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Abstract

Let B be a C∗-algebra, X a Hilbert C∗-module over B and M,N ⊂ X a pair
of complemented submodules. We prove the C∗-module version of von Neumann’s
alternating projections theorem: the sequence (PNPM )n is Cauchy in the ∗-strong
module topology if and only if M ∩ N is the complement of M⊥ +N⊥. In this case,
the ∗-strong limit of (PMPN )

n is the orthogonal projection onto M ∩N . We use this
result and the local-global principle to show that the cosine of the Friedrichs angle
c(M,N) between any pair of complemented submodules M,N ⊂ X is well-defined and
that c(M,N) < 1 if and only if M ∩N is complemented and M +N is closed.
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Introduction

In this note we offer a new and general approach to the two projection problem in Hilbert
C∗-modules. As an application we extend and improve upon several of the main results in
the recent work of [LMX] by giving new proofs that allow for the removal of a key hypothesis.

Briefly, we begin by proving the Hilbert C∗-module version of von Neumann’s alternating
projections theorem, which computes the projection onto M ∩ N for a concordant pair of
complemented submodules M,N (see below). We then proceed to use this result to define
the Friedrichs angle between an arbitrary pair of complemented submodules. The angle is
realised as a function on the space of representations of the coefficient algebra of the module.
The properties of the Friedrichs angle give necessary and sufficient conditions for the sum
and intersection of two complemented submodules to again be complemented. We now give
a little more detail on these results.
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Given two closed subspaces M,N of a Hilbert space H there is an orthogonal direct sum
decomposition

H = (M ∩N)⊕ (M⊥ +N⊥). (0.1)

A fundamental result of von Neumann, the method of alternating projections, states that the
projection PM∩N onto M ∩N can be obtained as the ∗-strong limit

PM∩N = s− lim
n→∞

(PMPN)n = s− lim
n→∞

(PNPM)n.

The (cosine) of the Friedrichs angle between M and N is the quantity

c(M,N) := ‖PMPN − PM∩N‖,

and the subspace M⊥ +N⊥ is closed if and only if c(M,N) < 1.

In this paper we consider a pair (M,N) of complemented submodules of a Hilbert C∗-module
X over a C∗-algebra B. It is well-known that closed submodules of Hilbert C∗-modules need
not be orthogonally complemented. This one technical constraint necessitates the discussion
of adjointable endomorphisms and regular (unbounded) operators for these modules, [FL, L].

The complementability issue does not arise for finite dimensional vector spaces of course,
but already in the case of finite rank, locally trivial vector bundles on compact Hausdorff
base spaces we see examples of non-complementability of intersections. Classically the issue
gives rise to the notion of a strict homomorphism of vector bundles [A, Section 1.3], and we
relate the vector bundle situation to the complementability problem in Remarks 1.10, 3.7
and 3.14 below.

In Theorem 2.1 we show that the pair (M,N) induces a direct sum decomposition like (0.1)
of the Hilbert C∗-module X if and only if von Neumann’s theorem on alternating projections
is valid for this pair of submodules. We call such pairs concordant and characterise them in
terms of their Hilbert space localisations in Theorem 1.8. Our results have implications for
the Hilbert module version of the two projection problem, [LMX]. The Hilbert space version
first gained prominence in the work of Halmos [H], and has since had numerous incarnations
and applications: for a recent survey see [BS].

In [LMX], the Friedrichs angle between complemented submodules has been defined under
the constraint that M ∩ N is complemented. In Section 3 of this note we remove this hy-
pothesis and extend the definition of the Friedrichs angle to arbitrary pairs of complemented
submodules via the local-global principle of [P]. We interpret the Friedrichs angle as a func-
tion on the space B̂ of irreducible representations of B and prove that c(M,N) = c(M⊥, N⊥).
We deduce that c(M,N) < 1 if and only if the sequence (PNPM)n is Cauchy for the operator
norm if and only if M ∩N is complemented and M⊥ +N⊥ is closed.

Notation. For a Hilbert C∗-module X over a C∗-algebra B we denote by End∗B(X) the
unital C∗-algebra of adjointable operators on X and by K(X) ⊂ End∗B(X) the ideal of
compact operators. The symbols ⊗alg

B , ⊗̂B and ⊗B denote the balanced algebraic, projective
and C∗-module tensor products, respectively.

Acknowledgements. We thank Marcel de Jeu for helpful conversations and Michael Frank
for valuable correspondence.
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1 Concordant submodules

Let X be a Hilbert C∗-module over the C∗-algebra B. Given two complemented submodules
M and N of X, we write PM , PN respectively for the corresponding projections in End∗B(X).
The intersection M ∩N is a closed submodule of X, and there is an inclusion

M⊥ +N⊥ ⊂ (M ∩N)⊥.

The submodule M⊥ +N⊥ need not be closed, but since (M ∩N)⊥ is closed,

M⊥ +N⊥ ⊂ (M ∩N)⊥,

as well. In case X is a Hilbert space there is an equality (see ([D01, Theorem 4.6.4])

M⊥ +N⊥ = (M ∩N)⊥, (1.1)

and thus the projections PM∩N and P
M⊥+N⊥

exist and satisfy 1− PM∩N = P
M⊥+N⊥

.

In general, the projections do not exist unless the submodules are complemented. To our
knowledge, it is an open question whether the intersection of complemented submodules is
again complemented. In [LMX, Section 3] it was shown that even in case all the projections
exist, (1.1) need not not hold (see Remark 1.2 below).

Definition 1.1. Let M and N be complemented submodules of a Hilbert C∗-module X.
The pair (M,N) is concordant if X = (M ∩ N) ⊕ (M⊥ +N⊥). If the pair (M,N) is not
concordant, we say it is discordant.

The pair (M,N) is concordant if their intersection M ∩N is complemented and its comple-
ment is M⊥ +N⊥.
Remark 1.2. The pair (M,N) being concordant is strictly stronger than the requirement that
M∩N be complemented. In [LMX, Section 3] it is shown that forX = B = C([0, π

2
],M2(C)),

the submodules

M = Ran
(

1 0
0 0

)
, N = Ran

(
cos2 t sin t cos t

sin t cos t sin2 t

)
,

satisfy M ∩ N = 0, which is complemented, whereas M⊥ +N⊥ 6= X so (M,N) is not
concordant.
Remark 1.3. Note that (M,N) is harmonious in the sense of [LMX, Definition 4.1] if each
of the submodules

M +N, M +N⊥, M⊥ +N, M⊥ +N⊥

is complemented. In this case the respective complements are

M⊥ ∩N⊥, M⊥ ∩N, M +N⊥, M ∩N,

as explained in the discussion after [LMX, Definition 4.1]. Thus (M,N) is harmonious if and
only if each of the pairs (M,N), (M,N⊥), (M⊥, N) and (M⊥, N⊥) is concordant.
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Remark 1.4. If M + N is closed, then by [LSX, Proposition 4.6] M⊥ + N⊥ is closed and
X = (M ∩N)⊕ (M⊥+N⊥). In particular, M +N is closed if and only if M⊥+N⊥ is closed
and in this case both (M,N) and (M⊥, N⊥) are concordant (see Proposition 3.10 below).

Remark 1.5. In [RS] it was shown that the universal C∗-algebra C∗(p, q) generated by two
projections p and q admits the following concrete model

C∗(p, q) ' {A(t) ∈ C([0, π/2],M2(C)) : A(0) and A(π/2) diagonal} ,

with the isomorphism is determined by

p 7→ P :=

(
1 0
0 0

)
, q 7→ Q :=

(
cos2 t sin t cos t

sin t cos t sin2 t

)
.

From this point of view, the counterexample of [LMX, Section 3] discussed in Remark 1.2
above arises from the universal example. This shows that specific properties such as being
concordant or harmonious hold in some representations of C∗(p, q), but not in all of them.

We will now characterise concordant pairs by looking at their Hilbert space localisations.

Let π : B → B(Hπ) be a representation of B on the Hilbert space Hπ and write Xπ :=
X ⊗B Hπ. There is a representation

π̂ : End∗B(X)→ B(Xπ), T 7→ T ⊗ 1. (1.2)

Write Mπ := M ⊗B Hπ ⊂ X ⊗B Hπ, and similarly for N . Then Mπ and Nπ are closed
subspaces of the Hilbert space Xπ and we have PMπ := π̂(PM) = PM ⊗ 1, as well as PNπ :=
π̂(PN) = PN⊗1. Since the subspaceMπ∩Nπ is closed, there is a projection PMπ∩Nπ ∈ B(Xπ)
that projects onto Mπ ∩ Nπ. In general, the equality Mπ ∩ Nπ = (M ∩ N)π need not hold,
even if M ∩N is complemented. We recall the following fact.

Proposition 1.6 (Local-global principle for complemented submodules [P]). Let Ω ⊂ X be a
closed submodule. Then Ω is complemented if and only if for every irreducible representation
π : B → B(Hπ) there is an equality (Ωπ)⊥ = (Ω⊥)π.

Proof. By [P, Corollaire 1.17], we have that X = Ω⊕Ω⊥ if and only if for every irreducible
representation π : B → B(Hπ) there is an equality

Xπ = X ⊗B Hπ = (Ω⊕ Ω⊥)⊗B Hπ = Ω⊗B Hπ ⊕ Ω⊥ ⊗B Hπ = Ωπ ⊕ (Ω⊥)π.

Since (Ω⊥)π ⊂ (Ωπ)⊥, this holds if and only if (Ω⊥)π = (Ωπ)⊥.

A weaker form of this result was proved independently, though several years later, in [KL12].
There, the local side of the equivalence involved all representations of the C∗-algebra B.
The two results are equivalent because the proof of the implication ⇒ in Proposition 1.6
holds verbatim for an arbitrary representation of the C∗-algebra B, see [KL17]. We will use
both instances of the result.
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Lemma 1.7. Let X be a Hilbert C∗-module over B, M,N complemented submodules and
π : B → B(Hπ) a representation. Then there is an equality of closed subspaces

(Mπ)⊥ + (Nπ)⊥ =
(
M⊥ +N⊥

)
π
.

Proof. The inclusion of subspaces

(M⊥)π + (N⊥)π ⊂
(
M⊥ +N⊥

)
π

shows that we have an inclusion of closed linear subspaces

(M⊥)π + (N⊥)π ⊂
(
M⊥ +N⊥

)
π
.

The subspace (M⊥ +N⊥)⊗alg
B Hπ is dense in (M⊥ +N⊥ )π and since

(M⊥ +N⊥)⊗alg
B Hπ ⊂ (M⊥)π + (N⊥)π ⊂ (M⊥)π + (N⊥)π ⊂

(
M⊥ +N⊥

)
π
,

it follows that (M⊥)π + (N⊥)π =
(
M⊥ +N⊥

)
π
. SinceM and N are complemented we have

(Mπ)⊥ = (M⊥)π and (Nπ)⊥ = (N⊥)π and thus (Mπ)⊥ + (Nπ)⊥ =
(
M⊥ +N⊥

)
π
.

Theorem 1.8. Let X be a Hilbert C∗-module over B and M and N complemented submod-
ules. Then the pair (M,N) is concordant if and only if for every irreducible representation
π : B → B(Hπ) there is an equality of closed subspaces Mπ ∩Nπ = (M ∩N)π.

Proof. Suppose that M and N are concordant so that

X = (M ∩N)⊕
(
M⊥ +N⊥

)
.

Therefore Proposition 1.6 and Lemma 1.7 give

((M ∩N)π)⊥ = ((M ∩N)⊥)π = (M⊥ +N⊥)π = (Mπ)⊥ + (Nπ)⊥.

Taking orthogonal complements we find (M ∩N)π =
(

(Mπ)⊥ + (Nπ)⊥
)⊥

= Mπ ∩Nπ.

Conversely, suppose that Mπ ∩ Nπ = (M ∩ N)π for all irreducible representations π. By
Lemma 1.7 and Equation (1.1) we have

(M⊥ +N⊥)π = (Mπ)⊥ + (Nπ)⊥ = (Mπ ∩Nπ)⊥,

and we deduce that

(M ∩N)π ⊕ (M⊥ +N⊥)π = (Mπ ∩Nπ)⊕ (Mπ ∩Nπ)⊥ = Xπ.

By Proposition 1.6 we conclude that X = (M ∩N)⊕M⊥ +N⊥.
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In line with the local-global principle, Proposition 1.6, we obtain the same result when we
consider all representations of the base algebra B.

Corollary 1.9. Let X Hilbert C∗-module over B and M and N complemented submodules.
Then (M,N) is concordant if and only if for every representation π : B → B(Hπ) there is
an equality of closed subspaces Mπ ∩Nπ = (M ∩N)π.

Proof. The proof of ⇒ in Theorem 1.8 shows that Mπ ∩Nπ = (M ∩N)π for every represen-
tation whenever (M,N) is concordant.

Remark 1.10. Consider B = C([0, π
2
]), X = C([0, π

2
],C2) and consider the submodules

M = Ran
(

1 0
0 0

)
, N = Ran

(
cos2 t sin t cos t

sin t cos t sin2 t

)
.

We have M ∩N = 0 and for the irreducible representations given by t ∈ [0, π/2] we have

Mt ∩Nt =

{
0 t = 0

C t 6= 0,

so (M,N) is discordant by Theorem 1.8.

2 Von Neumann’s theorem of alternating projections

Let P,Q ∈ End∗B(X) be projections

P ∗ = P 2 = P, Q∗ = Q2 = Q.

The submodules Ran P and Ran Q are complemented in X, and every complemented sub-
module is the range of an adjointable projection. As noted before, it is an open question
whether the intersection Ω := Ran P ∩ Ran Q, which is a closed submodule, is comple-
mented. In case B = C and X is a Hilbert space this is true and thus there is a projection
PΩ with Ran PΩ = Ω. For n ≥ 0, write

(P,Q)n := · · ·PQPQ, the product of exactly n alternating factors ending in Q.

Von Neumann proved the following well-known theorem.

Theorem 2.1 ([vN, Lemma 22]). Let H be a Hilbert space, M,N ⊂ H closed subspaces
and Ω := M ∩ N . Let P = PM and Q = PN be the orthogonal projections onto M and N
respectively. The orthogonal projection PΩ onto Ω can be obtained as the strong limit of any
of the sequences

(PQ)n, (QP )n, (P,Q)n, (Q,P )n, (2.1)

or any of their subsequences.
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In a Hilbert C∗-module X, the analogue of the ∗-strong topology is defined by the seminorms

‖T‖x := max{‖Tx‖, ‖T ∗x‖}, x ∈ X,

and we refer to this topology as the ∗-strong module topology. On bounded sets the ∗-strong
module topology coincides with the strict topology on End∗B(X) relative to the ideal K(X),
[MT, Proposition 5.5.9]. The following fact is well-known.

Lemma 2.2. The ∗-strong module topology is complete on bounded sets.

Proof. Let Tn ∈ End∗B(X) be a sequence that is Cauchy for the seminorms ‖ · ‖x, x ∈ X. By
the Uniform Boundedness Principle, the operators

Tx := lim
n→∞

Tnx, and T ∗x := lim
n→∞

T ∗nx,

are well-defined, bounded and mutually adjoint.

Lemma 2.3. Let P,Q ∈ End∗B(X) be projections. Then (PQ)n and (QP )n are ∗-strongly
Cauchy if and only if (PQP )n and (QPQ)n are ∗-strongly Cauchy if and only if (P,Q)n and
(Q,P )n (as defined in (2.1)) are ∗-strongly Cauchy. The same statement holds for the norm
topology.

Proof. Since

(P,Q)n =

{
(PQ)

n
2 n even

(QPQ)
n−1
2 n odd,

(Q,P )n =

{
(QP )

n
2 n even

(PQP )
n−1
2 n odd,

it suffices to prove that (PQ)n and (QP )n are ∗-strongly Cauchy if and only (PQP )n and
(QPQ)n are ∗-strongly Cauchy. The same holds for the norm topology.

Any projection P satisfies 〈Px, Px〉 ≤ 〈x, x〉 and Q(PQ)n = (QPQ)n so that

〈(PQ)nx, (PQ)nx〉 = 〈(Q(PQ)n + (1−Q)(PQ)n)x, (Q(PQ)n + (1−Q)(PQ)n)x〉
≥ 〈(QPQ)nx, (QPQ)nx〉
= 〈(P (QPQ)n + (1− P )(QPQ)n)x, (P (QPQ)n + (1− P )(QPQ)n)x〉
≥ 〈(PQ)n+1x, (PQ)n+1x〉. (2.2)

Now for m > n we have

(PQ)n−(PQ)m = (PQ)n(1−(PQ)m−n), ((QPQ)n−(QPQ)m) = (QPQ)n(1−(QPQ)m−n),

which, together with (2.2) gives

〈((PQ)n − (PQ)m)x, ((PQ)n − (PQ)m)x〉 = 〈(PQ)n(1− (PQ)m−n)x, (PQ)n(1− (PQ)m−n)x〉
≥ 〈(QPQ)n(1− (PQ)m−n)x, (QPQ)n(1− (PQ)m−n)x〉
= 〈((QPQ)n − (QPQ)m)x, ((QPQ)n − (QPQ)m)x〉
= 〈(QPQ)n(1− (QPQ)m−n)x, (QPQ)n(1− (QPQ)m−n)x〉
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≥ 〈(PQ)n+1(1− (QPQ)m−n)x, (PQ)n+1(1− (QPQ)m−n)x〉
≥ 〈((PQ)n+1 − (PQ)m+1)x, ((PQ)n+1 − (PQ)m+1)x〉.

This proves that (PQ)n is pointwise Cauchy if and only if (QPQ)n is pointwise Cauchy.
Thus (PQ)n and (QP )n are both ∗-strongly Cauchy if and only if (PQP )n and (QPQ)n

are both ∗-strongly Cauchy. The statements for the norm topology follow from the same
inequalities. This completes the proof.

Proposition 2.4. Suppose that (PQ)n is ∗-strongly Cauchy. Then so are (QP )n, (PQP )n,
(QPQ)n, (Q,P )n and (P,Q)n. The ∗-strong limits of each of these sequences is a projection
PΩ with range Ω := Ran P ∩ Ran Q. In particular Ω is complemented.

Proof. Since ((PQ)n)∗ = (QP )n, the first statement follows from Lemma 2.3. We will prove
that s − limn→∞(PQP )n = s − limn→∞(QPQ)n and that this operator is a projection PΩ

with range Ω. It then follows that Ω is complemented and that

PΩ = s− lim
n→∞

(P,Q)n = s− lim
n→∞

(Q,P )n,

since (PQP )n is a subsequence of (Q,P )n and (QPQ)n is a subsequence of (P,Q)n. Then
(PQ)n and (QP )n are subsequences of (P,Q)n and (Q,P )n, respectively it follows that

PΩ = s− lim
n→∞

(PQ)n = s− lim
n→∞

(QP )n,

as well.

By Lemma 2.2 the ∗-strong limit P̃ := lim(PQP )n exists, is self-adjoint and ‖P̃‖ ≤ 1. To
prove that P̃ is a projection let x ∈ X and ε > 0. Choose N such that for all k ≥ N we have

‖P̃ x− (PQP )kx‖ < ε.

Now consider

‖P̃ 2x− P̃ x‖ = ‖P̃ (PQP )kx− P̃ x‖+ ‖P̃ (P̃ − (PQP )k)x‖
≤ ‖P̃ (PQP )kx− P̃ x‖+ ‖(P̃ − (PQP )k)x‖
< ‖P̃ (PQP )kx− P̃ x‖+ ε

= lim
n→∞

‖(PQP )n+kx− P̃ x‖+ ε = ε,

and as ε was arbitrary, it follows that P̃ 2x = P̃ x.

To prove that Ran P̃ = Ω, first observe that if x ∈ Ω then

x = Px = Qx = PQPx,

so P̃ x = x and Ω ⊂ Ran P̃ .

For the reverse inclusion we will show that P̃ = PP̃ = QP̃ . The equalities

PP̃x = P̃ x, and PQP̃x = P̃ x,
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hold by construction. Now for any x ∈ X we have

〈Px, Px〉 ≤ 〈x, x〉, 〈Qx,Qx〉 ≤ 〈x, x〉,

from which we deduce that

〈P̃ x, P̃ x〉 = 〈PQP̃x, PQP̃x〉 ≤ 〈QP̃x,QP̃x〉 ≤ 〈P̃ x, P̃ x〉.

Therefore 〈QP̃x,QP̃x〉 = 〈P̃ x, P̃ x〉 and 〈(1 − Q)P̃ x, (1 − Q)P̃ x〉 = 0. It follows that (1 −
Q)P̃ x = 0 so QP̃x = P̃ x. This shows that QP̃ = P̃ and thus Ran P̃ ⊂ Ω. Therefore
Ω is complemented and PΩ = P̃ = s − lim(PQP )n in the ∗-strong module topology. By
exhanging the rôles of P and Q, we find that PΩ = s− lim(QPQ)n as well.

In order to address the appropriate converse to Proposition 2.4, we need a description of the
Banach space dual X∗ := B(X,C) of bounded linear functionals on a Hilbert C∗-module X.
To this end we first recall the dual or conjugate C∗-module.

The space of compact operators K(X,B) from X to B is a left B-module via (b ·K)(x) :=
bK(x) and carries a natural left B ' K(B,B) valued inner product 〈K,L〉 := KL∗. The
conjugate module X is defined to be the set X with the conjugate C-vector space structure,
and we write elements of X as x with x ∈ X. The left B-module structure and inner product

b · x := xb∗, 〈x, y〉 := 〈x, y〉.

These left Hilbert C∗-modules over B are isomorphic, by the following well-known theorem
[L, page 13].

Proposition 2.5 (Riesz-Fréchet theorem for Hilbert C∗-modules). The map

T : X → K(X,B), x 7→ Tx, Tx(y) := 〈x, y〉, x, y ∈ X,

is a unitary isomorphism of left Hilbert C∗-modules over B.

The dual Banach space of the C∗-algebra B, B∗ := B(B,C), is a right Banach B-module via

(ϕ · b)(a) := ϕ(ba), a, b ∈ B.

Lastly, for a right Banach B-module V and a left Banach B-moduleW , we denote by V ⊗̂BW
the balanced Banach space projective tensor product of V and W . We are now ready to
recall a result of Schweizer, [S, Proposition 3.1], giving a complete description of the dual
Banach space X∗ of the module X.

Proposition 2.6. Let X be a Hilbert C∗-module, X := K(X,B) the conjugate module and
X∗ = B(X,C) the dual Banach space of X. The map ψ : B∗⊗alg

B X → X∗ given by

ψ(φ⊗ y)(x) := φ(〈y, x〉), φ ∈ B∗, x, y ∈ X,

extends to an isometric isomorphism B∗⊗̂BX → X∗ of Banach spaces.
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For a Banach space W , the weak topology on W is the locally convex topology defined by
the seminorms ‖w‖ϕ := ‖ϕ(w)‖. In general the weak topology is not complete, that is, weak
Cauchy sequences need not have a weak limit in X. However, we do have the following
fundamental result for weakly convergent sequences.

Theorem 2.7 ([RSz, Chap II, Section 38]). Let W be a Banach space and C ⊂ W a convex
set. Then the weak closure of C coincides with the norm closure of C. In particular, if wj →
w in the weak topology, then there exists a sequence of convex combinations yj :=

∑nj
k=j tjwj

such that ‖yj − w‖ → 0.

In the sequel we will freely use the following computational tool.

Lemma 2.8. Let P,Q ∈ End∗B(X) be projections such that Ω := Ran P ∩Ran Q is comple-
mented. Then for all k ≥ 1 we have

(PQ− PΩ)k = (PQP )k − PΩ, (QP − PΩ)k = (QPQ)k − PΩ,

(PQP − PΩ)k = (PQP )k − PΩ, (QPQ− PΩ)k = (QPQ)k − PΩ.

Proof. The statement holds for k = 1. Since PΩ = PΩP = PPΩ = PΩQ = QPΩ we have

(PQ)k+1 − PΩ = (PQ− PΩ)((PQ)k − PΩ), (QP )k+1 − PΩ = (QP − PΩ)((QP )k − PΩ),

and

(PQP )k+1 − PΩ = P ((QP )k+1 − PΩ), (QPQ)k+1 − PΩ = Q((PQ)k+1 − PΩ),

so the result follows by induction on k.

We are now ready to prove our main theorem.

Theorem 2.9. Let M,N be complemented submodules of a Hilbert C∗-module X. Then
(M,N) is a concordant pair if and only if the sequence (PNPM)n is Cauchy in the ∗-strong
module topology on End∗B(X).

Proof. We write P = PM , Q = PN and Ω := M ∩N .

⇐ In Proposition 2.4 it was proved that Ω is complemented and lim(PQ)nx = PΩx. Now if
π : B → B(Hπ) is an irreducible representation then

PMπ∩Nπ(x⊗ h) = lim
n→∞

(PMπPNπ)n(x⊗ h) = lim
n→∞

π̂(PMPN)n(x⊗ h)

= lim
n→∞

((PQ)nx)⊗ h = PΩx⊗ h = π̂(PΩ)(x⊗ h),

so PMπ∩Nπ = π̂(PΩ) and thus Ωπ = Mπ ∩Nπ, so (M,N) is concordant by Theorem 1.8.

For the converse, assume that (M,N) is concordant and write PΩ for the projection onto
Ω. By Lemma 2.3 it suffices to prove that (PQP )nx → PΩx and (QPQ)nx → PΩx for all
x ∈ X.
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We first prove that (PQP )nx converges to PΩx in the weak topology on X. To this end
observe that since ‖(PQP )n‖ ≤ ‖PQP‖n ≤ 1 the sequence (PQP )nx is bounded in norm.
Therefore, by Proposition 2.6 it suffices to show that (φ⊗ y)((PQP )nx)→ (φ⊗ y)(PΩx) for
all φ ∈ B∗ and y ∈ X, as such functionals generate the weak topology. Since every functional
on the C∗-algebra B is a linear combination of four states (see [T]), we may restrict ourselves
to states σ ∈ B∗. In the universal representation Hu of B, every state σ arises as a vector
state associated to a unit vector hσ ∈ Hu. Denote by πσ the GNS-representation associated
to the state σ. Then by Theorem 2.1 we find

(σ ⊗ y)((PQP )nx) = σ(〈y, (PQP n)x〉) = 〈hσ, 〈y, (PQP )nx〉hσ〉
= 〈y ⊗ hσ, (PQP )nx⊗ hσ〉 → 〈y ⊗ hσ, PΩσ(x⊗ hσ)〉.

By Corollary 1.9,Mπσ∩Nπσ = Ωπσ so PΩσ = PΩ⊗1 = π̂σ(PΩ), and (PQP )nx⊗hσ → PΩx⊗hσ
in the Hilbert space X ⊗B Hu. Therefore (PQP )nx→ PΩx weakly in X.

By Theorem 2.7, there is a sequence of convex combinations yk =
∑nk

i=k ti(PQP )ix such that
yk → PΩx in norm in X. Since for all n we have

PΩ(PQP )n = (PQP )nPΩ = PΩ, (PQP )m ≤ (PQP )n, m ≥ n,

we can estimate

〈(yk − PΩ)x, (yk − PΩ)x〉 =

〈(
nk∑
i=k

ti(PQP )i − PΩ

)
x,

(
nk∑
i=k

ti(PQP )i − PΩ

)
x

〉

=

〈(
nk∑
i=k

ti(PQP )i − PΩ

)2

x, x

〉

=

〈(
nk∑
i,j=k

titj(PQP )i+j − PΩ

)
x, x

〉

≥

〈(
nk∑
i,j=k

titj(PQP )2nk − PΩ

)
x, x

〉
= 〈((PQP )2nk − PΩ)x, x〉
= 〈((PQP )nk − PΩ)x, ((PQP )nk − PΩ)x〉,

where the last step follows using Lemma 2.8. Therefore it follows that the subsequence
(PQP )nk is such that for all x ∈ X we have norm convergence (PQP )nkx→ PΩx as k →∞.
Since for any m ≥ n we have

〈((PQP )n − PΩ)x, ((PQP )n − PΩ)x〉 ≥ 〈((PQP )m − PΩ)x, ((PQP )m − PΩ)x〉,

we find that

‖((PQP )n − PΩ)x‖ ≥ ‖((PQP )m − PΩ)x‖.

Thus it follows that limn→∞ ‖((PQP )n − PΩ)x‖ → 0. By swapping the rôles of P and Q we
find that limn→∞ ‖((QPQ)n − PΩ)x‖ → 0 as well. This completes the proof.
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3 Angle, sum and intersection

We now consider the applications of our main result to various problems concerning pairs of
complemented submodules of Hilbert C∗-modules.

3.1 The Friedrichs angle between complemented submodules

In [LMX], the following definition for the Friedrichs angle between complemented submodules
was given, which we now recall. Let M,N ⊂ X be complemented submodules such that
M ∩ N is complemented and write PM , PN and PM∩N respectively for the corresponding
projections. The quantity

c(M,N) := ‖PMPN(1− PM∩N)‖ = ‖PMPN − PM∩N‖, (3.1)

is called the (cosine of the) Friedrichs angle between M and N .

For the above definition, the existence of the projection PΩ seems necessary. This is un-
desirable and ideally the angle should be an invariant associated to any pair (M,N) of
complemented submodules. We propose the following generalisation, based on Hilbert space
localisation.

Definition 3.1. Let M,N ⊂ X be complemented submodules. Let π : B → B(Hπ) be a
representation of B on Hπ. The quantity

cπ(M,N) := c(Mπ, Nπ) = ‖PMπPNπ(1− PMπ∩Nπ)‖ = ‖PMπPNπ − PMπ∩Nπ‖, (3.2)

is called the (cosine of the) local Friedrichs angle between M and N at π.

Proposition 3.2. Suppose that π : B → B(Hπ) is faithful. Then

1. If (M,N) is concordant, then cπ(M,N) = c(M,N);

2. If (M,N) is discordant, then cπ(M,N) = 1.

In particular the (cosine of the) local Friedrich angle cπ(M,N) is independent of the choice
of faithful representation π.

Proof. Suppose (M,N) is concordant, so that by Corollary 1.9, Mπ ∩ Nπ = (M ∩ N)π and
PMπ∩Nπ = π̂(PM∩N). Since π is faithful, the representation End∗B(X) → B(Xπ) is faithful
and hence isometric. Therefore

cπ(M,N) = ‖π̂(PNPM − PM∩N)‖ = ‖PNPM − PM∩N‖ = c(M,N),

which proves 1.

Clearly 0 ≤ cπ(M,N) ≤ 1, so suppose that cπ(M,N) < 1 and write P = PM and Q = PN .
We will show that the sequence (PQ)n is Cauchy for the norm topology. Then by Theorem
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2.9, (M,N) is concordant, which proves 2. So for m ≥ n recall the representation π̂ from
Equation (1.2) and consider

‖(PQ)n − (PQ)m‖ = ‖π̂((PQ)n − (PQ)m)‖
≤ ‖π̂(PQ)n − PMπ∩Nπ‖+ ‖π̂(PQ)m − PMπ∩Nπ‖
= ‖(PMπPNπ)n − PMπ∩Nπ‖+ ‖(PMπPNπ)m − PMπ∩Nπ‖
= ‖(PMπPNπ − PMπ∩Nπ)n‖+ ‖(PMπPNπ − PMπ∩Nπ)m‖ (by Lemma 2.8)

≤ ‖PMπPNπ − PMπ∩Nπ‖n + ‖PMπPNπ − PMπ∩Nπ‖m

= cπ(M,N)n + cπ(M,N)m → 0,

since cπ(M,N) < 1. This completes the proof.

We denote by B̂ the space of unitary equivalence classes of irreducible representations of
the C∗-algebra B, by P(B) the pure state space of B and by πσ the GNS-representation
associated to the state σ. We can view the local Friedrichs angles as a function B̂ → [0, 1]

and via the composition P(B)→ B̂, also as a function on P(B).

Corollary 3.3. The Friedrichs angle (3.1) and the local Friedrichs angles (3.2) are related
by c(M,N) = supπ∈B̂ cπ(M,N) = supσ∈P(B) cπσ(M,N).

Proof. The representations Ĥ =
⊕

π∈B̂Hπ and HP :=
⊕

σ∈P(B) Hπσ are faithful.

In view of Proposition 3.2 and Corollary 3.3, we define the Friedrichs angle between an
arbitrary pair of complemented submodules to be c(M,N) := cπ(M,N), with π faithful. It
was shown in [LMX] that

c(M,N) = c(M⊥, N⊥), (3.3)

provided that M ∩ N and M⊥ ∩ N⊥ are complemented. In particular, the equality holds
for any pair of subspaces of a Hilbert space, [D95, Theorem 2.16]. We will now show that
the equality (3.3) holds for an arbitrary pair of complemented submodules. This gives an
extension, and a different proof, of [LMX, Theorem 5.12].

Theorem 3.4. Let X be a Hilbert C∗-module and M,N ⊂ X complemented submodules.
Then c(M,N) is well-defined and c(M,N) = c(M⊥, N⊥).

Proof. For any representation π : B → B(Hπ) there is an equality of submodules (Mπ)⊥ =
(M⊥)π whenever M is complemented. Moreover Equation (3.3) holds for the subspaces
Mπ, Nπ of the Hilbert space Xπ. Thus by Proposition 3.2 we have

c(M,N) = cπ(M,N) = c(Mπ, Nπ)

= c((Mπ)⊥, (Nπ)⊥) = c((M⊥)π, (N
⊥)π)

= cπ(M⊥, N⊥) = c(M⊥, N⊥),

as claimed.
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Now we further analyse the properties of the local Friedrichs angles as a function on B̂.

Proposition 3.5. Suppose (M,N) is concordant. Then the map

B̂ → [0, 1], π 7→ cπ(M,N),

is lower semi-continuous. If X is full and B̂ is Hausdorff, π 7→ cπ(M,N) is continuous.

Proof. Let J := 〈B,B〉 and B̂ → Ĵ the restriction map, which is continuous. The C∗-
algebras J and K(X) are Morita equivalent, so by the Rieffel correspondence [R] the map
π 7→ π̂ is a homeomorphism Ĵ → K̂(X). Since K(X) ⊂ End∗B(X) is an essential ideal, there
is a continuous inclusion K̂(X)→ ̂End∗B(X), see [Da, Section 2]. When (M,N) is concordant
the map π 7→ cπ(M,N) can be written as a composition

π 7→ π̂ 7→ ‖π̂(PMPN − PM∩N)‖,

and is thus lower semicontinuous by [RW, Lemma A.30]. For X full and B̂ Hausdorff,
continuity follows by [RW, Lemma 5.2].

Corollary 3.6. Suppose X is full, B is unital, B̂ is Hausdorff and (M,N) is concordant.
Then c(M,N) < 1 if and only if cπ(M,N) < 1 for every irreducible representation π.

Proof. Since B̂ is compact Hausdorff and the Friedrichs angle is continuous, the pointwise
estimate cπ(M,N) < 1 implies that c(M,N) = supπ∈B̂ cπ(M,N) < 1.

Remark 3.7. In Proposition 3.5, the condition that (M,N) be concordant cannot be relaxed.
Consider B = C([0, π

2
]), X = C([0, π

2
],C2) and consider the submodules

M = Ran
(

1 0
0 0

)
, N = Ran

(
cos2 t sin t cos t

sin t cos t sin2 t

)
.

For t ∈ [0, π/2] we write ct(M,N) for the Friedrichs angle at t. For 0 < t ≤ π
2
we have

Mt ∩Nt = {0} whereas at t = 0 we have M0 = N0. We thus have

ct(M,N)2 = ‖PMtPNt‖2 =

∥∥∥∥(cos2 t sin t cos t
0 0

)∥∥∥∥2

= cos2 t < 1, 0 < t ≤ π

2
,

and ct(M,N) = | cos t|, whereas c0(M,N) = 0. Thus the angle is discontinuous at 0 and in
particular we conclude once more that (M,N) is discordant. This is another instance where
the universal example (see Remark 1.5) provides a counterexample to a specific property.

3.2 Sum and intersection

With our extended definition of the Friedrichs angle we now examine the case c(M,N) < 1
in more detail. Our results are all derived from results in [LMX], where complementability
of M ∩N is an assumption. We first recall the following well-known fundamental result and
a relevant corollary.
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Theorem 3.8. Let T ∈ End∗B(X), then

Ran(T ) = Ran(TT ∗),

and T has closed range if and only if T ∗ has closed range. If T has closed range then

Ran(T ) = Ran(TT ∗),

and Ran(T ) is a complemented submodule of X with Ran(T )⊥ = kerT ∗.

Proof. See [L, Theorem 3.2, Proposition 3.7].

Corollary 3.9 ([LMX], Remark 5.8). Let P,Q be adjointable projections on a Hilbert C∗-
module X, then

Ran(P ) + Ran(Q) = Ran(P +Q).

In particular Ran(P ) +Ran(Q) is closed if and only if Ran(P +Q) is closed and in that case

Ran(P ) + Ran(Q) = Ran(P +Q),

which is a complemented submodule of X.

Proof. By the following well-known observation(
0 0
0 P +Q

)
=

(
0 0
P Q

)
·
(

0 P
0 Q

)
=

(
0 0
P Q

)
·
(

0 0
P Q

)∗
,

as operators on X ⊕ X, it follows that Ran(P +Q) = Ran(P ) + Ran(Q) by Theorem 3.8.
Therefore, Ran(P ) + Ran(Q) is closed if and only if Ran(P ) + Ran(Q) = Ran(P + Q) is
closed.

Lemma 3.10. Let P,Q be adjointable projections on a Hilbert C∗-module X, then

ker(1− PQ) = ker(1−QP ) = Ran P ∩ Ran Q.

Proof. It is clear that Ran P ∩ Ran Q ⊂ ker(1− PQ) ∩ ker(1−QP ). We prove the reverse
inclusion. Suppose that x ∈ ker(1− PQ), so that x = PQx. Then clearly x = Px and

〈Qx,Qx〉 = 〈PQx, PQx〉+ 〈(1− P )Qx, (1− P )Qx〉 ≥ 〈PQx, PQx〉 = 〈x, x〉,

and thus (1−Q)x = 0 so x = Qx. By reversing the roles of P and Q this shows that

ker(1− PQ) = ker(1−QP ) = {x ∈ X : x = Px = Qx} = Ran P ∩ Ran Q,

as claimed.

Lastly we recall the following remarkable result from [LSX], concerning the case where the
internal sum M +N is closed.
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Proposition 3.11 ([LSX, Proposition 4.6]). Let M and N be complemented submodules of
X, such that M + N is closed in X. Then both M + N and M ∩N are complemented and
X = (M ∩N)⊕ (M⊥ +N⊥).

In the above result, complementability of M ∩N is concluded as opposed to assumed, and
we now characterise closedness of M +N in terms of our extended definition of c(M,N), as
well as in terms of properties of the operators 1− PMPN and 1− PNPM .

Proposition 3.12. Let X be a Hilbert C∗-module over a C∗-algebra B, and M and N
complemented submodules. Then the following are equivalent:

1. c(M,N) < 1;

2. The sequence (PMPN)n is Cauchy for the operator norm;

3. M ∩N is complemented and ‖PMPN − PM∩N‖ = ‖PNPM − PM∩N‖ < 1;

4. M ∩ N is complemented and the operators 1 − PMPN : (M ∩ N)⊥ → (M ∩ N)⊥ and
1− PMPN : (M ∩N)⊥ → (M ∩N)⊥ are bijective;

5. Ran(1− PMPN) and Ran(1− PNPM) are closed;

6. X = (M ∩N)⊕ (M⊥ +N⊥);

7. M⊥ +N⊥ is closed;

8. X = (M⊥ ∩N⊥)⊕ (M +N);

9. M +N is closed;

10. M ∩N is complemented and (M ∩N)⊥ ∩M + (M ∩N)⊥ ∩N is closed.

Proof. We write P = PM , Q = PN and Ω := M ∩N .

1.⇒ 2. This was shown in the proof of Proposition 3.2.

2. ⇒ 3. By Theorem 2.9, Ω is complemented and (PQ)n → PΩ in norm. By Lemma 2.3,
(QPQ)n → PΩ in norm as well. Thus for n sufficiently large ‖(QPQ)2n − PΩ‖ < 1. Then
applying Lemma 2.8 and the C∗-identity we find

‖(QPQ)2n − PΩ‖ = ‖(QPQ− PΩ)2n‖ = ‖QPQ− PΩ‖2n ,

and it follows that ‖QPQ− PΩ‖ < 1. Now, again by the C∗-identity,

‖PQ− PΩ‖2 = ‖(QP − PΩ)(PQ− PΩ)‖ = ‖QPQ− PΩ‖,

so we find that ‖PQ− PΩ‖ < 1.
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3.⇒ 4. Since ‖PQ− PΩ‖ < 1. We find that the series

∞∑
n=0

(PQ− PΩ)n = PΩ +
∞∑
n=0

((PQ)n − PΩ) (by Lemma 2.8),

is norm convergent to (1+PΩ−PQ)−1. Since Ω = ker(1−PQ) by Lemma 3.10, 1+PΩ−PQ
is bijective and commutes with PΩ, it follows that it maps Ω⊥ bijectively onto itself. The
same argument applies to QP .

4.⇒ 5. Since X = Ω⊕Ω⊥ and, by Lemma 3.10, Ω = ker(1− PQ) = ker(1−QP ) it follows
that

Ran(1− PQ) = Ran(1−QP ) = Ω⊥,

is closed.

5.⇒ 6. Since Ran(1−PQ) and Ran(1−QP ) are closed, they are complemented by Theorem
3.8. Since (1− PQ)∗ = 1−QP , we have

Ran(1−QP ) = ker(1− PQ)⊥ = Ω⊥ = ker(1−QP )⊥ = Ran(1− PQ),

and by Lemma 3.10 Ω = ker(1− PQ) = ker(1−QP ). Since

1− PQ = (1− P )Q+ 1−Q, 1−QP = (1−Q)P + 1− P,

it follows that

Ω⊥ = Ran(1− PQ) ⊂ Ran(1− P ) + Ran(1−Q) ⊂ Ω⊥.

Therefore
Ω⊥ = Ran(1− P ) + Ran(1−Q) = M⊥ +N⊥.

6.⇒ 7. Since Ω⊥ is closed, M⊥ +N⊥ is closed.

7.⇒ 8. By Proposition 3.11 M⊥ ∩N⊥ is complemented with complement (M +N)⊥.

8.⇒ 9. Since (M⊥ ∩N⊥)⊥ is closed M +N is closed.

9.⇒ 10. Since Ω is complemented, this follows from [LMX, Lemma 5.11], and Corollary 3.9
and Proposition 3.11 above.

10. ⇒ 1. By [LMX, Lemma 5.11] we have c(M⊥, N⊥) < 1, so by Theorem 3.4 we have
c(M,N) < 1.

Corollary 3.13. Let M,N ⊂ X be complemented submodules. Then c(M,N) < 1 if and
only if M ∩N is complemented and M+N is closed if and only if M⊥∩N⊥ is complemented
and M⊥ +N⊥ is closed.

Remark 3.14. Let E and F be vector bundles over a compact Haursdorff space Y . In
[A, Definition 1.3.2] a vector bundle morphism ϕ : E → F is called strict if the map
y 7→ dim kerϕy is continuous, hence locally constant, on Y . By [A, Proposition 1.32], if ϕ is
strict then

⋃
y∈Y kerϕy is a subbundle of E, and thus its module of sections is complemented.
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As in Remarks 1.10 and 3.7 consider B = C([0, π
2
]), X = C([0, π

2
],C2) and consider the

submodules
M = Ran

(
1 0
0 0

)
, N = Ran

(
cos2 t sin t cos t

sin t cos t sin2 t

)
.

We obtain two globally trivial rank one vector bundles over [0, π/2] whose modules of sections
are M and N respectively. The vector bundle homomorphism ϕ : X → X defined by
ϕ := (1− PMPN) is not strict since

kerϕt = ker(1− PMtPNt) = Mt ∩Nt,

so t 7→ dim kerϕt is discontinuous at 0 by Remark 1.10.

For a commutative unital C∗-algebra B the following corollary to Proposition 3.12 corre-
sponds to the situation where cosine of the angle between the corresponding sub-vector
bundles is < 1 in which case the bundle endomorphism 1− PMPN is strict.

Corollary 3.15. If the C∗-algebra B is unital and X is finitely generated and projective
over B, then for any pair M,N ⊂ X of complemented submodules with c(M,N) < 1 both
M ∩N and M +N are finitely generated projective B-modules.

Proof. If X is finitely generated and projective over the unital algebra B, then any com-
plemented submodule is finitely generated and projective, so in particular M ∩N is. Since
M+N is finitely generated and closed in X, it is a Hilbert C∗-module and hence is projective
by [MT, Theorem 1.4.6].
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