and refer to it as the dual graph of E.

When E is a regular topological graph, then EI is graph isomorphic to Katsura’s dual
graph, cf. [Kat21, Definition 2.3] (see also [Bre10, Remark 2.3]), and when E is discrete,
then EI is discrete and it is graph isomorphic to the dual graph as in [Rae05, Corollary
2.6]. Iterating the dual graph construction in the case of topological graphs coincides
with Katsura’s iterative process in [Kat21, Section 3].

The following lemma is akin to [BFK90, Lemma 2.4] (see also [Wi73]) in the setting of nonneg-
ative integer matrices. This lemma shows that the dual graph is in some sense the “largest”
in-split of a regular topological graph.

Lemma 4.14. Let E be a regular topological graph and let I = (α,E0
I , ψ) be an in-split of E.

Let α1 : E1
I → E1 be the projection onto the first factor as in Lemma 4.8. Then I ′ = (ψ,E1, α1)

is an in-split of EI with the property that (EI)I′ is graph isomorphic to the dual graph Ê.

Proof. Since E is regular, it follows from Remark 4.6 that ψ is proper and surjective, and
Lemma 4.8 implies that α1 is proper and surjective. Therefore, I ′ = (ψ,E1, α1) is an in-split of
EI . Let F = (EI)I′ be the resulting in-split graph and observe that F 0 = E1. Moreover, we
have

F 1 = E1
I ×sI ,ψ E

1 = {(e′, x, e) ∈ E1 × E0
I × E1 | s(e′) = α(x) and x = ψ(e)}

with rF (e′, x, e) = α1(e′, x) = e′ and sF (e′, x, e) = e for all (e′, x, e) ∈ F 1.

The map F 1 → Ê1 sending (e′, x, e) 7→ (e′, e) is a homeomorphism which intertwines the range
and source maps. It is injective because x ∈ E0

I is uniquely determined by e′, and it is surjective
since if (e′, e) ∈ Ê1 are composable edges, then x = ψ(e′) satisfies α(x) = α◦ψ(e′) = r(e′) = s(e),
so (e′, x, e) is mapped to (e′, e). �

A simple class of examples comes from “topologically fattening” the class of directed graphs.

Example 4.15. Let E = (E0, E1, r, s) be a regular directed graph and fix a locally compact
Hausdorff space X. Let F 0 := E0 ×X and F 1 := E1 ×X with the respective product topolo-
gies and define rF (e, x) = (r(e), x) and sF (e, x) = (s(e), x). Then F = (F 0, F 1, rF , sF ) is a
topological graph.

If I = (α,E0
I , ψ) is an in-split of E, then IX := (α × IdX , E0

I × X,ψ × IdX) is an in-split of
F . It is straightforward to check that the associated topological graph FIX is isomorphic to
(E0

I ×X,E1
I ×X, rI × IdX , sI × IdX).

In the setting of topological graphs there are also strictly more exotic examples than those
obtained via fattening directed graphs.

Example 4.16. Fix m,n ∈ Z \ {0} and let E0 := T and E1 := T. Define r, s : E1 → E0 by
r(z) = zm and s(z) = zn. Then E = (E0, E1, r, s) is a topological graph. Suppose a, b ∈ Z
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satisfy m = ab. Define ψ : E1 → T by ψ(z) = za and α : T → E0 by α(z) = zb. Since
r(z) = zm = (za)b = α ◦ ψ(z), it follows that I = (α,T, ψ) is an in-split of E. The new edge set
is

E1
I = {(z1, z2) ∈ T2 | zn1 = zb2}.

We claim that E1
I is homeomorphic to a disjoint union of gcd(n, b) copies of T.

Let qb, qn be the unique integers such that n = qn gcd(n, b) and b = qb gcd(n, b), and note that
qn and qb have no common factors. We also record that qnb = qnqb gcd(n, b) = qbn. For each
|b|-th root of unity ω define πω : T→ E1

I by

πω(z) = (zqb , ωzqn).

Suppose that (z1, z2) ∈ E1
I and let z be a |qb|-th root of z1. Then (zqn)b = (zqb)n = zn1 = zb2, so

(z2/z
qn)b = 1. Hence, there is some |b|-th root of unity ω such that z2 = ωzqn . In particular,

every (z1, z2) ∈ E1
I can be written in the form (zqb , ωzqn) = πω(z) for some z ∈ T and some

|b|-th root of unity ω.

We claim that each πω is injective. Suppose that πω(z) = πω(v) for some z, v ∈ T. Then
zqb = vqb and zqn = vqb . Consequently z = ω0v for some ω0 ∈ T that is simultaneously a |qb|-th
and a |qn|-th root of unity. Since qb and qn are coprime, we must have ω0 = 1, so πω is injective.
Since each πω is a continuous injection from a compact space to a Hausdorff space, it follows
that each πω is a homeomorphism onto its image.

Fix a primitive |b|-th root of unity λ. We claim that πλc and πλd have the same image if and
only if c ≡ kn + d (mod |b|) for some 0 ≤ k < |qb|. If c ≡ kn + d (mod |b|), then λc = λkn+d.
For all z ∈ T we compute

πλc(zgcd(n,b)) = ((zgcd(n,b))qb , λc(zgcd(n,b))qn) = (zb, λkn+dzn)

= ((λk gcd(n,b)z)qb , λd(λk gcd(n,b)z)qn) = πλd((λkz)gcd(n,b)).

Since z 7→ zgcd(n,b) and z 7→ (λkz)gcd(n,b) both surject onto T, it follows that πλc and πλd have
the same image.

Conversely, suppose that πλc(z) = πλd(v) for some z, v ∈ T. Then zqb = vqb and λczqn = λdvqn .
Since zqb = vqb , there is an |qb|-th root of unity λ0 such that z = λ0v. Since b = qb gcd(n, b)
there exists 0 ≤ k < |qb| such that λ0 = λk gcd(n,b). It follows that

λczqn = λdvqn = λd(λk gcd(n,b)z)qn = λkn+dzqn .

Therefore, λc = λkn+d so c ≡ kn+ d (mod |b|). It follows that E1
I is a disjoint union of circles,

but what remains is to count how many distinct circles it is composed of.

Since the maps πλc and πλd have the same image if and only if c ≡ kn + d (mod |b|) for some
k, the number of circles is in bijection with the cosets of Z|b|/nZ|b|. To determine the number
of cosets it suffices to determine the cardinality of nZ|b|. Using Bézout’s Lemma at the last
equality we observe that

nZ|b| = {nc ∈ Z|b| | c ∈ Z} = {nc+ bd ∈ Z|b| | c, d ∈ Z|b|} = {k gcd(n, b) ∈ Z|b| | k ∈ Z|b|}.

It follows that Z|b|/nZ|b| contains gcd(n, b) cosets.

For an explicit identification of E1
I with the disjoint union of gcd(n, b) circles, fix a primitive

|b|-th root of unity λ and let π : {1, . . . , gcd(n, b)} × T→ E1
I be the homeomorphism defined by

π(k, z) = πλk(z) = (zqb , λkzqn). Under this identification,

rI(k, z) = ψ(zqb) = zqba = zm/ gcd(n,b) and sI(k, z) = λkzqn = λkzn/ gcd(n,b).
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Remarkably, the quite different topological graphs E and EI induce topologically conjugate
dynamics on their respective path spaces by Theorem 4.10. This is far from obvious.

By swapping the role of b and n above, we could alternatively let γ ∈ T be a primitive |n|-th
root of unity to see that π′ : {1, . . . , gcd(n, b)} × T → E1

I defined by π′(k, z) = (γkzqb , zqn) is a
homeomorphism. Identifying E1

I with the disjoint union of circles via π′, the range and source
maps for EI satisfy

rI(k, z) = ψ(γkzqb) = γkazqba = γkazm/ gcd(n,b) and sI(k, z) = zqn = zn/ gcd(n,b).

In general, the naïve composition of in-splits cannot be realised as a single in-split. If one pays
the penalty of passing to paths, then the following result provides a notion of composition of
in-splits, highlighting the role of the projective limit decomposition of path spaces from (4.1).

Proposition 4.17. Suppose that E is a regular topological graph and that there is a finite
sequence of in-splits Ik = (αk, EIk , ψk) for k = 1, . . . , n such that

(i) I1 is an in-split of E, and
(ii) Ik is an in-split of EIk−1 for k ≥ 2.

Then E
(n)
In

= (E0
In
, EnIn , r, s) is isomorphic to the graph obtained by a single in-split (α,E0

In
, ψ)

of E(n) = (E0, En, r, s). Moreover, (σnE , E∞) is topologically conjugate to (σnEIn , E
∞
In

).

Proof. For each 0 ≤ p, k ≤ n let αpk : EpIk → EpIk−1
and ψpk : EpIk−1

→ Ep−1
Ik

be the maps arising
from the sequences defined in the proof of Theorem 4.10, where for consistency we take the
convention that EI0 := E, α0

k := αk, and ψ0
k := ψk. In particular the diagram

E0
In

E1
In

· · · En−1
In

EnIn

E0
In−1

E1
In−1

· · · En−1
In−1

EnIn−1

...
... . . . ...

...

E0
I1

E1
I1

· · · En−1
I1

EnI1

E0 E1 · · · En−1 En

α1 ψ1

r

α2

αn1α1
1

ψ2 α1
2

rI1

αn2ψn−1
2

rn−1

rn−1
I1

ψn−1
1

r1

r1
I1

rn−2
I1

rn−2

αn−1
1

αn−1
2

ψn−2
1

ψn−2
2

ψ1
1

αn

αn−1
ψn−1

ψn

rIn−1

rIn

ψ1
n−1

αn−1
n−1 αnn−1

αnnαn−1
n

rn−2
In

r1
In−1

ψ1
n

r1
In

rn−2
In−1

ψn−2
n

rn−1
In

rn−1
In−1

ψn−1
n

ψn−1
n−1

α1
n

α1
n−1

commutes.

Let α = α1 ◦ · · · ◦ αn and let ψ = ψ0
n ◦ ψ1

n−1 ◦ · · · ◦ ψn−1
2 ◦ ψn1 . We claim that (α,E0

In
, ψ) is

an in-split of E(n). Clearly α is a continuous proper surjection and ψ is continuous. Moreover,
α ◦ ψ = r ◦ r1 ◦ · · · rn−2 ◦ rn−1 is the range map on the n-th power E(n).
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Repeatedly applying Lemma 4.9 and using the fact that each αi surjects, we see that
EnIn ' E

n
In−1 ×s,αn E

0
In ' (· · · ((En ×s,α1 E

0
I1)×s,α2 E

0
I2)×s,α3 · · · )×s,αn E0

In

' En ×s,α1◦···◦αn E
0
In = En ×s,α E0

In .

The source maps on En ×s,α E0
In

as an in-split and EnIn clearly agree, and commutativity of the
preceding diagram also imply that the range maps agree.

The final statement follows after observing that E∞ ' lim←−(Ek, rk) ' lim←−(Enk, rnk) and applying
Theorem 4.10. �

4.2. Noncommutative in-splits. Inspired by the recasting of in-splits for directed graphs and
topological graphs we introduce the following analogous notion of in-splits for C∗-correspondences.

Definition 4.18. An in-split of a nondegenerate A–A-correspondence (φ,AXA) is a triple I =
(α,B, ψ) consisting of a C∗-algebra B together with a nondegenerate injective ∗-homomorphism
α : A→ B and a left action ψ : B → EndA(X) such that ψ ◦ α = φ and, moreover,

(i) α(Jφ) ⊆ Jψ := ψ−1(End0
A(X)) ∩ ker(ψ)⊥, and

(ii) the induced ∗-homomorphism α : A/Jφ → B/Jψ is an isomorphism.

To an in-split (α,B, ψ) of (φ,XA) we associate the C∗-correspondence (ψ ⊗ IdB, X ⊗α B) over
B where the left action is given as (ψ⊗ IdB)(b′)(x⊗ b) = ψ(b′)x⊗ b for all x ∈ XA and b′, b ∈ B.
We call this the in-split correspondence of (φ,AXA) associated to I.

Observe that since φ and α are nondegenerate, so is ψ. We identify the covariance ideal for the
in-split correspondence.

Lemma 4.19. The ideal Jψ of B is the covariance ideal for (ψ ⊗ IdB, X ⊗α B). That is,
Jψ = Jψ⊗IdB .

Proof. Lemma 3.3 implies Jψ⊗IdB ⊆ Jψ. For the other inclusion, observe that it follows from
[Pim97, Corollary 3.7] and

α−1(End0
B(B)) = α−1(B) = A

that the map T 7→ T⊗IdB from EndA(X) to EndB(X⊗αB) takes compact operators to compact
operators. In particular, ψ(b)⊗IdB is compact for each b ∈ ψ−1(End0

A(X)), so ψ−1(End0
A(X)) ⊂

(ψ ⊗ IdB)−1(End0
B(X ⊗α B)).

Clearly, ker(ψ) ⊆ ker(ψ ⊗ IdB). On the other other hand, if b0 ∈ ker(ψ ⊗ IdB), then
0 = (ψ(b0)x⊗ b | ψ(b0)x⊗ b)B = (b | α((ψ(b0)x, ψ(b0)x)A)b)B

for all x ⊗ b ∈ X ⊗α B. In particular, α((ψ(b0)x | ψ(b0)x)A) = 0, so injectivity of α implies
ψ(b0)x = 0 for all x ∈ XA. Hence, ker(ψ) = ker(ψ ⊗ IdB). We conclude that Jψ⊗IdB = Jψ. �

Condition (ii) allows for a useful decomposition of elements in B in the following way.

Lemma 4.20. For each b ∈ B there exists a ∈ A and k ∈ Jψ such that b = α(a) + k.

If (φ,AXA) is the correspondence associated to a topological graph E and I is an in-split of E,
then I induces an in-split of correspondences in the sense of Definition 4.18. Moreover, the new
correspondence associated to the in-split of correspondences may be identified with the graph
correspondence of the in-split graph EI . It is in this sense that Definition 4.18 generalises the
topological notion of in-split of Definition 4.3.
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Proposition 4.21. Let E be a topological graph and let I = (α,E0
I , ψ) be an in-split of E. Let

(φ,X(E)) and (φI , X(EI)) be the graph correspondences of E and EI , respectively. Then there
is an induced in-split (α∗, C0(E0

I ), ψ∗) of (φ,X(E)) satisfying
α∗(f) = f ◦ α and ψ∗(f)x(e) = f(ψ(e))x(e)

for all f ∈ A, x ∈ Cc(E1), and e ∈ E1.

Moreover, the in-split correspondence (ψ∗⊗ Id, X(E)⊗α∗ C0(E0
I )) is isomorphic to (φI , X(EI)).

Proof. Let A = C0(E0) and AI = C0(E0
I ) be the coefficient algebras of X(E) and X(EI),

respectively. Since α is a proper surjection there is a well-defined nondegenerate injective ∗-
homomorphism α∗ : A → AI given by α∗(f) = f ◦ α for all f ∈ A. For each g ∈ AI , define an
endomorphism ψ∗(g) on Cc(E1) by ψ∗(g)x(e) := g(ψ(e))x(e) for all x ∈ Cc(E1) and e ∈ E1.
The computation

‖ψ∗(g)x‖2 = ‖(ψ∗(g)x | ψ∗(g)x)A‖∞ = sup
v∈E0

∑
s(e)=v

|g(ψ(e))x(e)|2 ≤ ‖g‖2∞‖x‖2,

for all x ∈ Cc(E1) and e ∈ E1 shows that the map g 7→ ψ∗(g) extends to a ∗-homomorphism
ψ∗ : AI → EndA(X(E)) satisfying ψ∗(g)∗ = ψ∗(ḡ).

Observe that Jφ = C0(E0
reg) and Jψ = C0(E0

I,ψ−reg), and since α restricts to a homeomorphism
between E0

sing and E0
I,ψ−sing, it follows that α maps EI,ψ−reg onto E0

reg, so α∗(Jφ) ⊆ Jψ, and
the induced map α : C0(E0

sing) ∼= A/Jφ → A/Jψ ∼= C0(E0
I,ψ−sing) is a ∗-isomorphism. Therefore,

(α∗, AI , ψ∗) is an in-split of the graph correspondence (φ,X(E)).

Next we verify that the C∗-correspondences (ψ∗ ⊗ Id, X(E) ⊗α∗ C0(E0
I )) and (φI , X(EI)) are

isomorphic. Define β : Cc(E1) ⊗α∗ Cc(E0
I ) → Cc(E1

I ) by β(x ⊗ f)(e, v) = x(e)f(v), for all
x ∈ Cc(E1), f ∈ Cc(E0

I ), and (e, v) ∈ E1
I . For x, x ∈ Cc(E1) and f, f ′ ∈ Cc(E0

I ), the computation

(β(x⊗ f) | β(x′ ⊗ f ′))AI (v) =
∑

sI(e,v)=v
x(e)x′(e)f(v)f ′(v) =

∑
s(e)=α(v)

x(e)x′(e)f(v)f ′(v)

= (x | x′)A(α(v))f(v)f ′(v) = (f | α∗((x | x′)A)f ′)AI (v)
= (x⊗ f | x′ ⊗ f ′)AI (v),

shows that ‖β(x ⊗ f)‖ = ‖x ⊗ f‖. Consequently, β extends to an isometric linear map
β : X(E)⊗α∗ AI → X(EI).

If x ∈ Cc(E1) and g, g′ ∈ AI , then β((x⊗ g) · g′) = β(x⊗ g) · g′ and
φI(g′)β(x⊗ g)(e, v) =g′(ψ(e))x(e)g(v) =β((ψ∗ ⊗ Id)(g′)x⊗ g)(e, v),

for all (e, v) ∈ E1
I . This shows that (Id, β) : (ψ∗ ⊗ Id, X(E) ⊗α∗ C0(E0

I )) → (φI , X(EI)) is a
correspondence morphism.

It remains to verify that β is surjective. Fix η ∈ Cc(E1
I ). Since sI is a local homeomorphism,

we can cover supp(η) by finitely many open sets {Ui} such that sI |Ui is injective. Let {ρi} be a
partition of unity subordinate to the cover {Ui}. Then ρiη has support in Ui.

Define ξi ∈ Cc(E0
I ) by ξi(v) = ρiη(s−1(v), v), and use Urysohn’s Lemma to find ζi ∈ Cc(E1)

such that ζi is identically 1 on the compact set
{e ∈ E1 : there exists v ∈ E0

I such that (e, v) ∈ supp(ρiη)}.
Then ρiη = β(ζi ⊗ ξi) by construction and so

η =
∑
i

ρiη =
∑
i

β(ζi ⊗ ξi)
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is in the image of β. As η ∈ Cc(E1
I ) is arbitrary, β is surjective. �

Every discrete directed graph is—in particular—a topological graph, so Proposition 4.21 also
applies to directed graphs. Since in-splits are examples of strong shift equivalences, Theorem 3.5
shows that the associated Cuntz–Pimsner algebras are gauge-equivariantly Morita equivalent.

Proposition 4.22. Let (φ,AXA) be a C∗-correspondence and let (α,B, ψ) be an in-split. Then
(φ,AXA) is strong shift equivalent to the in-split correspondence (ψ ⊗ Id, X ⊗α B). Hence OX
is gauge equivariantly Morita equivalent to OX⊗αB.

Proof. Consider the C∗-correspondences R = (ψ,BXA) and S = (α,ABB) and observe that
S ⊗ R is isomorphic to (φ,AXA) via the map b ⊗ x 7→ ψ(b)x for all x ∈ XA and b ∈ B, while
R⊗ S is the in-split (ψ ⊗ Id, X ⊗α B). This is a strong shift equivalence. �

For in-splits more is true: they are gauge-equivariantly ∗-isomorphic (see Theorem 4.24), gen-
eralising [BP04, Theorem 3.2] (see also [ER19, Theorem 3.2]). First, we need a lemma.

Lemma 4.23. Let XA be a right Hilbert A-module and suppose that α : A → B is an injective
∗-homomorphism. Then there is a well-defined injective linear map β : X → X ⊗α B satisfying
β(x · a) = x⊗ α(a) for all x ∈ X and a ∈ A.

Moreover, suppose α is nondegenerate, XA is countably generated, and A is σ-unital. Let (xi)i
be a countable frame for XA and let (uj)j be an increasing approximate unit for A. With
aj := (uj − uj−1)1/2 the sequence (xi ⊗ α(aj)) is a frame for XA ⊗α B.

Proof. For any x ∈ XA there is a unique x′ ∈ XA such that x = x′ · (x′ | x′)A, cf. [RW98,
Proposition 2.31], so we may assume that any element in XA is of the form x · a, for some
x ∈ XA and a ∈ A. Observe that for any x1, x2 ∈ XA and a1, a2 ∈ A, we have
(4.2) (x1 ⊗ α(a1) | x2 ⊗ α(a2))B = α((x1 · a1 | x2 · a2)A),
so
‖x1 ⊗ α(a1)− x2 ⊗ α(a2)‖2 = ‖(x1 ⊗ α(a1) | x1 ⊗ α(a1))B − (x1 ⊗ α(a1) | x2 ⊗ α(a2))B

− (x2 ⊗ α(a2) | x1 ⊗ α(a1))B + (x2 ⊗ α(a2) | x2 ⊗ α(a2))B‖
= ‖α((x1 · a1 | x1 · a1)A − (x1 · a1 | x2 · a2)A
− (x2 · a2 | x1 · a1)A + (x2 · a2 | x2 · a2)A)‖

= ‖x1 · a1 − x2 · a2‖2.

This computation shows that β : X → X ⊗α B given by β(x · a) = x ⊗ α(a) for all x ∈ X and
a ∈ A is well-defined and isometric.

For the second statement, observe that (ai)i∈N is a frame for A as a right A-module since
j∑
i=1

ai · (ai | a)A =
j∑
i=1

aia
∗
i a = uja→ a

as j →∞. The result now follows from Proposition 2.16. �

Theorem 4.24. Let (φ,AXA) be a countably generated correspondence over a σ-unital C∗-algebra
A, let (α,B, ψ) be an in-split, and let (ψ⊗ Id, X ⊗α B) be the in-split correspondence. With the
map β as in Lemma 4.23, the pair (α, β) : (φ,X)→ (ψ ⊗ Id, X ⊗α B) is a covariant correspon-
dence morphism. The induced ∗-homomorphism α × β : OX → OX⊗αB is a gauge-equivariant
∗-isomorphism.
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Proof. We first verify that (α, β) : (φ,X) → (ψ ⊗ Id, X ⊗α B) is a correspondence morphism.
For the right action, we see for x ∈ XA and a, a′ ∈ A that

β(x · a) · α(a′) = x⊗ α(aa′) = β((x · a) · a′),
and for the left action, we apply ψ ◦ α = φ to observe that

(ψ ⊗ Id)(α(a′))β(x · a) = φ(a′)x⊗ α(a) = β(φ(a′)x · a),
for all x ∈ XA and a, a′ ∈ A. Together with (4.2) this shows that (α, β) is a correspondence
morphism.

For covariance of (α, β) let (xi ⊗ α(aj)) be the frame for XA ⊗α B as defined in Lemma 4.23.
Then for T ∈ End0

A(X),

(4.3) β(1)(T ) =
∑

Θβ(Txi·aj),β(xi·aj) = (T ⊗ IdB)
∑

Θxi⊗α(aj),xi⊗α(aj) = T ⊗ IdB .

Let a ∈ Jφ. Then setting T = φX(a) we have

β(1) ◦ φX(a) = φX(a)⊗ IdB = (ψ ◦ α(a))⊗ IdB = (ψ ⊗ IdB) ◦ α(a)
so (α, β) is covariant. Since α is injective, we know from Lemma 2.6 that α× β is injective and
gauge-equivariant.

For surjectivity we first claim that ιB(B) lies in the image of α × β. Fix b ∈ B and write
b = α(a) + k for some a ∈ A and k ∈ Jψ = Jψ⊗IdB using Lemma 4.20. Since ψ(k) is compact,
we get β(1)(ψ(k)) = ψ(k)⊗ IdB. It then follows from covariance of (ιB, ιX⊗αB) that

ιB(k) = ι
(1)
X⊗αB ◦ (ψ ⊗ IdB)(k) = ι

(1)
X⊗αB ◦ β

(1)(ψ(k)) = (α× β) ◦ ι(1)
X (ψ(k))

also lies in the image of α× β. Consequently,
ιB(b) = ιB(α(a)) + ιB(k) = (α× β)(ιA(a)) + ιB(k) ∈ (α× β)(OX).

Finally, observe that if x · a⊗ b ∈ X ⊗A B, then
ιX⊗αB(x · a⊗ b) = (α× β)(ιX(x · a))ιB(b)

which is in the image of α × β. This shows that α × β is surjective, and we conclude that it is
a gauge-equivariant ∗-isomorphism. �

Example 4.25. Let (φ,AXA) be a regular C∗-correspondence and let (α,B, ψ) be an in-split.
Since both φ and α are injective, we may identify B with a subalgebra of End0

A(X) that contains
φ(A). Conversely, any C∗-algebra B satisfying φ(A) ⊂ B ⊂ End0

A(X) determines an in-split
(ψ,B, φ) where ψ : B → EndA(X) is the inclusion. Therefore, there is a gauge-equivariant
∗-isomorphism OX ∼= OX⊗φB. In particular—as noted in [Ery21, Example 6.4]—there is a
gauge-equivariant ∗-isomorphism OX ∼= OX⊗φEnd0

A(X).

Consider a regular correspondence (φ,AXA) and let i : End0
A(X)→ EndA(X) denote the inclu-

sion. Then (i⊗ IdEnd0
A(X), X⊗End0

A(X)) may be thought of as a “maximal” in-split of (φ,AXA)
in analogy to the dual graph in the setting of topological graphs. This analogy is further justified
by the following noncommutative version of Lemma 4.14.

Lemma 4.26. Let (φ,AXA) be a regular nondegenerate C∗-correspondence with an in-split
I = (α,B, ψ). Let α1 : End0

A(X) → End0
A(X ⊗α B) be the map defined by α1(T ) = T ⊗ IdB.

Then I ′ = (ψ,End0
A(X), α1) is an in-split of (ψ ⊗ IdB, X ⊗α B) and(

α1 ⊗ IdEnd0
A(X), (X ⊗α B)⊗ψ End0

A(X)
) ∼= (

i⊗ IdEnd0
A(X), X ⊗φ End0

A(X)
)

as End0
A(X)–End0

A(X)-correspondences.
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Example 4.27. Let E = (E0, E1, r, s) be the topological graph of Example 4.16, with r(z) = zm

and s(z) = zn and let EI = (E0
I , E

1
I , rI , sI) be the in-split graph of Example 4.16. In particular,

E0
I = T, E1

I =
⊔gcd(n,b)−1
k=0 T, rI(k, z) = zm/ gcd(n,b) and sI(k, z) = λkzn/ gcd(n,b) for some fixed

|b|-th root of unity λ. Then OX(E) and OX(EI) are gauge equivariantly ∗-isomorphic.

Consider E when m = n = 2, and define a directed graph F = (F 0, F 1, rF , sF ) with vertices
F 0 = T, edges F 1 = {0, 1} × T, and rF (z) = sF (z) = z. It is shown in [FNS, §5] that the graph
correspondence X(E) is isomorphic to the graph correspondence X(F ), while E and F are not
isomorphic as graphs.

Let a = 1 and b = 2, so gcd(n, b) = 2. The in-split EI has vertices E0
I = T and edges

E1
I = {0, 1} × T with rI(k, z) = (−1)kz2 and sI(k, z) = z2. Here we have used the second

description of EI from Example 4.16. Since the edges, vertices, and source maps are the same
for both EI and F , it follows that X(EI) and X(F ) are isomorphic as right C(T)-modules.
On the other hand, since the range maps on EI and F are different, the left action of C(T)
differs between the two modules. In particular, X(EI) is not isomorphic to X(F ) ∼= X(E) as
C∗-correspondences. We suspect that X(EI) is typically not isomorphic to X(E) in general.

4.3. In-splits and diagonal-preserving isomorphism. The work of Eilers and Ruiz [ER19,
Theorem 3.2] shows that unital graph algebras of in-splits (out-splits in their terminology) are
gauge-equivariantly ∗-isomorphic in a way that also preserves the canonical diagonal subalgebras.
In our general setting of Cuntz–Pimsner algebras, there is no obvious notion of canonical diagonal
subalgebras. However, specialising to the setting of topological graphs, we can define such a
diagonal. We prove in Proposition 4.33 that in-splits of correspondences over topological graphs
gives a diagonal-preserving and gauge-equivariant ∗-isomorphism of the corresponding Cuntz–
Pimsner algebras.

Lemma 4.28. Let (φ,XA) be a nondegenerate C∗-correspondence over A and let (α,B, ψ) be
an in-split. Then (X ⊗α B)⊗k ∼= X⊗k ⊗α B as right B-modules via the isomorphism

x1 ⊗ b1 ⊗ · · · ⊗ xk ⊗ bk 7→ x1 ⊗ ψ(b1)x2 ⊗ · · ·ψ(bk−1)xk ⊗ bk.

In particular, Fock(X ⊗α B) ∼= Fock(X)⊗α B.

Proof. Since φ and α are nondegenerate, so is ψ. Hence, X ⊗α B ⊗ψ X ∼= X ⊗ψ◦αX = X⊗2 via
the map x1 ⊗ b1 ⊗ x2 7→ x1 ⊗ ψ(b1)x2. The result now follows inductively. �

We now restrict to topological graphs and show that there is a notion of diagonal subalgebra.

Lemma 4.29. Let E be a topological graph and let

C1
E = {x ∈ Cc(E1) | x ≥ 0 and s|supp(x) is injective}.

Then D1
E := span{Θx,x | x ∈ C1

E} is a commutative subalgebra of End0
C0(E0)(X(E)) which is

isomorphic to C0(E1).

Proof. Since E1 is paracompact and s is locally injective we may choose a locally finite open
cover {Ui} of E1 such that s|Ui is injective. Let {ρi} be a partition of unity subordinate to {Ui}.
Fix a positive function x ∈ C0(E1) and define

Ψ(x) :=
∞∑
i=1

Θ(ρix)1/2,(ρix)1/2 ∈ D1
E .
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The sum converges as for z ∈ Cc(E1) and e ∈ E1,

(4.4) Ψ(x)z(e) =
∞∑
i=1

(ρix)1/2(e)
∑

s(f)=s(e)
(ρix)1/2(f)z(f) =

∞∑
i=1

ρi(e)x(e)z(e) = x(e)z(e).

In particular, Ψ(x) acts as a multiplication operator. Moreover, (4.4) implies that Ψ(x) is
independent of the choice of open cover and partition of unity. Since Ψ(x+ y) = Ψ(x) + Ψ(y),
and Ψ(xy) = Ψ(x)Ψ(y) for positive x, y ∈ C0(E1) and positive elements span C0(E1) we can
linearly extend the formula Ψ(x) to all x ∈ C0(E1) to obtain a ∗-homomorphism Ψ: x 7→ Ψ(x)
from C0(E1) to D1

E . Since | supp(x) ∩ s−1(v)| ≤ 1 for all x ∈ C1
E and v ∈ E0, it follows that

‖Ψ(x)‖2 = sup
‖z‖=1

sup
v∈E0

∑
s(e)=v

|Ψ(x)z(e)|2 = sup
‖z‖=1

sup
v∈E0

∑
s(e)=v

|x(e)z(e)|2.

Since sup‖z‖=1
∑
s(e)=v |x(e)z(e)|2 is the square of the operator norm of the multiplication oper-

ator Ψ(x) restricted to `2(s−1(v)) it follows that ‖Ψ(x)‖2 = ‖x‖2∞ and so Ψ is isometric. For
surjectivity observe that for each x ∈ C1

E ,

Θx,xz(e) = x2(e)z(e) = Ψ(x2)z(e)

so Θx,x = Ψ(x2). Since the Θx,x densely span D1
E surjectivity of Ψ follows. �

Definition 4.30. Let E be a topological graph. We call D1
E ⊆ End0

C0(E0)(X(E)) the diagonal
of End0

C0(E0)(X(E)). For k ≥ 1 define

CkE := {x ∈ Cc(Ek) | x ≥ 0 and s|supp(x) is injective} and
Dk
E := span{Θx,x | x ∈ CkE} ∼= C0(Ek).

Let D0
E = C0(E0). Define the diagonal of OX(E) to be the C∗-subalgebra

DE :=
∞∑
k=0

ι
(k)
X(E)(D

k
E) = span{ι(k)

X(E)(Θx,x) | x ∈ CkE , k ≥ 0}

= span{ι(k)
X(E)(x)ι(k)

X(E)(x)∗ | x ∈ CkE , k ≥ 0},

where the terms of the sum are not necessarily disjoint.

Remark 4.31. For each k ≥ 0, End0
C0(E0)(X(Ek)) is isomorphic to the groupoid C∗-algebra

of the amenable étale groupoid Rk := {(x, y) ∈ Ek × Ek | s(x) = s(y)}. The isomorphism
Φ: End0

C0(E0)(X(Ek)) → C∗(Rk) satisfies Φ(Θx,y)(e, f) = x(e)y(f) for x, y ∈ X(E), with the
inverse satisfying

Φ−1(ξ)x(e) =
∑

s(f)=s(e)
ξ(e, f)x(f)

for ξ ∈ Cc(Rk) and x ∈ Cc(E1). Details can be found in [Mun20, Proposition 3.2.14]. The map
Φ takes Dk onto the canonical diagonal subalgebra of C∗(Rk) consisting of C0-functions on the
unit space. Moreover, DE is the canonical diagonal of the Deaconu–Renault groupoid associated
to E [Mun20, Proposition 3.3.16].

Recall from Proposition 4.21 that if (α,E0
I , ψ) is an in-split of a topological graph E, then

(α∗, C0(EI)0, ψ∗) is an in-split of the graph correspondence (φ,X(E)). Since Proposition 4.21
implies X(EI) ∼= X(E)⊗α∗ C0(E0

I ), we may consider the ∗-isomorphism α∗×β of Theorem 4.24
as a map α∗ × β : OX(E) → OX(EI). We will show that α∗ × β also preserves diagonals in the
sense that (α∗ × β)(DE) = DEI .
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To this end, let B = C0(E0
I ). It follows from Lemma 4.28 that there are ∗-isomorphisms

X(E)⊗k ⊗α∗ B ∼= (X(E)⊗α∗ B)⊗k ∼= X(EI)⊗k ∼= X(EkI )

for all k ≥ 1. Using Lemma 4.9 to identify EkI with Ek ×s,α E0
I we define

(x1 ⊗ · · · ⊗ xk ⊗ b)(e1, . . . , ek, v) := x1(e1) · · ·xk(ek)b(v),

for all x1, . . . , xk ∈ X(E), b ∈ B, and (e1, . . . , ek, v) ∈ Ek ×s,α E0
I .

Lemma 4.32. Let x ∈ Cc(Ek) and b ∈ C0(E0
I ). Then x⊗ b ∈ CkEI if and only if x ∈ CkE.

Proof. Fix x ∈ CkE and b ∈ C0(E0
I ). If (x ⊗ b)(e, v) = x(e)b(v) and (x ⊗ b)(e′, v) = x(e′)b(v)

are nonzero for e, e′ ∈ Ek with s(e) = s(e′) = α(v), then x(e) and x(e′) are nonzero, so by
assumption e = e′ and hence (x ⊗ b) ∈ CkEI . Conversely, suppose (x ⊗ b) ∈ CkEI and x(e) and
x(e′) are nonzero for some e, e′ ∈ Ek with s(e) = s(e′). Then (x⊗ b)(e, v) and (x⊗ b)(e′, v) are
both nonzero as soon as one is nonzero. Hence, e = e′ and so x ∈ CkE . �

Proposition 4.33. Let E be a topological graph and let I = (α,EI0 , ψ) be an in-split of E. Then
the Cuntz–Pimsner algebras OX(E) and OX(EI) are gauge-equivariantly ∗-isomorphic in a way
that also preserves the diagonal subalgebras.

Proof. Since α∗ × β is injective, it is enough to show that (α∗ × β)(DE) = DEI . Let aj =
(uj−uj−1)1/2 be as in the statement of Lemma 4.23, and recall that (α∗(aj))j is a frame for B as
a right Hilbert B-module. Let β(k) denote the map (βk)(1) : End0

A(X(E)⊗k)→ End0
B(X(EI)⊗k).

Given x ∈ CkE we may apply (4.3) to Θx,x ∈ End0
A(X⊗k) to see that

β(k)(Θx,x) = Θx,x ⊗ IdB =
∞∑
i=1

Θx⊗α∗(ai),x⊗α∗(ai).

It follows from Lemma 4.32 that x⊗ α∗(ai) ∈ CkEI so β(k)(Θx,x) ∈ Dk
EI

. Consequently,

(α∗ × β) ◦ ι(k)
X(E)(Θx,x) = ι

(k)
X(EI) ◦ β

(k)(Θx,x) ∈ DEI

and so (α∗ × β)(DE) ⊆ DEI .

For surjectivity, first observe that since X(EI)⊗k ∼= X(E)⊗k ⊗α∗ B is densely spanned by the
set {x⊗ b | x ∈ X(E)⊗k, b ∈ B}, and Lemma 4.32 states that x⊗ b ∈ CkEI if and only if x ∈ CkE ,
so

Dk
EI

= span{Θx⊗b,x⊗b | x ∈ CkE , b ∈ C0(E0
I )}.

Observe that for x⊗ b ∈ CkEI ,

ι
(k)
X⊗αB(Θx⊗b,x⊗b) = ιkX⊗αB(x⊗ b)ιkX⊗αB(x⊗ b)∗ = (α× β)(ιkX(x))ιB(bb∗)(α× β)(ιkX(x))∗,

so it suffices to show that ιB(b) ∈ (α× β)(DE) for each b ∈ B.

Fix b ∈ B and use Lemma 4.20 to write b = α∗(a) + j for some a ∈ A and j ∈ Jψ. We have
ιB(α∗(a)) = (α∗ × β)(ιA(a)) ∈ (α∗ × β)(DE). On the other hand, when j ≥ 0,

ψ∗(j) = ψ∗(j)1/2
∞∑
i=1

Θxi,xiψ
∗(j)1/2 =

∞∑
i=1

Θψ∗(j)1/2xi,ψ∗(j)1/2xi
.

Since (ψ∗(j)1/2xi)(e) = j(ψ(e))1/2xi(e) it follows that s restricted to the support of ψ∗(j)1/2xi
is injective. Hence, ψ(j) ∈ D1

E and by linearity this is also true for general j ∈ Jψ. Covariance
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of (ιB, ιX⊗αB) and (4.3) imply that

ιB(j) =
∑
i

ι
(1)
X⊗αB(Θψ∗(j)1/2xi,ψ∗(j)1/2xi

⊗ IdB) =
∑
i

ι
(1)
X⊗αB ◦ β

(1)(Θψ∗(j)1/2xi,ψ∗(j)1/2xi
)

=
∑
i

(α∗ × β) ◦ ι(1)
X (Θψ∗(j)1/2xi,ψ∗(j)1/2xi

)

belongs to (α∗× β)(DE). Consequently, ιB(b) ∈ (α∗× β)(DE) and so (α∗× β)(DE) = DEI . �

Example 4.34. The ∗-isomorphism between OX(E) and OX(EI) of Example 4.27 is also diagonal
preserving.
Remark 4.35. Theorem 3.5 and Proposition 4.33 imply that a diagonal-preserving, gauge-
equivariant ∗-isomorphism between the Cuntz–Pimsner algebras of topological graphs is not
sufficient to recover the original C∗-correspondence up to isomorphism. An analogous result
for Cuntz–Pimsner algebras of graph correspondences states that diagonal-preserving, gauge-
equivariant isomorphisms are not sufficient to recover the graph up to conjugacy.

The final section of [BC20] exhibits an example of a pair of finite and strongly connected graphs
that are not conjugate but whose graph C∗-algebras admit a ∗-isomorphism that is both gauge-
equivariant and diagonal-preserving. The main result of [ABCE22] uses groupoid techniques
to recover a topological graph up to conjugacy using ∗-isomorphisms that intertwine a whole
family of gauge actions. For general Cuntz–Pimsner algebras there is no obvious such family of
gauge actions.

A recent preprint [FNS] explains how to recover the graph correspondence of a compact topolog-
ical graph from its Toeplitz algebra, its gauge action, and the commutative algebra of functions
on the vertex space.

5. Out-splits

In this section, we consider the dual notion of an out-split. The non-commutative version applied
to Cuntz–Pimsner algebras is not as fruitful as non-commutative in-splits. The inputs are more
restrictive and the outputs less exciting, but we include this section for completeness.

For a graph, we will see that an out-split corresponds to a factorisation of the source map. We
use the notation of Bates and Pask [BP04] as well as Eilers and Ruiz [ER19], but we warn the
reader that our graph conventions follow Raeburn’s monograph [Rae05] and so are opposite to
the convention used in those papers.

5.1. Out-splits for directed graphs. Let E = (E1, E0, r, s) be a countable discrete directed
graph. We recall the notion of an out-split from [BP04, Section 3]. Fix a regular w ∈ E0 (i.e.
0 < |s−1(w)| <∞), and let {Pi}ni=1 be a partition of s−1(w) into finitely many (possibly empty)
sets.

The out-split graph of E associated to P is the graph Er(P) given as
Es(P)0 = {v1 : v ∈ E0} ∪ {w1, . . . , wn}
Es(P)1 = {e1 : e ∈ E1, r(e) 6= w} ∪ {e1, . . . , en : e ∈ E1, r(e) = w},
rP(ej) = r(e)j ,

sP(ej) =
{
s(e)1 if s(e) 6= w,

wi if s(e) = w and e ∈ Pi,

for all ej ∈ E1
s (P).
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Example 5.1. Consider the graphs

w v
g

h

f

e

and

w1 v1

w2

g2

h1

g1

h2

f1

e1

e2
.

The incoming edges to w are coloured for clarity. Then s−1(w) = {e, f} and we consider the
partition P1 = {e} and P2 = {f}. The out-split graph—with respect to this partition—is the
right-most graph above.

Note that the loop e is both an incoming and an outgoing edge. The adjacency matrices of the
graphs are

A =
(

1 1
2 0

)
and C =

1 1 0
0 0 1
2 2 0


and the rectangular matrices

R =

1 0
0 1
2 0

 and S =
(

1 1 0
0 0 1

)
satisfy C = SR and RS = A. Therefore, A and C are (elementary) strong shift equivalent. Any
out-split induces a strong shift equivalence, cf [LM95, Chapter 7].

The out-split at w can be summarised as two pieces of information: there is a finite-to-one
surjection α : E0

s (P)→ E0 given by α(vj) = v, for all vj ∈ E0
s (P), and a surjection ψ : E1 → E0

s

given by

ψ(e) =
{
s(e)1 if s(e) 6= w,

wi if s(e) = w, e ∈ Pi,

for all e ∈ E1. Observe that s = α ◦ ψ, so we interpret an out-split as a factorisation of the
source map (in contrast to an in-split which we saw was a factorisation of the range map).

We may now form the graph (E0
s (P), E0

s (P)×α,rE1, r, s) where the edge set is the fibred product

E0
s (P)×α,r E1 = {(vj , e) ∈ E0

s (P)× E1 : v = r(e)}

and r(vj , e) = vj and s(vj , e) = ψ(e) for all (vj , e) ∈ E0
s (P)×α,r E1. This is graph isomorphic to

the out-split graph Es(P) via the map ej 7→ (vj , e) for all ej ∈ E1
s (P).

We give a definition of out-splits for regular topological graphs, which includes regular directed
graphs.

Definition 5.2. An out-split (or source-split) of a topological graph E = (E0, E1, r, s) is a triple
O = (α, Y, ψ) consisting of

(i) a locally compact Hausdorff space Y ,
(ii) a proper surjective local homeomorphism α : Y → E0, and
(iii) a proper surjective local homeomorphism ψ : E1 → Y ,

such that α ◦ ψ = s.
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Remark 5.3. The continuity assumptions of an out-split O = (α,E0
O, ψ) are automatic for regular

directed graphs.

We associate a new topological graph to an out-split.
Lemma 5.4. Let E = (E0, E1, r, s) be a regular topological graph and let O = (α, Y, ψ) be an
out-split of E. Then EO = (E0

O, E
1
O, rO, sO) is a regular topological graph, where

(i) E0
O := Y ;

(ii) E1
O := E0

O×α,rE1 = {(v, e) ∈ E0
O×E1 | α(v) = r(e)} equipped with the subspace topology

of the product E0
O × E1; and

(iii) rO(v, e) = v and sO(v, e) = ψ(e), for all e ∈ E1 and v ∈ E0
O.

Proof. We will be brief as the proof is similar to the in-split case. The edge space E1
O is a closed

subspace of a locally compact Hausdorff space, and so is locally compact and Hausdorff. Also
sO is a local homeomorphism since ψ and α are.

The map rO is clearly continuous and is surjective since r is surjective. The range rO is proper,
and to see this we let K ⊂ E0

O be compact. Then

r−1
O (K) = K ×α,r r−1(α(K))

is compact. So EO is a regular topological graph. �

Definition 5.5. We call EO = (E0
O, E

1
O, rO, sO) the out-split graph of E via O.

5.2. Noncommutative out-splits. In-splits for topological graphs correspond to factorisa-
tions of the range map. In the noncommutative setting this translates to a factorisation of the
left action on the associated graph correspondence. On the other hand, out-splits for topological
graphs correspond to a factorisation of the source map, which defines the right-module struc-
ture of the graph correspondence. This makes the noncommutative analogy for out-splits more
difficult to pin down than in the case of in-splits.
Definition 5.6. An out-split of a regular C∗-correspondence (φX ,AXA) consists of:

(i) an inclusion α : A→ B with corresponding conditional expectation Λ: B → A;
(ii) a right B-module structure on X which is compatible with α and Λ in the sense that

x ·α(a) = x ·a for all x ∈ X and a ∈ A and Λ((x1 | x2)B) = (x1 | x2)A for all x1, x2 ∈ X;
(iii) a left action of A on XB by adjointable operators that agrees with the left action of A

on XA. In either case, we denote the left action by φX .

Let BΛ
A be the completion of B with respect to the inner product (b1 | b2)A = Λ(b∗1b2) for all

b1, b2 ∈ B, and let (IdB,BBΛ
A) be the associated B–A-correspondence with left action of B given

by multiplication. We then define the out-split correspondence (φΛ, B
Λ ⊗A XB) over B where

the left action is just left multiplication.

The idea behind Definition 5.6 is that by using the expectation Λ we are able to factor the
structure of XA as a right module through the algebra B. The following lemma makes this more
precise. We write [b] for the class of of b ∈ B in BΛ.
Lemma 5.7. The correspondence (φX ,AXA) is isomorphic to (φX ⊗ IdBΛ ,AXB ⊗B BΛ

A).

Proof. Let x, x′ ∈ XB and b, b′ ∈ B. Observe that
(x · b | x′ · b′)A = Λ((x · b | x′ · b′)B) = Λ(b∗(x | x′)Bb′) = ([b] | [(x | x′)Bb′])A = (x⊗ [b] | x′⊗ [b′])A.
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In particular ‖x · b‖ = 0 if and only if ‖x⊗ [b]‖ = 0. Consequently, the map β : XB⊗BBΛ → XA

given by β(x ⊗ [b]) = x · b for x ∈ XA and b ∈ [b] is well-defined. The map β is clearly
an A–A-bimodule map, and so (IdA, β) defines an injective correspondence morphism from
(φX ⊗ IdBΛ ,AXB ⊗B BΛ

A) to (φX ,AXA). For surjectivity fix x ∈ XA. Then there exists y ∈ XA

such that x = y · (y | y)A = β(y ⊗ [α((y | y)A)]). �

Theorem 5.8. The correspondence (φX ,AXA) is elementary strong shift equivalent to the out-
split (φΛ, B

Λ ⊗AXB). When (φX ,AXA) is regular and nondegenerate, then the Cuntz–Pimsner
algebras OX⊗BΛ and OBΛ⊗X are gauge equivariantly Morita equivalent.

Proof. Appealing to Lemma 5.7, it follows by definition that (φX ,AXA) is elementary strong
shift equivalent to (φΛ, B

Λ⊗AXB). The Morita equivalence is the main result of [MPT08] applied
to the correspondences R = (φX ,AXB) and S = (IdB,BBΛ

A), and the gauge equivariance follows
from Theorem 3.5. �

Remark 5.9. With apologies for the terminology, un-out-splitting seems more natural. That
is starting with a correspondence (A,XB) and an expectation Λ: B → A, one can naturally
construct (A,X ⊗B BΛ

A). In our previous language we would have XA
∼= XB ⊗B BΛ

A. The
downside is that (A,XB) is not a self-correspondence.

In the case where XA = X(E) is the correspondence of a directed graph E with out-split O,
Definition 5.6 recovers the correspondence of the associated out-split graph X(EO).

Proposition 5.10. Let O = (α,E0
O, ψ) be an out-split of a regular topological graph E. Let

A = C0(E0) and B = C0(E0
O). Then:

(i) α∗ : A→ B given by α∗(a)(v) = a(α(v)) is an injective ∗-homomorphism;
(ii) the conditional expectation Λ: B → A given by

Λ(b)(v) =
∑

u∈α−1(v)
b(u)

for b ∈ Cc(E0
O) is compatible with α∗; and

(iii) X(E) can be equipped with the structure of a right B-module via the formulae

(x · b)(e) = x(e)b(ψ(e)) and (x | y)B(u) =
∑

e∈ψ−1(u)
x(e)y(e)

for all x, y ∈ Cc(E1) and b ∈ C0(E0
O), and the left action of A on X(E) also defines a

left action by adjointable operators with respect to the new right B-module structure.

Moreover, the correspondences (φ,X(EO)) and (φΛ, BΛ ⊗A X(E)) are isomorphic.

Proof. Since α : E0
O → E0 is proper and surjective, α∗ defines an injective ∗-homomorphism.

The expectation Λ is clearly compatible with α∗ in the sense that Λ(α∗(a1)bα∗(a2)) = a1Λ(b)a2
for all a1, a2 ∈ A and b ∈ B. It is also straightforward to verify that the formulae in (iii) define
a right B-module structure on X(E).

Since s = α ◦ ψ, it follows that x · α∗(a) = x · a. Moreover,

Λ((x1 | x2)B)(v) =
∑

u∈α−1(v)
(x1 | x2)B(u) =

∑
u∈α−1(v)

∑
e∈ψ−1(u)

x1(e)x2(e)

=
∑
s(e)=v

x1(e)x2(e) = (x1 | x2)A(v),
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for all x1, x2 ∈ X and v ∈ E0. It follows that we have an out-split (cf. Definition 5.6) on the
graph module X(E) so we may form the out-split correspondence (φΛ, BΛ ⊗A X(E)).

We would like to define a map Ψ: (φΛ, B
Λ ⊗A X(E)B)→ (φ,X(EO)) by

Ψ([b]⊗ x)(u, e) = b(u)x(e),

for all [b]⊗ x ∈ BΛ ⊗A XB and (u, e) ∈ E1
O. For u ∈ E0

O, recall that

s−1
O (u) = {(w, e) ∈ E0

O × E1 : ψ(e) = u, α(w) = r(e)}.

With this observation we can compute

(Ψ([b1]⊗ x1) | Ψ([b2]⊗ x2))B(u) =
∑

(w,e)∈s−1
O (u)

b1(w)x1(e)b2(w)x2(e)

=
∑

e∈ψ−1(u)

∑
w∈α−1(r(e))

b1(w)x1(e)b2(w)x2(e)

=
∑

e∈ψ−1(u)
x1(e)Λ(b∗1b2)(r(e))x2(e)

= (x1 | Λ(b∗1b2)x2)B(u)
= ([b1]⊗ x1 | [b2]⊗ x2)B(u).

Consequently, Ψ is well-defined and extends to an isometric linear map Ψ: BΛ⊗AXB → X(EO).
The map Ψ preserves the left action since

Ψ(φΛ(b1)([b2]⊗ x))(v, e) = Ψ([b1b2]⊗ x)(v, e) = b1(v)b2(v)x(e) = φ(b1)Ψ([b2] · x)(v, e),

for all b1, b2 ∈ B, x ∈ X, and (v, e) ∈ E1
O; similarly, Ψ preserves the right action as

Ψ([b1]⊗ x · b2)(v, e) = b1(v)x(e)b2(ψ(e)) = (Ψ([b1]⊗ x) · b2)(v, e),

for all b1, b2 ∈ B, x ∈ X, and (v, e) ∈ E1
O.

Since functions of the form (v, e) 7→ b(v)x(e) densely span Cc(E0
O ×α,r E1), it follows from the

Stone-Weierstrass theorem that Ψ is surjective. �

Example 5.11. We give the out-split version of Example 4.16.

Fix m,n ∈ Z \ {0} and let E0 := T and E1 := T. Define r, s : E1 → E0 by r(z) = zm and
s(z) = zn. Then E = (E0, E1, r, s) is a topological graph. Suppose a, b ∈ Z satisfy n = ab. Define
ψ : E1 → T by ψ(z) = za and α : T → E0 by α(z) = zb. Since s(z) = zn = (za)b = α ◦ ψ(z), it
follows that O = (α,T, ψ) is an out-split of E. Exactly as in Example 4.16, the new edge space

E1
O = {(z1, z2) ∈ T2 | zb1 = zm2 }.

is homeomorphic to a disjoint union of gcd(m, b) copies of T.

An explicit identification of E1
O with the disjoint union of circles is given by fixing a primitive

|b|-th root of unity λ. Let π : {1, . . . , gcd(m, b)} × T → E1
O be the homeomorphism defined by

π(k, z) = (λkzm/ gcd(m,b), zb/ gcd(m,b)). Under this identification,

rO(k, z) = λkzm/ gcd(m,b) and sO(k, z) = ψ(zb/ gcd(m,b)) = zab/ gcd(m,b) = zn/ gcd(m,b).

By Theorem 5.8, the topological graphs E and EO have gauge equivariantly Morita equivalent
C∗-algebras. This is very different from the ∗-isomorphism arising from the analogous in-split
of the range map.
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