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Abstract

We show that the wave operators for Schrödinger scattering in R4 have a particular
form which depends on the existence of resonances. As a consequence of this form, we
determine the contribution of resonances to the index of the wave operator.

1 Introduction

In this paper we study scattering for Schrödinger operators in R4. In particular we analyse the
structure of the wave operator in terms of the scattering operator, the generator of dilations,
and a novel contribution corresponding to the existence of resonances. The form of the wave
operator allows us to deduce the contribution of resonances to Levinson’s theorem via the
index of the wave operator.

Levinson’s theorem [33] gives in dimension n = 1 that the number of eigenvalues (counted with
multiplicity) of the Schrödinger operator H = H0 +V (with H0 = −∆) for a suitably decaying
potential V satisfies

N =
1

π
(δ(0)− δ(∞)) +

1

2
ν, (1.1)

where δ is the scattering phase and ν ∈ {0, 1} depends on the existence of a resonance (a
distributional solution to (−∆ + V )ψ = 0 with ψ /∈ L2(R)).

In dimension n = 3, it was shown in [34, Section 5] that for spherically symmetric potentials,
Equation (1.1) holds for each angular momentum mode. This result was extended by [35,
Section 7] for general potentials, and it was shown that resonances can occur and provide a
half-integer contribution to a Levinson-type theorem.

One approach to resonances is the threshold behaviour of the spectrum of Schrödinger operators
as the strength of the potential is scaled, λ → λV . A resonance occurs just as an eigenvalue
emerges from the continuous spectrum. Klaus and Simon [31, Table I] determined in dimension
n = 2, 4 that the logarithmic behaviour of the singularity of the free resolvent R0(z) = (H0 −
z)−1 near z = 0 gives resonances with different properties to those found in odd dimensions.
In particular, in the case of a spherically symmetric potential the ‘resonances’ in dimension
n = 2 are either s-resonances or p-resonances (corresponding to angular momentum ` = 0 or
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` = 1 respectively) whilst the resonances in dimension n = 4 are s-resonances. It was observed
in [21, 31] that no such phenomena can occur in dimension n ≥ 5.

In [23] a precise low energy expansion of the resolvents R0(z) and R(z) = (H − z)−1 was given
in dimension n = 4, providing the definition of a resonance as a solution ψ to the equation
Hψ = 0 which is not square-integrable but lies in some weighted Sobolev space. Obtaining
such an expansion in dimension n = 2 was a more difficult task. In [7, 8] a low energy expansion
of the resolvent R(z) was provided in dimension n = 2 to give a precise definition of resonances
and determine their contribution to Levinson’s theorem. It was shown that s-resonances give
no contribution to Levinson’s theorem and p-resonances give an integer contribution, both
contrasting the behaviour of resonances in dimension n = 1, 3.

More recently in dimension n = 4 it was shown in [11, Equation (26b)] that in the case of
a sufficiently decaying spherically symmetric potential, the s-resonances provide an integer
contribution to Levinson’s theorem. In [25, Theorem 1.1] this result was generalised to non-
spherically symmetric potentials.

In [24] a new symmetrised technique was introduced for performing low-energy expansions of
an operator related to R(z) in terms of powers of a single variable, avoiding the double Laurent
expansion of [8]. The technique in [24] allows us to systematically isolate the behaviour at zero
in the spectrum of H into the range of a decreasing sequence of finite rank projections. This
technique is described in detail for four dimensional Schrödinger operators in [12]. See also
[14, 15, 43].

In [38, Theorem 1.1], [40, Theorem 1.3] and [4, Theorem 3.1] it was shown that for all n ≥ 2 and
suitably decaying potentials V (with the additional assumption that there are no p-resonances
in dimension n = 2 and no resonances in dimension n = 4), the wave operator W− is of the
form

W− = Id + ϕ(Dn)(S − Id) +K, (1.2)

where Dn is the generator of the dilation group on L2(Rn), ϕ : R→ C is given by

ϕ(x) =
1

2

(
1 + tanh (πx)− i cosh (πx)−1

)
(1.3)

and K is a compact operator.

In recent years much work has been done on developing formulae analogous to Equation (1.2)
for various scattering systems, including Schrödinger scattering [4, 29, 30, 38, 39, 40], point
interactions [28], rank-one perturbations [37], the Friedrichs-Faddeev model [20], Aharanov-
Bohm operators [27], lattice scattering [6], half-line scattering [19], discrete scattering [17],
scattering for an inverse-square potential [10, 18] and for 1D Dirac operators with zero-range
interections [36].

The exclusion of p-resonances in dimension n = 2 and resonances in dimension n = 4 to obtain
Equation (1.2) is due to the presence of an additional logarithmic singularity near zero in the
resolvent expansion provided by [12, Proposition 5.3]. Recent work [3, Lemma 4.3] shows,
using the resolvent expansions of [24], that in the presence of p-resonances in dimension n = 2
the wave operator satisfies

W− = Id + ϕ(Dn)(S − Id) +Bres +K, (1.4)
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where ϕ is given in Equation (1.3), Bres is a bounded operator depending on the existence of
p-resonances and K is a compact operator.

The nature of the singularity in the resolvent at zero energy in the presence of resonances in
dimension n = 4 is the same as that of p-resonances in dimension n = 2. As such, we can use
the techniques of [3] to show in Theorem 3.1 that Equation (1.4) holds in dimension n = 4
with Bres an operator depending on the existence of resonances.

After factorising the wave operator as the product of two Fredholm operators, we show in
Corollary 4.5 that

Index(W−) = Index(WS) + dim(Ps), (1.5)

where dim(Ps) ∈ {0, 1} is the number of linearly independent s-resonances and WS = Id +
ϕ(D4)(S − Id) is a Fredholm operator.

For a comparison, we recall that in [25, Theorem 1.1] it is proved that for a sufficiently rapidly
decaying potential the number of eigenvalues N of H (counted with multiplicity) is given by

−N =
1

2πi

∫ ∞
0

(
Tr
(
S(λ)∗S′(λ)

)
− c1

)
dλ− β2 + dim(Ps) (1.6)

for some constants c1, β2 ∈ C depending on the potential. Even after taking into account the
equality Index(W−) = −N , Equation (1.5) cannot be immediately compared with Equation
(1.6) other than to note that the existence of a resonance provides an integer contribution to
both. To show that Equation (1.6) follows from Equation (1.5) requires a more subtle analysis
of the high-energy behaviour of the scattering matrix in the trace norm, for which we defer to
a future publication.

The layout of the paper is as follows. In Section 2 we introduce the relevant concepts from scat-
tering theory for four-dimensional Schrödinger operators and fix our notation. In particular,
we discuss the low-energy resolvent expansion provided by [12, 24], the definition of a resonance
and the properties of the scattering matrix. In Section 3 we prove, via a number of technical
results and unitary transformations analogous to those in [3], that the wave operator W− in
dimension n = 4 satisfies Equation (1.4). In Section 4 we decouple the resonant contribution
Bres by providing a suitable factorisation of the wave operator and show that Equation (1.5)
holds, giving a topological interpretation of Levinson’s theorem in which resonances provide
an integer contribution.

Acknowledgements: The authors thank Serge Richard for many illuminating conversations
on the topic of resolvent expansions and resonances. The first author also acknowledges the
support of an Australian Government Research Training Program (RTP) Scholarship. This
project was supported by the ARC Discovery grant DP220101196.

2 Preliminaries on scattering theory

2.1 Standing assumptions and notation

Throughout this article we will consider the scattering theory on R4 associated to the operators

H0 = −
4∑
j=1

∂2

∂x2j
= −∆ and H = −

4∑
j=1

∂2

∂x2j
+ V
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where the (multiplication operator by the) potential V is real-valued and satisfies

|V (x)| ≤ C(1 + |x|)−ρ (2.1)

for some ρ > 12. We denote the Schwartz space S(R4) and its dual S′(R4) and recall the
weighted Sobolev spaces

Hs,t(R4) =
{
f ∈ S′(R4) : ||f ||Hs,t :=

∣∣∣∣∣∣(1 + |x|2)
t
2 (Id−∆)

s
2 f
∣∣∣∣∣∣ <∞}

with index s ∈ R indicating derivatives and t ∈ R associated to decay at infinity [5, Section
4.1]. With 〈·, ·〉 the Euclidean inner product on R4, we denote the Fourier transform by

F : L2(R4)→ L2(R4), [Ff ](ξ) = (2π)−2
∫
R4

e−i〈x,ξ〉f(x) dx.

Note that the Fourier transform F is an isomorphism from Hs,t to Ht,s for any s, t ∈ R. We
denote by B(H1,H2) and K(H1,H2) the bounded and compact operators from H1 to H2. For
z ∈ C \ R, we let

R0(z) = (H0 − z)−1, R(z) = (H − z)−1

and the boundary values of the resolvent are defined as

R0(λ± i0) = lim
ε→0

R0(λ± iε) and R(λ± i0) = lim
ε→0

R(λ± iε). (2.2)

The limiting absorption principle [1, Theorem 4.2] tells us that these boundary values exist
in B(H0,t, H2,−t) for any t > 1

2 and λ ∈ (0,∞). The operator H0 has purely absolutely
continuous spectrum, and in particular no kernel. The operator H can have eigenvalues and
for V satisfying Assumption (2.1) with ρ > 1 we have that these eigenvalues are negative, or
zero [42, Theorem 6.1.1] (see also [26, Section 1]). We let P0 be the kernel projection of H,
which may be zero.

The one-parameter unitary group of dilations on L2(Rn) is given on f ∈ L2(Rn) by

[Un(t)f ](x) = e
nt
2 f(etx), t ∈ R. (2.3)

We denote the self-adjoint generator of Un by Dn. The generator of the group (U+(t)) of
dilations on the half-line R+ is denoted D+ (which is D1 restricted to the positive half-line).
The generators of the dilation groups are given by

D+ =
y

i

d

dy
+

1

2i
Id, Dn =

n∑
j=1

xj
i

∂

∂xj
+
n

2i
Id. (2.4)

Since each of D+, Dn generate one-parameter groups, we can recognise functions of these
operators. For D+ and ϕ : R → C a bounded function whose Fourier transform has rapid
decay, we have

[ϕ(D+)g](ρ) = (2π)−
1
2

∫
R

[F∗ϕ](t)e
t
2 g(etρ) dt,

with a similar formula for Dn.
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Several Hilbert spaces recur, and we adopt the notation (following [22, Section 2] which contains
an excellent discussion on the relations between the spaces and operators we introduce here)

H = L2(R4), P = L2(S3), Hspec = L2(R+,P) ∼= L2(R+)⊗ P.

Here Hspec provides the Hilbert space on which we can diagonalise the free Hamiltonian H0.

Since V is bounded, H = H0+V is self-adjoint with Dom(H) = Dom(H0). The wave operators

W± = s-lim
t→±∞

eitHe−itH0

exist and are asymptotically complete if ρ > 1 [42, Theorem 1.6.2]. We will use the stationary
scattering theory, which coincides with the time-dependent approach [41, Section 5.3] given
our assumptions. For suitable f, g ∈ H we can write [42, Equation 0.6.9]

〈W±f, g〉 =

∫
R

(
lim
ε→0

ε

π
〈R0(λ± iε)f,R(λ± iε)g〉

)
dλ. (2.5)

For our analysis of the wave operator, we describe the explicit unitaries which diagonalise our
Hamiltonians.

For λ > 0 the trace operator γ(λ) : S(R4) → P defined by [γ(λ)f ](ω) := f(λ
1
2ω) defines a

bounded operator and for each s > 1
2 and t ∈ R extends to a bounded operator on Hs,t (see

[32, Theorem 2.4.3]).

Definition 2.1. For λ ∈ R+, s ∈ R and t > 1
2 we define the operator

Γ0(λ) : Hs,t → P by [Γ0(λ)f ](ω) = 2−
1
2λ

1
2 [Ff ](λ

1
2ω)

and the operator which diagonalises the free Hamiltonian H0 as

F0 : H→ Hspec by [F0f ](λ, ω) = [Γ0(λ)f ](ω).

Lemma 2.2 ([22, p. 439]). The operator F0 is unitary. Moreover for λ ∈ [0,∞), ω ∈ S3 and
f ∈ Hspec we have

[F0H0F
∗
0 f ](λ, ω) = λf(λ, ω) =: [Lf ](λ, ω).

Here we have defined the operator L of multiplication by the spectral variable.

2.2 Resolvent expansions, resonances and the scattering operator

Here we recall some known results regarding expansions related to the perturbed resolvent
R(z) in the limit z → 0. Only the terms in the expansion relevant to later computations will
be shown, however we note that higher terms can be computed explicitly [12, 23, 43]. The low
energy behaviour is sensitive to the presence of ‘zero-energy resonances’. These are essentially
distributional solutions to Hψ = 0 which are not square-integrable but lie in some larger space.
We will give the precise definition shortly. We define v(x) = |V (x)|

1
2 and u(x) = sign(V (x))

for x ∈ R, so that U, v are self-adjoint, U is unitary and V = vUv.

Definition 2.3. Suppose that V satisfies the assumption (2.1) for some ρ > 12. Then we say
that there exists an s-resonance (or just simply a resonance) for H = H0 + V if there exists
ψ ∈ H0,−t for some t > 0 such that Hψ = 0 (in the sense of distributions) and ψ /∈ H.
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Since H has no positive eigenvalues, our assumption on the decay of the potential and the
limiting absorption principle [1, Theorem 4.2] guarantee that the norm limits

vR0(λ± i0)v := lim
ε→0

vR0(λ± iε)v and vR(λ± i0)v := lim
ε→0

vR(λ± iε)v

exist in B(H) and are continuous in λ ∈ (0,∞). For λ, ε > 0 we have the equality

U − UvR(λ± iε)vU = (U + vR0(λ± iε)v)−1 ,

which implies the existence and continuity of (0,∞) 3 λ 7→ (u+ vR0(λ± i0)v)−1 ∈ B(H). Fur-
thermore, we have limλ→∞ (U + vR0(λ± i0)v)−1 = U , since limλ→∞ vR0(λ± i0)v = 0 by [42,
Proposition 7.1.2]. On the other hand, the existence of the limits limλ→0 (U + vR0(λ± i0)v)−1

depends on the existence of resonances and eigenvalues at zero. The problem has been de-
scribed in detail in [12] using the method of [24]. We outline the main results below.

Let k ∈ C \ {0} with Re(k) ≥ 0 and define η = 1
ln (k) (using the principal branch of the

logarithm). Define the operator M(k) = U + vR0(−k2)v. Then we have the following result
[12, Proposition 5.3].

Theorem 2.4. If V satisfies assumption (2.1) with ρ > 12 and 0 < |k| < k0 for sufficiently
small k0, the operator M(k)−1 has the expansion

M(k)−1 = k−2D2 + k−2h(k)Q1T̃1Q1 + h(k)A1 + η−1h(k)A2 + η−1Q1A3Q1 + R̃(k),

where h(k) = (c1 + η−1c2)
−1 for some c1, c2 ∈ C, R̃(k) is uniformly bounded for 0 < |k| < k0,

D2, T̃1, A1, A2, A3 ∈ B(H), Q1 ≥ Q2 are orthogonal projections, T1 = Q1 − Q2 is (at most) a
rank one projection and

T̃1 = T1 − T1C12Q2 −Q2C21T1 +Q2C22Q2

for some C12, C21, C22 ∈ B(H).

The projection T1 is related to the existence of resonances. For a non-zero resonance ψ, the
projection T1 is given by T1 = 〈·, Uvψ〉Uvψ. The value of the constant c1 is not important for
our analysis, whilst we have

c2 = −(〈v, Uvψ〉)2

(8π2)
, (2.6)

see for example [2, Lemma 3.2.36] and [43, Equation 2.2]. To complete the analysis, we also
need the small energy behaviour of Γ0(λ)v, which we can obtain from [4, Lemma 2.12].

Lemma 2.5. Suppose that V satisfies (2.1) for some ρ > 12. Then in B(H,P) we have the
expansion

Γ0(λ)v = λ
1
2γ0v + λγ1v +O(λ

3
2 )

as λ→ 0 in B(H,P), where the operators γ0v, γ1v ∈ B(H,P) are given for f ∈ H by

[γjvf ](ω) = 2−
1
2 (2π)−2

∫
R4

(−i〈x, ω〉)jv(x)f(x) dx.
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We can combine Theorem 2.4 and Lemma 2.5 to obtain an expansion of a related operator
which will be useful in the next section. We use the convention that λ > 0, k = −iλ

1
2 and

η =
(
ln (λ)
2 − iπ2

)−1
.

Lemma 2.6. Suppose V satisfies the assumption (2.1) for some ρ > 12. Then as λ → 0 we
have the expansion

(U + vR0(λ+ i0)v)−1 vΓ0(λ)∗ = λ−
1
2h(λ

1
2 )(T1 −Q2C21T1)vγ

∗
0 +D2vγ

∗
1 +O(η)

in B(P,H).

Proof. The identity γ0vQ2 = 0 = Q2vγ
∗
0 [12, Lemma 7.2] yields T̃1vγ

∗
0 = (T1 − Q2C21T1)vγ

∗
0 .

Observing that as λ → 0, η → 0 and h(λ
1
2 ) → 0, we multiply the expansions of Theorem 2.4

and Lemma 2.5 to obtain the statement.

We summarise below some useful properties of the scattering matrix [42, Proposition 1.8.1 and
Proposition 8.1.9], [4, Theorem 2.15 and Corollary 3.10].

Theorem 2.7. Suppose that V satisfies the assumption (2.1) for some ρ > 1. The scattering
matrix S(λ) is given for all λ ∈ R+ by the equation

S(λ) = Id− 2πiΓ0(λ)v (U + vR0(λ+ i0)v)−1 vΓ0(λ)∗. (2.7)

For each λ ∈ R+, the operator S(λ) is unitary in P = L2(S3) and depends continuously (in the
sense of norm) on λ ∈ R+. Furthermore, if ρ > 12 then S(λ) − Id ∈ L1(H), is differentiable
in the norm of L1(H) and we have S(0) = Id and limλ→∞ S(λ) = Id, where the limit is taken
in B(P).

3 The form of the wave operator

In this section, we analyse the wave operator W− in the space Hspec (the spectral representation
for H0). Much of the analysis is identical to the two dimensional case in [3], to which we refer
for many details. The main result in this section is the following.

Theorem 3.1. Suppose that V satisfies the estimate (2.1) for some ρ > 12. Then the wave
operator W− is given by

W− = Id + ϕ(D4)(S − Id) +Bres +K, (3.1)

where ϕ : R→ C is given by

ϕ(x) =
1

2

(
1 + tanh (πx)− i cosh (πx)−1

)
,

Bres is a bounded operator depending on the existence of resonances and K is a compact
operator.
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In Lemma 3.5 we will determine an explicit expression for the operator Bres in a different
representation. We begin our analysis of the wave operator with the stationary representation
for the wave operator W−. For suitable f, g ∈ Hspec we have

〈F0(W− − Id)F ∗0 f, g〉 (3.2)

= −
∫
R

lim
ε→0

(∫ ∞
0

〈
Γ0(µ)v (U + vR0(λ+ iε)v)−1 vF ∗0 δε(L− λ)f,

g(µ)

µ− λ+ iε

〉
P

dµ

)
dλ,

where we have defined

δε(L− λ) :=
ε

π
(L− λ+ iε)−1(L− λ− iε)−1.

Next we write Γ0(µ)v = Γ0(µ)vQ1 + Γ0(µ)vQ⊥1 , which then gives two terms in Equation (3.2).
The term with Q⊥1 has no singularity at zero energy by Lemma 2.6 and has been considered
in [4]. A similar expansion has been considered in great detail in [3] in dimension n = 2.

We now carefully analyse Equation (3.2). Fix a function χ1 ∈ C(R+; [0, 1]) with χ1(λ) = 0 for
λ < 1

4 and χ1(λ) = 1 for λ > 3
4 and let χ2 = 1−χ1. Let also the function χ0 ∈ C(R+; [0, 1]) be

such that χ0(λ) = 1 for λ < 3
4 and χ0(λ) = 0 for λ > 7

8 . For f ∈ Hspec and λ, ε > 0 we define

ψ̃ε(λ) := Q1 (U + vR0(λ+ iε)v)−1 vF ∗0 δε(L− λ)χ2(L)f.

We make the following decomposition of Equation (3.2). Define

R0

=

∫ ∞
0

lim
ε→0

(∫ ∞
0

〈
Γ0(µ)vQ1

µ− λ− iε
Q1 (U + vR0(λ+ iε)v)−1 vF ∗0 δε(L− λ)χ1(L)f, g(µ)

〉
dµ

)
dλ,

R1 =

∫ ∞
0

lim
ε→0

(∫ ∞
0

〈
Γ0(µ)vQ1χ2(µ)µ−

1
2 (µ

1
2 − λ

1
2 )(µ− λ− iε)−1vF ∗0 ψ̃ε(λ), g(µ)

〉
dµ

)
dλ,

R2 =

∫ ∞
0

lim
ε→0

(∫ ∞
0

〈
Γ0(µ)vQ1χ2(µ)µ−

1
2λ

1
2 (µ− λ− iε)−1vF ∗0 ψ̃ε(λ), g(µ)

〉
dµ

)
dλ,

R3 =

∫ ∞
0

lim
ε→0

(∫ ∞
0

〈
Γ0(µ)vQ1χ2(µ)µ−1(µ− λ)(µ− λ− iε)−1vF ∗0 ψ̃ε(λ), g(µ)

〉
dµ

)
dλ,

R4 =

∫ ∞
0

lim
ε→0

(∫ ∞
0

〈
Γ0(µ)vQ1χ2(µ)µ−1λ(µ− λ− iε)−1vF ∗0 ψ̃ε(λ), g(µ)

〉
dµ

)
dλ, and

R5 =

∫ ∞
0

lim
ε→0

(∫ ∞
0

〈
Γ0(µ)vQ⊥1 χ2(µ)µ−1(µ− λ)(µ− λ− iε)−1vF ∗0 ψ̃ε(λ), g(µ)

〉
dµ

)
dλ.

By construction we have the equality

−〈F0(W− − Id)F ∗0 f, g〉 = R0 +R1 +R2 +R3 +R4 +R5.

Combining [3, Corollary 4.2] and [4, Theorem 3.1] we have the following.

Lemma 3.2. Suppose that V satisfies (2.1) for some ρ > 12. Then we have

R0 +R2 +R3 +R4 +R5 = −〈(Id + ϕ(D4)(S − Id) +K) f, g〉

for a compact operator K.

8



It remains to analyse the term R1, which contains the worst singularity of M(k)−1. For this
analysis we require some additional preparatory results. We consider the unitary transforma-
tion U : L2(R+)→ L2(R) defined for f ∈ L2(R+) and x ∈ R by

[Uf ](x) = 2−
1
2 e−xf(e−2x). (3.3)

We also introduce the integral operator Ξ : L2(R+)→ L2(R+) with kernel given by

Ξ(µ, λ) = χ0(µ)
1

µ
1
2 + λ

1
2

1

λ
1
2 ln (λ)

χ0(λ). (3.4)

We can identify Ξ as a function of the operators X of position and D1 of dilation in R. The
following is [3, Lemma 3.6].

Lemma 3.3. Define Ξ : L2(R+) → L2(R+) by Equation (3.4). Then we have in L2(R) the
equality

UΞU∗ = −χ0(e
−2X)

2

1 + 2iD1
χ0(e

−2X) +K1,

where D1 is the generator of dilations in L2(R), X is the operator of multiplication by the
variable in L2(R) and K1 is a compact operator.

To analyse the term R1 we need to introduce two more operators, analogues of which have
been studied in [3, Lemmas 3.1 and 3.5].

Lemma 3.4. Define the maps B : R+ → K(P,H) and N : R+ → B(H,P) for λ, µ ∈ R+ by

B(λ) = χ2(λ)λ
1
2 ln (λ)Q1 (U + vR0(λ+ i0)v)−1 vΓ0(λ)∗, and

N(µ) = Γ0(µ)χ2(µ)µ−
1
2 vQ1.

The multiplication operator defined by B extends continuously to B(Hspec, L
2(R+,H)) and the

multiplication operator defined by N extends continuously to B(L2(R+,H),Hspec).

By an identical proof to [3, Lemma 3.7] we obtain the following.

Lemma 3.5. The term R1 can be written as 〈(Bres + K)f, g〉 with Bres = NΞB and K
compact.

Collecting together the results of Lemmas 3.2 and 3.5 we can now prove Theorem 3.1.

Proof of Theorem 3.1. By construction we have the equality

−〈F0(W− − Id)F ∗0 f, g〉 = R0 +R1 +R2 +R3 +R4 +R5.

By Lemma 3.2 we have

R0 +R2 +R3 +R4 +R5 = −〈(Id + ϕ(D4)(S − Id) +K) f, g〉.

By Lemma 3.5 we have R1 = 〈(Bres + K)f, g〉 with Bres = NΞB and K compact. Adding
these results together gives

F0(W− − Id)F ∗0 = ϕ(D4)(S − Id)−NΞB +K (3.5)

for a compact operator K, from which the statement follows.
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As suggested by the analysis of Lemma 3.3, we investigate Equation (3.5) in the Hilbert space
L2(R,P) by using the unitary map U of Equation (3.3). For any multiplication operator M
defined by R+ 3 λ 7→M(λ) and f ∈ L2(R,P) we have

[UMU∗f ](x) = M
(
e−2x

)
f(x) =

[
M(e−2X)f

]
(x).

If we consider the dilation group (U+(t))t∈R we obtain

[UU+(t)U∗f ](x) = f

(
x− 1

2
t

)
=
[
e−it

1
2
Df
]

(x),

where D = −i d
dx . Combining this information we find

UF0(W− − Id)F ∗0U
∗

=

(
1

2
(Id− tanh

(π
2
D
)
− i cosh

(π
2
D
)−1)

(S̃(X)− Id)− Ñ(X)

(
2

1 + 2iD1

)
B̃(X) +K,

where S̃(X) = S
(
e−2X

)
, Ñ(X) = N

(
e−2X

)
, B̃(X) = B

(
e−2X

)
and K is a compact operator.

We note that the three generators X,D,D1, the position operator, the generator of translations
and the generator of dilations are all present in this expression. A C∗-algebra generated by
continuous functions of these three operators has been considered in [9, Chapter V]. The algebra
of Cordes is constructed on the Hilbert space L2(R+), so we need an additional unitary to use
this framework, namely the decomposition of L2(R) into even and odd functions.

Define V : L2(R)→ L2(R+,C2) by

[Vf ](y) = 2
1
2

(
f(y)+f(−y)

2
f(y)−f(−y)

2

)
:= 2

1
2

(
fe
fo

)
for f ∈ L2(R). The adjoint of V is defined for g1, g2 ∈ L2(R+) by[

V∗
(
g1
g2

)]
(x) = 2−

1
2 [g1(|x|) + sign(x)g2(|x|)] .

If m : R→ C we find

Vm(X)V∗ =

(
me(L) mo(L)
mo(L) me(L)

)
,

whilst

Vm(D1)V
∗ =

(
m(D+) 0

0 m(D+)

)
.

In order to consider Vm(D)V∗, let us denote by F1 the usual unitary Fourier transform in
L2(R), and let FN , FD be the unitary cosine and sine transforms on L2(R+), respectively. The
index N and D are related to the Neumann Laplacian and the Dirichlet Laplacian in L2(R+),
which are diagonalised by FN and FD, respectively. Note also that the operators FN and FD
correspond to their own inverse. It is then easily checked that

VF1V
∗ =

(
FN 0
0 iFD

)
.
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In addition, by a straightforward computation one gets

Vm(D)V∗ = VF∗1m(X)F1V
∗ =

(
FNme(L)FN −iFNmo(L)FD
iFDmo(L)FN FDme(L)FD

)
.

For the final step, we recall that the Neumann Laplacian satisfies −∆N := FNL
2FN , and that

iFNFD = − tanh(πD+) + i cosh(πD+)−1 =: φ(D+).

We refer for example to [10, Proposition 4.13] for a proof of the above equality. Then, we
obtain

Vm(D)V∗ = VF∗1m(X)F1V
∗ =

(
me

(√
−∆N

)
−mo

(√
−∆N

)
φ(D+)

−φ(D+)mo

(√
−∆N

)
φ(D+)me

(√
−∆N

)
φ(D+)

)
.

Combining these we can obtain the image of the wave operator in L2(R+,C2).

Lemma 3.6. The expression VUF0W−F
∗
0U
∗V∗ is given by(

1 0
0 1

)
+

1

2

(
1 φ

(
1
2

√
−∆N

)
φ(D+)

φ(D+)φ
(
1
2

√
−∆N

)
1

)(
S̃e(L)− 1 S̃o(L)

S̃o(L) S̃e(L)− 1

)
+

(
Ñe(L) Ño(L)

Ño(L) Ñe(L)

)( 2
1+2iD+

0

0 2
1+2iD+

)(
B̃e(L) B̃o(L)

B̃o(L) B̃e(L)

)
+K

with K compact.

We now determine the precise contribution of resonances to the above equality.

Lemma 3.7. We have the equality

N(0)B(0) = −Ps,

where Ps = 0 if there does not exist a resonance and Ps is the orthogonal projection onto the
spherical harmonics of order zero in P if there exists a resonance.

Proof. The case when there are no resonances is clear since T1 = 0, so suppose there does exist
a resonance. We use Lemma 2.6 to see that

B(0) = lim
λ→0

χ2(λ)λ
1
2 ln (λ)Q1 (U + vR0(λ+ i0)v)−1 vΓ0(λ)∗

= lim
λ→0

χ2(λ)λ
1
2 ln (λ)

(
λ−

1
2h(λ

1
2 )(T1 −Q2C21T1)vγ

∗
0 +D2vγ

∗
1 +O(η)

)
=

(
lim
λ→0

ln (λ)h(λ
1
2 )

)
(T1 −Q2C21T1)vγ

∗
0

=

 lim
λ→0

ln (λ)

c1 +
(
ln(λ)
2 − iπ2

)
c2

 (T1 −Q2C21T1)vγ
∗
0

=
2

c2
(T1 −Q2C21T1)vγ

∗
0 .
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The small energy behaviour of Γ0(µ)v and the definition of N gives N(0) = γ0vQ1. Observing
the relation γ0vQ2 = 0 we multiply to obtain

N(0)B(0) =
2

c2
γ0vT1vγ

∗
0 .

Recall from the discussion around Theorem 2.4 that for a non-zero resonance ψ we have
T1 = 〈·, Uvψ〉Uvψ. We find for f ∈ P and ω ∈ S3 that

[γ0vT1vγ
∗
0f ](ω) = 2−

1
2 (2π)−2

∫
R4

v(x)[T1vγ
∗
0f ](x) dx

= 2−
1
2 (2π)−2

∫
R4

v(x)〈vγ∗0f, Uvψ〉U(x)v(x)ψ(x) dx

= 2−1(2π)−4 (〈v, Uvψ〉)2
∫
S3
f(θ) dθ.

Now note that Vol(S3) = 2π2 to see that

[γ0vT1vγ
∗
0f ](ω) = 2−1(2π)−4 (〈v, Uvψ〉)2 (2π2)

(
1

Vol(S3)

∫
S3
f(θ) dθ

)
=

(〈v, Uvψ〉)2

16π2
[Psf ](ω),

where Ps denotes the projection onto the spherical harmonics of order zero in P. Recalling the
value of c2 from Equation (2.6) we find the statement of the lemma.

4 Index theory and Levinson’s theorem

In [9, Section V.7], the following C∗-subalgebra of B(L2(R+)) was introduced:

E := C∗
(
ai(D+)bi(L)ci(−∆N ) : ai ∈ C([−∞,∞]), bi, ci ∈ C([0,∞])

)
.

It is shown in [9, Theorem V.7.3] that the quotient algebra E/K(L2(R+)) is isomorphic to
C(7), the set of continuous functions defined on the edges of a hexagon.

As a consequence of the results of Cordes, we have the short exact sequence

0 −→ K
(
L2(R+;P)⊕2

)
−→

(
M2(E)⊗K(P)

)∼ q−→
(
M2

(
C(7)

)
⊗K(P)

)∼ −→ 0

of C∗-algebras, and the corresponding 6 term exact sequence in K-theory. In particular, we
have K0

(
K(L2(R+,P)⊕2)

) ∼= Z and K1 ((M2(C(7))⊗K(P))∼) ∼= Z.

This picture will allow us to interpret Levinson’s theorem as a topological result. Our interest
in the C∗-algebra E is that the wave operator is a product of functions of D+, L,−∆N , as
shown in Lemma 3.6, and these functions are continuous and have limits at their endpoints.
As such, the wave operator is an element of (M2(E)⊗K(P))∼.

We can then consider the image of the wave operator under the quotient map

q : (M2(E)⊗K(P))∼ → (M2(C(7))⊗K(P))∼ ,

with kernel M2(K(L2(R+)))⊗K(P).

12



Proposition 4.1. The operator VUF0W−F
∗
0U
∗V∗ is an element of (M2(E)⊗K(P))∼. Hence,

up to unitary equivalence, the image of the wave operator W− through the quotient map q is a
continuous function

Γ := (Γ1,Γ2,Γ3,Γ4,Γ5,Γ6) : 7→M2 ⊗K(P)∼

even at the vertices of the hexagon. The restrictions to the edges (oriented as indicated) are

Γ1(s) =

(
1 0
0 1

)
+

1

2
(S(1)− 1)

(
1 φ(s)

φ(s) 1

)
, s ∈ [−∞,∞],

Γ2(`) =

(
1 0
0 1

)
+

1

2
(S(e2`)− 1)

(
1 −1
−1 1

)
, ` ∈ [0,∞],

Γ3(ξ) =

(
1 0
0 1

)
, ξ ∈ [∞, 0],

Γ4(s) =

(
1 0
0 1

)
− 1

2

2

1 + 2is
Ps

(
1 1
1 1

)
, s ∈ [∞,−∞],

Γ5(ξ) =

(
1 0
0 1

)
, ξ ∈ [0,∞],

Γ6(`) =

(
1 0
0 1

)
+

1

2
(S(e−2`)− 1)

(
1 1
1 1

)
, ` ∈ [∞, 0].

Proof. The continuity and existence of the limits of the endpoints of the components of
VUF0W−F

∗
0U
∗V∗ have already been established in Lemmas 3.3 and 3.4. Note also that by The-

orem 2.7 we have λ 7→ S(λ) − Id belongs to C0(R+,K(P)). Thus we find VUF0W−F
∗
0U
∗V∗ ∈

(M2(E)⊗K(P))∼.

We now consider the image of the operator VUF0W−F
∗
0U
∗V∗ under the quotient map. For

Γ1, we note that S̃e(0) = S(1) and S̃o(0) = 0. Since χ2 vanishes at infinity we observe also
that Ñ(0) = B̃(0) = 0. For Γ2, we note that lims→∞ φ(s) = −1 to obtain the result. For
Γ6, we use the observation that lims→−∞ φ(s) = 1. For Γ3 and Γ5, we recall that S(0) =
limλ→∞(S(λ)) = Id to see that limλ→±∞ S̃e(`) = 1 while limλ→±∞ S̃o(`) = 0. Finally, for Γ4

we note that lim`→∞ Ñ(`) = N(0) and lim`→∞ B̃(`) = B(0). Thus we find

lim
`→∞

Ñe(`) = lim
`→∞

Ño(`) =
1

2
N(0)

and

lim
`→∞

B̃e(`) = lim
`→∞

B̃o(`) =
1

2
B(0).

An application of Lemma 3.7 then completes the proof.

As a result of [3, Lemma 5.1] we have the following.
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Lemma 4.2. The pointwise determinant of each component Γj exists and they are given by

det(Γ1(s)) = det(S(1)), s ∈ [−∞,∞],

det(Γ2(`)) = det(S(e2`)), ` ∈ [0,∞],

det(Γ3(ξ)) = 1, ξ ∈ [∞, 0],

det(Γ4(s)) =

(
2is− 1

2is+ 1

)dim(Ps)

, s ∈ [∞,−∞],

det(Γ5(ξ)) = 1, ξ ∈ [0,∞],

det(Γ6(`)) = det(S(e−2`)), ` ∈ [∞, 0].

We now decouple the resonant contribution to the wave operator. We do this in order to isolate
the numerical contribution of resonances to Levinson’s theorem.

Define the operators WS ,WR ∈ B(H) by the equalities

F0(WS − Id)F ∗0 =
1

2
ϕ

(
−1

2
D+

)
(S(L)− Id). (4.1)

and

F0(WR − Id) = −NΞB.

Then we have the following.

Lemma 4.3. The operators WS and WR are Fredholm and we have the equality

W− = WSWR +K (4.2)

for a compact operator K. In particular, we have

Index(W−) = Index(WS) + Index(WR). (4.3)

Proof. To see that WS defines a Fredholm operator, it is sufficient to note that WS∗ defines an
inverse for WS up to compacts (see [3, Lemma 5.3]). As in the proof of [3, Proposition 5.5] we
have that W ∗R defines an inverse for WR modulo compacts. We next observe that by Equation
(3.5) we have the equality

W− = WS + (WR − Id) +K = WS(Id +W ∗S (WR − Id)) + K̃ (4.4)

with K, K̃ compact operators. Denote by ΓS,j and ΓR,j the components of VUF0WSF
∗
0U
∗V∗
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and VUF0WRF
∗
0U
∗V∗ under the quotient map q. A proof similar to Proposition 4.1 shows that

ΓS,1(s) =

(
1 0
0 1

)
+

1

2
(S(1)− 1)

(
1 φ(s)

φ(s) 1

)
, s ∈ [−∞,∞],

ΓS,2(`) =

(
1 0
0 1

)
+

1

2
(S(e2`)− 1)

(
1 −1
−1 1

)
, ` ∈ [0,∞],

ΓS,3(ξ) =

(
1 0
0 1

)
, ξ ∈ [∞, 0],

ΓS,4(s) =

(
1 0
0 1

)
, s ∈ [∞,−∞],

ΓS,5(ξ) =

(
1 0
0 1

)
, ξ ∈ [0,∞],

ΓS,6(`) =

(
1 0
0 1

)
+

1

2
(S(e−2`)− 1)

(
1 1
1 1

)
, ` ∈ [∞, 0]

and

ΓR,4(s) =

(
1 0
0 1

)
+

1

2

2

1 + 2is
Ps

(
1 1
1 1

)
, s ∈ [∞,−∞],

ΓR,j =

(
1 0
0 1

)
, j ∈ {1, 2, 3, 5, 6}.

Explicit computation then shows

Γ∗S,j

(
ΓR,j −

(
1 0
0 1

))
= ΓR,j −

(
1 0
0 1

)
.

In particular we find

Γ∗S,j

(
ΓR,j −

(
1 0
0 1

))
=

(
0 0
0 0

)
if j ∈ {1, 2, 3, 5, 6} and

Γ∗S,4(s)

(
ΓR,4(s)−

(
1 0
0 1

))
= −1

2

2

1 + 2is
Ps

(
1 1
1 1

)
for s ∈ [∞,−∞]. Thus we find q(VUF0(W

∗
S(WR − Id))F ∗0U

∗V∗) = q(VUF0(WR − Id)F ∗0U
∗V∗).

Since their images under the quotient map agree, we have WR = Id + W ∗S(WR − Id) (mod
compacts). The result then follows from Equation (4.4).

Lemma 4.4. We have the equality

Index(WR) = dim(Ps).

Proof. The operator q(VUF0WRF
∗
0U
∗V∗) has components

ΓR,4(s) =

(
1 0
0 1

)
− 1

2

2

1 + 2is
Ps

(
1 1
1 1

)
, s ∈ [∞,−∞],

ΓR,j =

(
1 0
0 1

)
, j ∈ {1, 2, 3, 5, 6}.
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The index of WR can then be computed using Gohberg-Krĕın theory [13] as the sum of winding
numbers

Index(WR) =

6∑
j=1

Wind(ΓR,j).

For j ∈ {1, 2, 3, 5, 6} we have Wind(ΓR,j) = 0. If dim(Ps) = 0 we have Wind(ΓR,4) = 0 also. If
dim(Ps) = 1, then we find

Wind(ΓR,4) = − 1

2πi

∫ ∞
−∞

d
ds det(ΓR,4(s))

det(ΓR,4(s))
ds

=
1

2πi

∫ ∞
−∞

4i

4s2 + 1
ds

= 1,

from which the result follows.

Corollary 4.5. We have the equality

Index(W−) = Index(WS) + dim(Ps).

To determine an analytic formula for Index(WS) requires a more subtle analysis of the high-
energy behaviour of the scattering matrix (see for example [16, Theorem III.1] and [42, Section
9.2]) and we defer the proof to a future publication. The analytic formula has previously been
obtained by [25], and reads

Index(W−) = −N =
1

2πi

∫ ∞
0

(
Tr
(
S(λ)∗S′(λ)

)
− c1

)
dλ+ dim(Ps)− β2. (4.5)

Here the constants are given by

c1 = −(2πi)Vol(S3)
2(2π)4

∫
R4

V (x) dx and β2 = −Vol(S3)
4(2π)4

∫
R4

V (x)2 dx.

The proof in [25] used high energy asymptotics of the spectral shift function, obtained using
heat kernel methods. Our approach also uses high energy asymptotics for the spectral shift,
but then utilises regularised determinants, the limiting absorption principle and Gohberg-Krĕın
theory.
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edition, 1996.

[6] J. Bellissard, H. Schulz-Baldes. Scattering theory for lattice operators in dimension d ≥ 3,
Rev. Math. Phys., 24 (8), 2012, 12500020.
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