
The Godbillon-Vey invariant in equivariant KK-theory

Lachlan MacDonald, Adam Rennie

School of Mathematics and Applied Statistics
University of Wollongong

Northfields Ave, Wollongong, NSW, 2522

November 2018

Abstract

We construct a groupoid equivariant Kasparov class for transversely oriented foliations
in all codimensions. In codimension 1 we show that the Chern character of an associated
semifinite spectral triple recovers the Connes-Moscovici cyclic cocycle for the Godbillon-Vey
secondary characteristic class.

1 Introduction

In this paper we construct a semifinite spectral triple for codimension 1 foliations whose Chern
character is the cyclic cocycle, constructed by Connes and Moscovici [22], representing the
Godbillon-Vey class. The construction passes through groupoid equivariant Kasparov theory,
and this initial part of the construction works in all codimensions.

Associated to any foliated manifold (M,F) of codimension q is a canonical real rank q vector
bundle N = TM/T F called the normal bundle. One of the foundational results of the theory
of foliated manifolds is Bott’s vanishing theorem, which states that the Pontrjagin classes pi(N)
of the normal bundle N must vanish for all i > 2q [5]. This vanishing theorem guarantees the
existence of new characteristic classes for M called secondary characteristic classes, which have
been studied extensively [6, 8, 39]. It has been shown in particular that all such classes arise
under the image of a characteristic map from the Gelfand-Fuchs cohomology of the Lie algebra
of formal vector fields [28] to the cohomology of M [7, 8].

The most famous example of a secondary characteristic class is the Godbillon-Vey invariant,
first discovered by Godbillon and Vey [29], which arises in the context of transversely orientable
foliations and can be constructed explicitly at the level of differential forms. More specifically,
transverse orientability of a codimension q foliated manifold (M,F) amounts to the existence
of a nonvanishing section of the top degree line bundle ΛqN∗ of the conormal bundle N∗ over
M . Any identification of N∗ with a subbundle of T ∗M , obtained say by equipping M with a
Riemannian metric, identifies such a section with a nonvanishing differential form ω ∈ Ωq(M)
such that

ω(X1 ∧ · · · ∧Xq) = 0 (1)

whenever any one of the Xj is contained in the space Γ(T F) of vector fields which are tangent
to the foliation. Since the subbundle T F ⊂ TM is integrable, by the Frobenius theorem one is
guaranteed the existence of a 1-form η ∈ Ω1(M) for which

dω = η ∧ ω.

The differential form η∧(dη)q is closed, and its class GV in de Rham cohomology is independent
of the choices of ω and η. The Godbillon-Vey invariant has been shown to be closely related to
measure theory and dynamics: see [10, 26, 32, 35] for example.
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Building on work of Winkelnkemper [53] which associated to any foliated manifold (M,F) its
holonomy groupoid GF , Connes [18] initiated the study of foliated manifolds as noncommutative
geometries using the convolution algebra C∞c (GF ). Connes shows [19] that all Gelfand-Fuchs
cohomology classes (hence all secondary characteristic classes) can be represented by cyclic
cocycles on C∞c (GF ). Connes gives in particular an explicit formula for the cyclic cocycle
defined by the Godbillon-Vey invariant on foliations of codimension 1. The differential form
ω ∈ Ω1(M) used in the construction (1) of the Godbillon-Vey invariant can be regarded as a
transverse volume form, whose Radon-Nikodym derivative with respect to holonomy transport
by an element u ∈ GF we denote by

∆(u) =
d(u∗ω)

dω
.

By regarding the top degree conormal bundle as a trivial line bundle using the transverse
orientation, we can regard this Radon-Nikodym derivative as a homomorphism ∆ : GF → R∗+
into the multiplicative group of positive real numbers, and hence its logarithm ` = log ◦∆ :
GF → R as an additive homomorphism. Connes shows that the formula

φGV (a0, a1, a2) :=

∫
M

∫
u0u1u2=x∈M

a0(u0)a1(u1)a2(u2)(`(u2)d`(u1)− `(u1)d`(u2)) (2)

defines a cyclic 2-cocycle on C∞c (GF ), and that the class of this 2-cocycle coincides with that
defined by the Godbillon-Vey invariant.

More recently, Connes and Moscovici have used a deep link with Hopf symmetry [24] to
construct a characteristic map sending Gelfand-Fuchs cocycles to cyclic cocycles on the convo-
lution algebra C∞c (G̃F ) of the groupoid G̃F associated to the lift of F to the oriented frame
bundle F+N for N . Connes and Moscovici show in [22] that the formula

φ̃GV (a0, a1) :=

∫
F+N

∫
u0u1=y∈F+N

a0(u0)(δ1a1)(u1)ω̃(y), (3)

where δ1 is a derivation of C∞c (G̃F ) related to d` and where ω̃ is a G-invariant transverse volume
form on F+N , defines a 1-cocycle on C∞c (G̃F ) that represents the Godbillon-Vey invariant. As
will be shown in this paper, the derivation δ1 in fact arises from a commutator of C∞c (G̃F ) with
a dual Dirac operator on a Hilbert space of sections of an exterior algebra bundle. In noncom-
mutative geometry, the Godbillon-Vey invariant has since been further explored in groupoid
cohomology [25], cyclic cohomology [30, 31], via its pairing with the indices of longitudinal
Dirac operators [45], and in relation to manifolds with boundary [46].

Accompanying his introduction of the formula (2) for the cyclic cocycle φGV , Connes remarks
[19, Page 4] that the pairing of φGV with K-theory will not in general be integer-valued, which
implies that φGV must not arise as the Chern character of a spectral triple on C∞c (GF ). Such
constraints do not apply to semifinite spectral triples, whose pairings with K-theory need not
lie in the integers, [21, 3, 13].

In this paper we will recover the formula (3) from a semifinite spectral triple. Bearing in
mind the close relationship between semifinite spectral triples and KK-theory [38], this fact
can be seen already in the specific case of the codimension 1 Godbillon-Vey invariant using
the formalism of differential forms on jet bundles arising from Gelfand-Fuchs cohomology [22,
Proposition 19]. An entirely novel nuance of our constructions, however, is the fact that they
rely only on the intrinsic dynamics of the holonomy groupoid, and at no point invoke the
Gelfand-Fuchs machinery that has been traditionally used. This has the advantage of potentially
admitting generalisation to arenas where Gelfand-Fuchs technology either is not available, as
is the case for singular foliations, or will not yield spectral triples and so cannot be used to
calculate index formulae, as is the case when the Gelfand-Fuchs map to differential forms on jet
bundles does not yield volume forms on these bundles.
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We now outline the layout of the paper. Section 1 will discuss the background required
on Clifford bundles, groupoid actions, semifinite spectral triples and groupoid equivariant KK-
theory. Section 2 will detail the constructions of the KK-classes required. The constructions of
this section are very natural for foliations of arbitrary codimension, so will be carried out at this
level of generality. Section 3 will consist of the proof of an index theorem in codimension 1 which
states that the pairing with K-theory of the semifinite spectral triple obtained using the con-
structions of Section 2 coincides with the pairing coming from the Connes-Moscovici Godbillon-
Vey cyclic cocycle. We remark that while the spectral triple itself can be easily constructed for
foliations of arbitrary codimension, it is at this stage unclear whether the corresponding index
pairing continues to compute the pairing of the higher codimension Godbillon-Vey invariant
with K-theory. We leave this question to future work.
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2 Background

Here we recall some basic facts about groupoid actions on spaces, Clifford algebras, semifinite
spectral triples, groupoid actions on algebras and the resulting equivariant Kasparov theory.

We will assume that the reader is familiar with locally compact groupoids and their associ-
ated convolution algebras [18, 50]. All Hilbert spaces are assumed to be separable. For such a
Hilbert space H, we denote by B(H) the bounded operators on H and by K(H) the compact
operators on H. Inner products on Hilbert modules and Hilbert spaces are assumed to be
conjugate-linear in the left variable and linear in the right.

If X, Y and Z are sets with maps f : Y → X and g : Z → X, we denote by Y ×f,g Z the
fibered product {(y, z) ∈ Y × Z : f(y) = g(z)} of Y and Z.

2.1 Clifford algebras

For our constructions we will need some facts regarding Clifford algebras and their representa-
tions on exterior algebra bundles. First, if (V, 〈·, ·〉) is a real inner product space with nonde-
generate inner product, we denote by Cliff(V ) the complex Clifford algebra of V , which is the
complexification of the real Clifford algebra Cliff(V, 〈·, ·〉).

There exists a linear isomorphism ψV : Λ∗V → Cliff(V, 〈·, ·〉) between the exterior algebra
and the Clifford algebra of V defined with respect to any orthonormal basis {e1, . . . , erank(V )}
by

ψV (ei1 ∧ · · · ∧ eir) := ei1 · · · · · eir
for any multi-index (i1, . . . , ir) with r ≤ rank(V ). The isomorphism ψV determines the structure
of a Clifford bimodule on Λ∗(V ), with left action given by

cL(a)w := ψ−1
V (a · ψV (w))

and right action given by
cR(a)w := ψ−1

V (ψV (w) · a)

for a ∈ Cliff(V ) and w ∈ Λ∗(V ). We have the following important lemma describing how these
representations behave with respect to orthogonal maps.
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Lemma 2.1. Let V and W be finite dimensional inner product spaces and let ψV : Λ∗V →
Cliff(V ), ψW : Λ∗W → Cliff(W ) be the corresponding linear isomorphisms. Then if A : V →W
is an orthogonal transformation with induced algebra isomorphisms AΛ : Λ∗V → Λ∗W and
ACliff : Cliff(V )→ Cliff(W ), we have

ACliff ◦ ψV = ψW ◦AΛ.

Proof. Regard V as a subspace of Λ∗V in the usual way, let ι : V → Cliff(V ) denote the
inclusion map, and consider the map j := (ψW ◦AΛ)|V : V → Cliff(W ). Since A is orthogonal,
we have j(v)2 = ‖v‖21Cliff(W ) and so by the universal property of the Clifford algebra, there is
a unique algebra isomorphism φ : Cliff(V ) → Cliff(W ) such that φ ◦ ι = j. Given any vector
v ∈ V we see that

j(v) = ACliff ◦ ι(v)

so that φ = ACliff . Given an orthonormal basis {e1, . . . , edim(V )} for V , and a multi-index
(i1, . . . , ik) we calculate

ACliff ◦ ψV (ei1 ∧ · · · ∧ eik) = ACliff(ι(ei1) · · · ι(eik))

= ACliff(ι(ei1)) · · ·ACliff(ι(eik))

= ψW (AΛ(ei1)) ∧ · · · ∧ ψW (AΛ(eik))

= ψW ◦AΛ(ei1 ∧ · · · ∧ eik),

where the first line is due to the equality ψV |V = ι, and the second is since ACliff is an algebra
homomorphism. By linearity we obtain the required identity.

By abuse of notation, we have a linear isomorphism ψV : Λ∗(V ) ⊗ C → Cliff(V ), which
gives, by the same formulae as in the real case, commuting actions cL and cR of Cliff(V ) on
Λ∗(V ) ⊗ C. Any orthogonal map A : V → W of inner product spaces has the property that
the induced maps ACliff : Cliff(V ) → Cliff(W ) and AΛC : Λ∗(V ) ⊗ C → Λ∗(W ) ⊗ C satisfy
ACliff ◦ ψV = ψW ◦AΛC .

If Y is a manifold and E → Y is a Euclidean vector bundle, we obtain a corresponding
Clifford algebra bundle Cliff(E) and exterior bundle Λ∗(E), as well as corresponding complexi-
fications Cliff(E) = Cliff(E)⊗C and Λ∗(E)⊗C. Operating pointwise, we have an isomorphism
ψE : Λ∗(E) ⊗ C → Cliff(E) of vector spaces giving Λ∗(E) ⊗ C the structure of a Cliff(E)-
bimodule, with left and right actions denoted, again by abuse of notation, by cL and cR re-
spectively. We will denote by C`(E) the continuous sections vanishing at infinity of the bundle
Cliff(E) over Y . This C`(E) is a C∗-algebra and is Z2-graded by even and odd elements.

2.2 G-spaces and G-bundles

Let G be a groupoid, with unit space X and range and source maps r : G→ X and s : G→ X
respectively. We say that G acts on (the left of) a set Y or that Y is a G-space if there exists a
map a : Y → X called the anchor map and a map m : G×s,a Y → Y , denoted m(u, y) := u · y,
such that

1. a(u · y) = r(u) for all (u, y) ∈ G×s,a Y ,

2. (uv) · y = u · (v · y) for all (v, y) ∈ G×s,a Y and (u, v) ∈ G(2),

3. a(y) · y = y for all y ∈ Y .

If G and Y are topological (resp. smooth) spaces we require the maps a and m to be continuous
(resp. smooth). The simplest example of a G-space is the unit space X of G.
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If G acts on Y , we denote by Y oG the space Y ×a,r G, regarded as a groupoid whose unit
space is Y , with range and source maps r(y, u) := y and s(y, u) := u−1 ·y respectively, and with
multiplication defined by

(y, u) · (u−1 · y, v) := (y, uv)

for all (y, u) ∈ Y ×a,rG and (u, v) ∈ G(2). If G and Y are topological (resp.) smooth spaces, the
groupoid Y oG is equipped with a topological (resp. smooth) structure from its containment
as a subspace of the topological (resp. smooth) space Y × G. While for left G-spaces it is
more natural to consider the analogous (and isomorphic) groupoid GnY obtained from the set
G×s,aY , it will be easier for our purposes to use Y oG because, as we will see, our convention in
using G-equivariant Kasparov theory consists in forming pullbacks using the range map rather
than the source.

We say that a vector bundle π : E → X is G-equivariant if E is a G-space, with G-action
conventionally denoted (u, e) 7→ u∗e and with anchor map π, and if for each u ∈ G the map
(u, e) 7→ u∗e defined on Es(u) := π−1{s(u)} is a vector space isomorphism Es(u) → Er(u). More
generally, if π : E → Y is a vector bundle over a G-space Y , we say that E is G-equivariant
if it is Y o G-equivariant as a bundle over Y , in which case we will often denote the map
(Y o G) ×s,π E → E, ((y, u), e) 7→ (y, u)∗e, by simply (u, e) 7→ u∗e. If π : E → X admits
a Euclidean (resp. Hermitian) structure, we say that E is a G-equivariant Euclidean (resp.
Hermitian) bundle if for all (y, u) ∈ Y o G the linear isomorphism Eu−1·y → Ey defined by
(u, e) 7→ u∗e is orthogonal (resp. unitary).

If π : E → Y is a G-equivariant vector bundle over Y , then by functoriality Λ∗(E) ⊗ C is
also an equivariant bundle over Y , with action of u ∈ G denoted by u∗ : Λ∗(E|Ys(u)) ⊗ C →
Λ∗(E|Yr(u))⊗C. If moreover E is an equivariant Euclidean bundle, then by functoriality Cliff(E)
is also an equivariant bundle, with action of u ∈ G denoted by u� : Cliff(E|Ys(u))→ Cliff(E|Yr(u)).
In this case, by Lemma 2.1 we have

u∗(cL(a)e) = cL(u�a)(u∗e) (4)

and
u∗(cR(a)e) = cR(u�a)(u∗e) (5)

for all u ∈ G, a ∈ Cliff(E|Ys(u)) and e ∈ Λ∗(E|Ys(u)).
When (M,F) is a foliated manifold with holonomy groupoid G, the normal bundle N =

TM/T F →M is a G-equivariant bundle. As this fact is fundamental for our constructions, let
us briefly review why it is the case. We assume a countable covering of M by foliated charts
φi : Ui ∼= Ti × Pi, where Ti ⊂ Rq and Pi ⊂ Rp are open balls, with change-of-chart maps
ϕi,j := φj ◦ φ−1

i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj) of the form

ϕi,j(t, p) = (hi,j(t), ϕ̃i,j(t, p)),

such that the hi,j are compatible in the sense that they satisfy

hi,k = hi,j ◦ hj,k

whenever Ui∩Uj∩Uk 6= ∅. That such a covering can be chosen can be regarded as the definition
of the foliation F on M [9, Chapter 1.2]. We say that a path γ : [0, 1] → M is leafwise if its
image is entirely contained in a leaf L of M , and we refer to its endpoints γ(0) and γ(1) as
its source and range, denoted s(γ) and r(γ) respectively. Any leafwise path γ whose image is
contained in a union U0∪U1 of charts such that U0∩U1 6= ∅, and with s(γ) ∈ U0 and r(γ) ∈ U1,
determines a local diffeomorphism hγ := h0,1 on a small neighbourhood of T0 ⊂ Rq. More
generally, if the image of a leafwise path γ is covered by a chain of charts {U0, . . . , Uk} such
that for each 0 ≤ j < k we have Uj ∩ Uj+1 6= ∅, on a sufficiently small neighbourhood of T0 we
may define a local diffeomorphism

hγ := hk,k−1 ◦ hk−1,k−2 ◦ · · · ◦ h1,0
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mapping onto a small neighbourhood of Tk. Because of the compatibility of the hi,j , the germ
of hγ at s(γ) does not depend on the chain of charts chosen in its definition. By definition, the
holonomy groupoid G consists of equivalence classes of leafwise paths γ for which γ1 ∼ γ2 if
and only if γ1 and γ2 have the same source and range and the germ at s(γ1) = s(γ2) of hγ1 is
equal to that of hγ2 .

In the coordinates defined by a chart Uj , the fibres of N identify with tangent vectors to the
transversal neighbourhood Tj , and via this identification it follows that for any leafwise path γ
in M , the derivative of hγ furnishes a linear isomorphism

dhγ : Ns(γ) → Nr(γ).

It can be seen from the definition of hγ that dhγ1 ◦ dhγ2 = dhγ1γ2 whenever the range of γ2 is
equal to the source of γ1, where γ1γ2 is the path obtained by concatenating γ1 and γ2. Since
local diffeomorphisms with the same germ at a point have the same derivative at that point, to
any u ∈ G corresponds a well-defined linear isomorphism u∗ := hγ : Ns(u) → Ns(u) for any path

γ that represents u. Since dhγ1γ2 = dhγ1 ◦ dhγ2 , we have (uv)∗ = u∗ ◦ v∗ for all (u, v) ∈ G(2),
and so N is indeed a G-equivariant bundle over M .

We remark that in general the normal bundle N of a foliated manifold (M,F) will not admit
the structure of a G-equivariant Euclidean bundle. Indeed, the existence of a G-equivariant
Euclidean structure for N implies the existence of a G-invariant transverse volume form ω
for (M,F), and hence implies the existence of a faithful normal semifinite trace on the von
Neumann algebra of (M,F) defined by restricting functions in the weakly dense algebra Cc(G)
to M , and then integrating with respect to ω. If the Godbillon-Vey invariant of (M,F) is
nonzero, however, then by results of Hurder and Katok [36, Theorem 2] and, in codimension 1,
Connes [19, Theorem 7.14], the von Neumann algebra of (M,F) contains a type III factor and
so admits no nonzero semifinite normal traces. Examples of foliated manifolds with nonzero
Godbillon-Vey invariant are known to be plentiful [51].

2.3 Equivariant KK-theory for locally Hausdorff groupoids

Equivariant KK-theory for Hausdorff topological groupoids was first developed by Le Gall [44].
Since foliated manifolds generally have only locally Hausdorff holonomy groupoids, Le Gall’s
treatment requires extension for applications to foliation theory. Androulidakis and Skandalis
[1] have developed an equivariant KK-theory for the holonomy groupoids arising from singular
foliations, whose topologies are generally even worse than the locally Hausdorff topologies on
the holonomy groupoids of regular foliations, and which include all regular foliation groupoids
as a subclass.

This section will summarise the required results and definitions of Androulidakis and Skan-
dalis in the setting of locally Hausdorff Lie groupoids, as well as giving the unbounded picture
in parallel with work of Pierrot [48]. See also Muhly and Williams [47] and Tu [52] for useful
perspectives on non-Hausdorff groupoid actions which have further informed the exposition.

Let G be a locally Hausdorff Lie groupoid with locally compact Hausdorff unit space X, and
let {Ui}i∈I is a countable cover of G by Hausdorff open sets. For each i ∈ I we let ri := r|Ui
and si := s|Ui be the restrictions of range and source respectively to the set Ui.

Definition 2.2. A C0(X)-algebra is a C∗-algebra A together with a homomorphism θ :
C0(X) → M(A) into the multiplier algebra of A such that θ(C0(X))A = A. For a ∈ A
and f ∈ C0(X), we will often denote θ(f)a by f · a.

For x ∈ X, the fibre over x is the algebra Ax := A/IxA, where Ix is the kernel of the
evaluation functional C0(X) 3 f 7→ f(x) on C0(X).

If A and B are C0(X)-algebras, a homomorphism φ : A → B is said to be a C0(X)-
homomorphism if φ(f · a) = f · φ(a) for all f ∈ C0(X) and a ∈ A. Such a homomorphism
induces a family φx : Ax → Bx of homomorphisms between the fibres.
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The simplest nontrivial example of a C0(X)-algebra is C0(Y ), where Y is a locally compact
Hausdorff space equipped with a continuous map p : Y → X. The C0(X)-structure of C0(Y ) is
given by θ(f)g(y) := f(p(y))g(y) for all f ∈ C0(X) and g ∈ C0(Y ), and the fibre over x ∈ X is
C0(Y )x = C0(Yx), where Yx := p−1{x}.

Definition 2.3. Let A be a C0(X)-algebra, and let p : Y → X be a continuous map of lo-
cally compact Hausdorff spaces. Then the pullback of A by p is the C0(Y )-algebra p∗A :=
C0(Y ) ⊗p,C0(X) A, where we take the balanced tensor product by regarding the C0(X)-algebras
C0(Y ) and A as C0(X)-modules. If there is no ambiguity about the map p, it will often be
omitted from the notation, so that p∗A = C0(Y )⊗C0(X) A.

It is easy to check that if A is a C0(X)-algebra and p : Y → X is a continuous map of locally
compact Hausdorff spaces, the fibre over y ∈ Y of p∗A is Ap(y). Equipped with the notion of
pullbacks, we can define what is meant by a G-algebra.

Definition 2.4. Let A be a C0(X)-algebra. A G-action on A is a family α = {αi : s∗iA →
r∗iA}i∈I of grading-preserving C0(Ui)-isomorphisms, such that αi|s|∗Ui∩UjA = αj |s|∗Ui∩UjA for all

i, j ∈ I, and such that the induced homomorphisms αu : As(u) → Ar(u) satisfy αuv = αu ◦ αv. If
A admits a G-action α, we call (A,α) a G-algebra.

The simplest nontrivial example of a G-algebra is C0(Y ), where Y is a G-space with anchor
map p : Y → X, and where C0(Y ) is equipped with the G-action

αu(f)(y) := f(u−1 · y)

for all u ∈ G and f ∈ C0(Yr(u)).
Now suppose that E is a Hilbert module over a G-algebra A. For x ∈ X, we can consider

the fibre Ex := E ⊗A Ax, which is a Hilbert Ax-module, and if p : Y → X is a continuous map
of locally compact Hausdorff spaces, we can consider the pullback p∗E := E⊗A p∗A, which is a
Hilbert p∗A-module. If T is an A-linear operator on E, we let p∗T := T ⊗ 1p∗A be its pullback
to a p∗A-linear operator on p∗E.

Definition 2.5. Let (A,α) be a G-algebra, and let E be a Hilbert A-module. A G-action on E
consists of a family W = {W i : s∗iE → r∗iE}i∈I of grading-preserving isometric Banach space
isomorphisms, such that W i|s|∗Ui∩UjE = W j |s|∗Ui∩UjE for all i, j ∈ I, and such that the induced

isomorphisms Wu : Es(u) → Er(u) on the fibres satisfy Wuv = Wu ◦Wv, 〈Wuρ1,Wuρ2〉r(u) =

αu(〈ρ1, ρ2〉s(u)) and Wu(ρ·a) = Wu(ρ)·αu(a) for all (u, v) ∈ G(2), a ∈ As(u) and ρ, ρ1, ρ2 ∈ Es(u).
If E admits a G-action W , we call (E,W ) a G-Hilbert A-module.

If V → Y is a G-equivariant Hermitian vector bundle over a G-space Y , then the continuous
sections vanishing at infinity Γ0(Y ;V ) of V over Y is a G-Hilbert C0(Y )-module, with pointwise
inner product and right action by C0(Y ), and with G-action defined by

(Wuρ)(y) := u∗ρ(u−1 · y) (6)

for all ρ ∈ Γ0(Yr(u);V |Yr(u)). All G-Hilbert module constructions in this paper will arise from
some variant of the action (6).

Definition 2.6. If B is a G-algebra, and π : A → L(E) is a representation of a G-algebra
(A,α) on a G-Hilbert B-module (E,W ), we say that π is equivariant if for all i ∈ I we have

AdW i(πsi (a)) = πri (α
i(a))

for all a ∈ A. Here πsi := 1Cb(Ui) ⊗ π and πri := 1Cb(Ui) ⊗ π are respectively the induced
homomorphisms s∗iA = C0(Ui)⊗s,C0(X) A→ L(s∗iE) and r∗iA = C0(Ui)⊗r,C0(X) A→ L(r∗iE).
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The definition of the equivariant KK-groups now follows in the usual way.

Definition 2.7. Let (A,α) and (B, β) be G-C∗-algebras. A G-equivariant Kasparov A-B-
module is a triple (A, πEB, F ), where (E,W ) is a G-equivariant Hilbert B-module carrying an
equivariant representation π : A→ L(E), and where F ∈ L(E) is homogeneous of degree 1 such
that for all a ∈ A one has

1. π(a)(F − F ∗) ∈ K(E),

2. π(a)(F 2 − 1) ∈ K(E),

3. [F, π(a)] ∈ K(E),

and such that for all i ∈ I

4. πri (r
∗
i (a))(r∗i F −W i ◦ s∗iF ◦ (W i)−1) ∈ r∗i K(E).

We say that two G-equivariant Kasparov A-B-modules (A, πEB, F ) and (A, π′E
′
B, F

′) are uni-
tarily equivalent if there exists a G-equivariant unitary V : E → E′ of degree 0 such that
V FV ∗ = F ′ and V π(a)V ∗ = π′(a) for all a ∈ A. We denote by EG(A,B) the set of all unitary
equivalence classes of G-equivariant Kasparov A-B-modules.

A homotopy in EG(A,B) is an element of EG(A,B[0, 1]), and we define KKG(A,B) to be
the set of homotopy equivalence classes in EG(A,B).

The direct sum of G-equivariant Kasparov A-B-modules makes KKG(A,B) into an abelian
group.

We also need unbounded representatives of equivariant KK-classes. The definition for such
representatives is the natural extension of that due to Pierrot [48] to the locally Hausdorff case.
We remark here that if A is a dense ∗-subalgebra of a C0(X)-algebra A, then we will assume
that C0(X) · A ⊂ A, which will be true in our examples. We will denote by Ax := A /IxA
the fibre over x ∈ X, where as before Ix is the kernel of the evaluation functional f 7→ f(x) on
C0(X).

Definition 2.8. Let A and B be G-algebras. An unbounded G-equivariant Kasparov A-B-
module is a triple (A, πE,D), where (E,W ) is a G-Hilbert B-module carrying an equivariant
representation π of A in L(E), D is a densely defined, odd, unbounded, self adjoint and regular
operator on E commuting with the right action of B, and where A is a dense ∗-subalgebra of A
preserved by the action of G such that for all a ∈ A one has:

1. π(a) dom(D) ⊂ dom(D),

2. [D,π(a)] extends to an element of L(E),

3. π(a)(1 +D2)−
1
2 ∈ K(E),

and such that for all i ∈ I, a ∈ A and f ∈ Cc(Ui) one has

4. f · πri (r∗i (a)) · (r∗iD −W i ◦ s∗iD ◦ (W i)−1) extends to an element of L(r∗iE) and

5. dom((r∗iD)f) = W i dom((s∗iD)f).

That all unbounded equivariant Kasparov modules define classes in KKG is an easy conse-
quence of the corresponding result by Pierrot for Hausdorff groupoids.

Proposition 2.9. Let A and B be G-algebras, and let (A, πE,D) be an unbounded G-equivariant

Kasparov A-B-module. Then (A, πE,D(1 +D2)−
1
2 ) is a G-equivariant Kasparov A-B-module.
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Proof. That the first three requirements of Definition 2.7 are met by (A, πE,D(1 +D2)−
1
2 ) is a

consequence of the corresponding result in the nonequivariant case [2]. That the fourth require-
ment is met is a consequence of restricting the corresponding result of Pierrot [48, Théorème 6]
to each of the Hausdorff open subsets Ui of G.

We now come to the descent map in equivariant KK-theory, for which we need to discuss
groupoid crossed products. We will assume for this that G comes equipped with a bundle
Ω

1
2 → G of leafwise half-densities, as in [20, Chapter 2.8]. Regard a C0(X)-algebra A as the

continuous sections vanishing vanishing at infinity Γ0(X;A) of the upper-semicontinuous bundle
A → X of C∗-algebras whose fibre over x ∈ X is Ax [44, 47]. Thus a G-algebra (A,α) can
be regarded as the continuous sections vanishing at infinity of the G-space A over X, where
αu : As(u) → Ar(u) determines the action of G on the bundle A.

Define Γc(G; r∗A⊗Ω
1
2 ) to be the space of finite linear combinations of sections of the bundle

r∗A ⊗ Ω
1
2 → G which have compact support and are continuous in one of the Ui. The space

Γc(G; r∗A⊗ Ω
1
2 ) is a ∗-algebra equipped with the convolution product

(f ∗ g)u :=

∫
v∈Gr(u)

fvαv(gv−1u) and with involution (f∗)u := αu((fu−1)∗).

The appropriate completion of Γc(G; r∗A⊗Ω
1
2 ) to a reduced C∗-algebra AorG has been given

in [42, Section 3.7].
In a similar manner, if A is a G-algebra we can regard any G-Hilbert A-module E as the

continuous sections vanishing at infinity of an upper-semicontinuous bundle E→ X whose fibre
over x ∈ X is Ex. We define Γc(G; r∗E ⊗ Ω

1
2 ) to be the space of finite linear combinations of

sections of the bundle r∗E⊗ Ω
1
2 → G that have compact support and are continuous in one of

the Ui. The formulae

〈ρ1, ρ2〉Gu :=

∫
v∈Gr(u)

αv〈ρ1
v−1 , ρ

2
v−1u〉 and (ρ · f)u :=

∫
v∈Gr(u)

ρvαv(fv−1u)

defined for ρ1, ρ2, ρ ∈ Γc(G; r∗E ⊗ Ω
1
2 ) and f ∈ Γc(G; r∗A ⊗ Ω

1
2 ) determine an A or G-valued

inner product and right action respectively on Γc(G; r∗E ⊗ Ω
1
2 ), and we may complete in the

norm arising from 〈·, ·〉G to obtain a Hilbert A or G-module which we denote by E or G. If
T is an A-linear operator on E, we denote by dom(T ) the bundle over X whose fibre over
x ∈ X is dom(T ) ⊗A Ax. Then as in [48, Définition 2, Proposition 3] we define r∗(T ) on

Γc(G; r∗dom(T )⊗ Ω
1
2 ) by

(r∗(T )ρ)u := Tr(u)ρu.

If T ∈ L(E) one can use the norm of T to bound that of r∗(T ), and then one can use T ∗ to
show that r∗(T ) ∈ L(E or G).

Lemma 2.10. For any densely defined A-linear operator T : dom(T ) → E, we have r∗(T ∗) ⊂
r∗(T )∗. Moreover r∗(T ∗) = r∗(T )∗.

Proof. Fix ξ ∈ dom(r∗(T ∗)) = Γc(G; r∗dom(T ∗) ⊗ Ω
1
2 ), and assume without loss of generality

that ξ has compact support in some Hausdorff open subset Ui of G. For each u ∈ G, use the

fact that ξu ∈ dom(T ∗)r(u) ⊗ Ω
1
2
u to define a section η of r∗E⊗ Ω

1
2 → G by

ηu := T ∗r(u)ξu.

Since ξ is continuous with compact support in Ui so too is η, thus η ∈ Γc(G, r
∗E ⊗ Ω

1
2 ). For

any ρ ∈ dom(r∗(T )) = Γc(G; r∗dom(T )⊗ Ω
1
2 ) we can then calculate

〈ξ, r∗(T )ρ〉Gu =

∫
v∈Gr(u)

αv(〈ξv−1 , Ts(v)ρv−1u〉) =

∫
v∈Gr(u)

αv(〈T ∗s(v)ξv−1 , ρv−1u〉) = 〈η, ρ〉Gu
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for all u ∈ G, so that ξ ∈ dom(r∗(T )∗). The above calculation also shows that r∗(T )∗ξ = η =
r∗(T ∗)ξ, so that we indeed have r∗(T ∗) ⊂ r∗(T )∗.

Fix ξ ∈ dom(r∗(T )∗). We show that ξ ∈ r∗(T ∗). Let {ξn}n∈N ⊂ Γc(G; r∗dom(T ∗)⊗ Ω
1
2 ) be

a sequence converging in E or G to ξ. Then the sequence {〈ξn, r∗(T )ρ〉G}n∈N of elements of

Γc(G; r∗A⊗ Ω
1
2 ) defined for u ∈ G by

〈ξn, r∗(T )ρ〉Gu =

∫
v∈Gr(u)

αv(〈ξnv−1 , Ts(v)ρv−1u〉) =

∫
v∈Gr(u)

αv(〈T ∗s(v)ξ
n
v−1 , ρv−1u〉) (7)

converges in Aor G for all ρ ∈ Γc(G; r∗dom(T )⊗Ω
1
2 ). For each v ∈ Gr(u) one can on the right

hand side of (7) take bump functions ρ with support of decreasing radius about v−1u to show
that we have convergence of {(r∗(T ∗)ξn)v−1 = T ∗s(v)ξ

n
v−1}n∈N to an element of Es(v), and doing

this for all v ∈ Gr(u) and all u ∈ G shows that in fact {r∗(T ∗)ξn}n∈N converges in E or G,
implying that ξn → ξ in the graph norm on dom(r∗(T ∗)) as claimed.

Finally, we observe that if A and B are G-algebras, and if (E,W ) is a G-Hilbert B-module
with an equivariant representation π : A→ L(E), then the formula

((π or G)(f)ρ)u :=

∫
v∈Gr(u)

π(fv)Wv(ρv−1u)

defined for f ∈ Γc(G; r∗A⊗Ω
1
2 ) and ρ ∈ Γc(G; r∗E⊗Ω

1
2 ) determines a representation π or G :

Aor G→ L(E or G).

Proposition 2.11. Let A and B be G-algebras, and let (A, πE,D) be a G-equivariant unbounded
Kasparov A-B-module. Let Ã denote the bundle of ∗-algebras over X whose fibre over x ∈ X
is Ax. Then

(Γc(G; r∗Ã ⊗ Ω
1
2 ), πorGE or G, r

∗(D))

is an unbounded Kasparov Aor G-B or G-module.

Proof. Since D is odd for the grading of E, r∗(D) is odd for the induced grading of E or G.
Symmetry of D gives symmetry of r∗(D), so without loss of generality we may assume that
r∗(D) is closed. Self adjointness of r∗(D) is then a consequence of the self adjointness of D
together with Lemma 2.10.

Regularity of r∗(D) is a consequence of that of D. Indeed, for any ρ ∈ Γc(G; r∗dom(D)⊗Ω
1
2 )

we have
((1 + r∗(D)2)ρ)u = (1r(u) +D2

r(u))ρu.

Hence the range of the operator (1 + r∗(D)2) when restricted to Γc(G; r∗dom(D) ⊗ Ω
1
2 ) is

Γc(G; r∗range(1 +D2)⊗Ω
1
2 ), where range(1 +D2) denotes the bundle over X whose fibre over

x ∈ X is range(1 +D2)⊗A Ax, which by regularity of D is dense in Ex = E ⊗A Ax. Thus the

range of (1 + r∗(D)2) contains the dense subspace Γc(G; r∗range(1 +D2)⊗Ω
1
2 ) of E or G, and

it follows that r∗(D) is regular.
Regarding commutators, a simple calculation tells us that

([r∗(D), (π or G)(f)]ρ)u =

∫
v∈Gr(u)

π(fv)
(
Dr(v) −Wv ◦Ds(v) ◦Wv−1

)
(Wvρv−1u)

for all ρ ∈ Γc(G; r∗dom(T )⊗Ω
1
2 ), so Property 4 in Definition 2.8 tells us that [r∗(D), (πorG)(f)]

is bounded.
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The only thing that remains to check is compactness of (π or G)(f)(1 + r∗(D)2)−
1
2 for

f ∈ Γc(G; r∗Ã ⊗ Ω
1
2 ). For any ρ ∈ Γc(G; r∗E⊗ Ω

1
2 ) the definition of r∗(D) gives

((1 + r∗(D)2)−
1
2 (π or G)(f∗)ρ)u =(1 +D2

r(u))
− 1

2

∫
v∈Gr(u)

π((f)∗v)Wv(ρv−1u)

=

∫
v∈Gr(u)

(1 +D2
r(v))

− 1
2π((f)∗v)Wv(ρv−1u),

and since (1 + D2
r(v))

− 1
2π((f)∗v) ∈ K(E)r(v) for all v ∈ Gr(u) by Property 3 in Definition 2.8,

it follows that (1 + r∗(D)2)−
1
2 (π or G)(f∗) is an element of Γc(G; r∗K(E) ⊗ Ω

1
2 ). A similar

argument to the one used in [41, Page 172] then tells us that (1 + r∗(D))−
1
2 (π or G)(f∗) can

be approximated by finite rank operators on E or G so is an element of K(E or G), and hence

so too is its adjoint (π or G)(f)(1 + r∗(D)2)−
1
2 .

Let us remark finally that if Y is a locally compact Hausdorff G-space, with corresponding
bundle C0(Y)→ X whose fibre over x ∈ X is C0(Yx), then we have an inclusion Γc(Y oG; Ω

1
2 ) 3

f 7→ f̃ ∈ Γc(G; r∗C0(Y)⊗ Ω
1
2 ) defined by

f̃u(y) := f(y, u).

For ease of notation we will usually just refer to f̃ as f . By density of Cc(Yx) in C0(Yx) for

each x ∈ X, this subalgebra Γc(Y oG; Ω
1
2 ) is dense in C0(Y )or G. We will use this fact in the

construction of our Godbillon-Vey spectral triple.

2.4 Semifinite spectral triples

One of the defining features of a spectral triple (A,H,D) is that the operators a(1 + D2)−
1
2

are contained in the compact operators K(H) for all a ∈ A. These compact operators come
equipped with a trace Tr, which is used to measure the rank of projections that appear in the
definition of the index, and subsequent index formulae [23, 34].

Semifinite spectral triples are a generalisation of spectral triples for which the rank of pro-
jections is measured by a different trace. More precisely we require a faithful normal semifinite
trace τ on a semifinite von Neumann algebra N ⊂ B(H). We denote by Kτ (N ) the norm-
closed ideal in N generated by projections of finite τ -trace, and refer to Kτ (N ) as the ideal of
τ -compact operators, [27].

Definition 2.12. Let (N , τ) be a semifinite von Neumann algebra, regarded as an algebra of
operators on a Hilbert space H. A semifinite spectral triple relative to (N , τ) is a triple
(A, πH,D) consisting of a ∗-algebra A represented in N by π : A → N ⊂ B(H), and a densely
defined, unbounded, self adjoint operator D affiliated to N such that

1. π(a) dom(D) ⊂ dom(D) so that [D, π(a)] is densely defined, and moreover extends to a
bounded operator on H for all a ∈ A,

2. π(a)(1 +D2)−
1
2 ∈ Kτ (N ) for all a ∈ A.

We say that (A, πH,D) is even if A is even and D is odd for some Z2-grading on H, and
otherwise we call (A, πH,D) odd.

Connes’ original notion of spectral triple defines a subclass of semifinite spectral triples,
for which (N , τ) = (B(H),Tr). Just as the bounded transform of a spectral triple (A, πH,D)
defines a Fredholm module (over the C∗-completion A of A), and hence a class in KK∗(A,C),
semifinite spectral triples have a close relationship with KK-theory.
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To see this, we first suppose that B is a C∗-algebra, XB is a Hilbert B-module with inner
product 〈·, ·〉B, and τ is a faithful norm lower semicontinuous semifinite trace on B. We can
form the GNS space L2(B, τ), or L2(X, τ) with inner product (x|y) = τ(〈x, y〉B). These two
Hilbert spaces are related by X ⊗B L2(B, τ) ∼= L2(X, τ).

Then by results in [43], we obtain a faithful normal semifinite trace Trτ , called the dual trace,
on the weak closure N = EndB(X)′′ ⊂ B(L2(XB, τ)) of the adjointable B-linear operators on
XB. The functional Trτ satisfies

Trτ (Θξ,η) := τ(〈η, ξ〉B).

Proposition 2.13. Let (A, πXB,D) be an even (resp. odd) unbounded Kasparov A-B module,
and suppose that τ is a faithful norm lower semicontinuous semifinite trace on B. Let (N ,Trτ )
be the semifinite von Neumann algebra obtained from XB and τ as above. Then (with a slight
abuse of notation)

(A, π ⊗̂ 1XB ⊗̂B L2(B, τ),D ⊗̂ 1) = (A, πL2(XB, τ),D)

is an even (resp. odd) semifinite spectral triple relative to (N ,Trτ ).

Proof. Clearly A ⊂ N , and the commutant of N is just B′′. Since D is B-linear, every unitary
in B′′ preserves the domain of D ⊗̂ 1, whence D ⊗̂ 1 is affiliated to N . That [D ⊗̂ 1, π(a) ⊗̂ 1]
is bounded for all a ∈ A is a consequence of the corresponding fact for the Kasparov module
(A, πXB,D), and that (π(a) ⊗̂ 1)(1+D ⊗̂ 12)−

1
2 is τ -compact is true because the algebra K(XB)

is contained in Kτ (N ) by construction.

In fact, a converse to Proposition 2.13 is also true: namely, every semifinite spectral triple
can be factorised into a KK-class and a trace [38]. Although we will not need this converse
result, it provides a useful way of thinking about semifinite spectral triples.

One of the most useful features of (nice) spectral triples is that their pairing with K-theory
can be computed using the local index formula, [23]. The same is true for (nice) semifinite
spectral triples. There are now numerous results generalising the Connes-Moscovici local index
formula for spectral triples to semifinite spectral triples [3, 14, 15, 16, 17, 11, 12].

3 Construction of the Kasparov modules

In this section, (M,F) will denote a transversely orientable foliated manifold of codimension
q, with holonomy groupoid G and normal bundle N = TM/T F → M . The normal bundle
is a G-equivariant vector bundle, as explained at the end of Section 2.2, and for u ∈ G we let
u∗ : Ns(u) → Nr(u) be the corresponding map n 7→ u∗n. We assume G to be equipped with a
countable cover U := {Ui}i∈I by Hausdorff open subsets. We do not assume K-orientability at
any point, working with exterior algebra bundles instead of spinor bundles.

The first of the two constructions, the Connes fibration, will not feature in the index theorem
in the final section. The Kasparov module of the Connes fibration provides a Thom-type
isomorphism which does not conceptually affect our final index formulae. We include the Connes
fibration for the sake of completeness, and to show that the whole construction does indeed factor
through groupoid equivariant KK-theory.

3.1 The Connes fibration

We begin this section with a revision of a construction due to Connes [19]. Connes starts with
an oriented manifold M of dimension n with an action of a discrete group Γ of orientation-
preserving diffeomorphisms. Such a setting provides an étale model of the transverse geometry
of a transversely oriented foliation.
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Connes shows that if W → M denotes the “bundle of Euclidean metrics” for the tangent
bundle TM over M , then one can construct a dual Dirac class in KKΓ

n(n+1)
2

(C0(M), C0(W )).

The manifold W has the advantage that the pullback of TM to W admits a Γ-invariant Eu-
clidean metric, even though one need not exist on M in general. We show show that Connes’
construction can be carried out directly in the groupoid equivariant setting, as it may be useful
for future work in constructing the Godbillon-Vey invariant as a semifinite spectral triple in
arbitrary codimension.

We let πF : F+N → M be the principal GL+(q,R)-bundle of positively oriented frames
for the vector bundle N → M , whose fibre (F+N)x over x ∈ M consists of positively oriented
linear isomorphisms φ : Rq → Nx. Then F+N is a G-space with anchor map πF : F+N → M
and action defined by

u · φ := u∗ ◦ φ : Rq → Nr(u) (8)

for φ : Rq → Ns(u) in (F+N)s(u). Observe that this action of G commutes with the right action
of GL+(q,R) on the principal GL+(q,R)-bundle F+N →M .

The vertical subbundle ker(dπF ) = V F+N → F+N of TF+N admits a trivialisation
V F+N → F+N × gl(q,R), where gl(q,R) = Mq(R) is the Lie algebra of GL+(q,R) consisting
of all q × q real matrices. The trivialisation is given by the formula

F+N × gl(q,R) 3 (φ, v) 7→ vφ :=
d

dt
(φ · exp(tv))

∣∣∣∣
t=0

∈ V F+N.

For u ∈ G, the differential u∗ : V F+Ns(u) → V F+Nr(u) of u· : F+Ns(u) → F+Nr(u) in the fibres
defines on V F+N the structure of a G-equivariant vector bundle. Since the left action of G
commutes with the right action of GL+(q,R), one has

u∗vφ =
d

dt
(u · (φ · exp(tv))

∣∣∣∣
t=0

=
d

dt
((u · φ) · exp(tv))

∣∣∣∣
t=0

= vu·φ (9)

for all φ ∈ (F+N)s(u), and so with respect to the trivialisation F+N × gl(q,R) of V F+N we
have

u∗(φ, v) = (u · φ, v). (10)

for all φ ∈ F+N and v ∈ gl(q,R).
Consider now the quotient CN := F+N/SO(q,R) of F+N by the right action of SO(q,R).

The projection πF : F+N → M descends to a projection πC : CN → M , which defines a fibre
bundle with typical fibre S+

q := GL+(q,R)/SO(q,R), the space of positive definite, symmetric
q × q matrices. Moreover, since the action of G on F+N commutes with the right action of
SO(q,R), it follows that CN is a G-space with anchor map πC : CN →M , and with action of
u ∈ G given by

u · [φ] := [u · φ] = [u∗ ◦ φ] (11)

for all [φ] ∈ CNs(u). Following [4, 54], we refer to πC : CN →M as the Connes fibration.

Definition 3.1. The fibre bundle πC : CN → M is a G-space called the Connes fibration
for the normal bundle N .

Let us consider the geometry of the fibres of CN → M . Since SO(q,R) is compact, the
pair (GL+(q,R), SO(q,R)) is a Riemannian symmetric pair and hence the space S+

q can be
equipped with a GL+(q,R)-invariant metric under which it is by [33, Proposition 3.4] a globally
symmetric Riemannian space. The Riemannian space S+

q is moreover of noncompact type, so
by [33, Theorem 3.1] has everywhere non-positive sectional curvature. We can find a locally
finite open cover U of M by sets U for which the vertical bundle V CN |U ∼= U × TSq, and then
choosing a partition of unity subordinate to U allows us to equip the bundle V CN → CN with
a Euclidean structure. We will assume from here on that V CN → CN is equipped with a
Euclidean structure in this way.
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Proposition 3.2. The bundle V CN → CN is a G-equivariant Euclidean bundle over the
G-space CN . Consequently Cliff(V CN) and Cliff(V ∗CN) are G-equivariant bundles.

Proof. Fix u ∈ G and suppose that Us and Ur are open sets in M containing s(u) and r(u)
respectively, such that we have local trivialisations N |Us ∼= U × Rq and N |Ur ∼= U × Rq, with
respect to which the holonomy action u∗ : Ns(u) → Nr(u) is the action on Rq of an element
ũ ∈ GL+(q,R).

We obtain corresponding local trivialisations F+N |Us ∼= U × GL+(q,R) and F+N |Ur ∼=
U × GL+(q,R) of the local frame bundles over Us and Ur, in which the holonomy action
u· : F+Ns(u) → F+Nr(u) is left multiplication on GL+(q,R) by ũ, and taking the quotient
by SO(q,R) we get local trivialisations CN |Us ∼= U × S+

q and CN |Ur ∼= U × S+
q in which

u· : CNs(u) → CNr(u) is the isometry of S+
q = GL+(q,R)/SO(q,R) defined by left multiplication

by ũ ∈ GL+(q,R). Thus G acts by orientation-preserving isometries between the fibres of CN ,
inducing an action by special orthogonal transformations on the Euclidean bundle V CN → CN
of vectors tangent to the fibres of CN → M , hence making V CN → CN a G-equivariant
Euclidean bundle over the G-space CN . The final statement follows from functoriality of
Clifford algebras with respect to orthogonal maps.

That the fibres have nonpositive sectional curvature allows us to define a dual Dirac class
for CN over M in a similar manner to Connes [19]. First, let C`(V ∗CN) be equipped with
the G-structure arising from the action of G on the equivariant bundle Cliff(V ∗CN) over the
G-space CN , denoted for u ∈ G by u� : Cliff(V ∗[φ]CN) → Cliff(V ∗u·[φ]CN) for all [φ] ∈ CNs(u).

That is, we define for any u ∈ G an isomorphism α1
u : C`(V ∗CN |CNs(u)) → C`(V ∗CN |CNs(u))

by
α1
u(a)([φ]) := u�a(u−1 · [φ]) (12)

for all [φ] ∈ CNr(u). Also let

E1 := Λ∗(V ∗CN)⊗ C

be the complexified exterior algebra bundle of the bundle of vertical covectors V ∗CN over
CN . Here we equip V ∗CN with the Euclidean structure coming from its dual V CN , which
determines a Hermitian structure on V ∗CN ⊗ C and hence on E1. Observe that

XE1 := Γ0(CN ;E1)

is a Hilbert C`(V ∗CN)-module under the inner product

〈ρ1, ρ2〉C`(V ∗CN)([φ]) := ψV ∗CN (ρ1([φ]))ψV ∗CN (ρ2([φ]))

and right action
(ρ · a)([φ]) := cR(a([φ]))ρ([φ]),

where cR is the right action of Cliff(V ∗CN) on the Clifford bimodule E1.
The isometric action of G on the Euclidean bundle V CN over CN gives rise to a unitary

action of G on E1, denoted for each u ∈ G by u∗ : E1
[φ] → E1

u·[φ] for all [φ] ∈ CNs(u), and hence

determines an isomorphism W 1
u : Γ0(CNs(u);E

1|CNs(u)) → Γ0(CNr(u);E
1|CNr(u)) of Banach

spaces given by the formula
(W 1

uρ)([φ]) := u∗ρ(u−1 · [φ])

for all [φ] ∈ CNr(u). A routine calculation using Lemma 2.1 shows that

〈W 1
uρ

1,W 1
uρ

2〉C`(V ∗CN) = α1
u(〈ρ1, ρ2〉C`(V ∗CN)),

so (XE1 ,W 1) is a G-equivariant Hilbert C`(V ∗CN)-module.
Choose now a Euclidean metric for N . Such a choice is determined by a section σ : M → CN

of πC : CN → M . For [φ1], [φ2] in the same fibre CNx, denote by h([φ1], [φ2]) the geodesic
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distance between [φ1] and [φ2] in the fibre, and then for any [φ0] ∈ CN let h[φ0] : CN → R be
the function

h[φ0]([φ]) := h([φ0], [φ]).

In particular, for x ∈ M and [φ] ∈ CNx, hσ(x)([φ]) gives the distance in the fibre between [φ]
and the section σ. Consider now the vertical 1-form

Z[φ] := hσ(πC([φ]))([φ])dh
σ(πC([φ]))
[φ] ,

where d denotes the exterior derivative in the fibre. Define an operator B1 on the dense sub-
module Xc

E1 := Γc(CN ;E1) of XE1 by the formula

(B1ρ)([φ]) := cL(Z[φ])ρ([φ]),

where cL is the left representation of Cliff(V ∗CN) on the Clifford bimodule E1. Since cL
and cR commute, B1 commutes with the right action of C`(V ∗CN). Finally, we let m be the
representation of C0(M) on XE1 by multiplication, that is

(m(f)ρ)([φ]) := f(πC([φ]))ρ([φ])

for all f ∈ C0(M) and ρ ∈ XE1 . Equivariance of the map πC tells us that m is an equivariant
representation.

Proposition 3.3. The triple (C0(M),mXE1 , B1) is an unbounded G-equivariant Kasparov
C0(M)-C`(V ∗CN)-module, hence defines a class

[B1] ∈ KKG(C0(M),C`(V ∗CN)).

Proof. The first thing we need to prove is that B1 is self-adjoint and regular. Observe first that
B1 is clearly symmetric. For each [φ] ∈ CN , the localization (XE1)[φ] of XE1 in the sense of
[49] and [37] is just the finite dimensional Hilbert space

H[φ] := Λ∗(V ∗[φ]CN)⊗ C

with the inner product coming from the Hermitian structure on Λ∗(V ∗[φ]CN)⊗C, and the action

of the localised operator (B1)[φ] on H[φ] is

(B1)[φ]η := cL(Z[φ])η.

Since (B1)[φ] is then self-adjoint on H[φ], it follows from [49, Théorème 1.18] that B1 is self-
adjoint and regular.

That m(f)(1+B2
1)−

1
2 is a compact operator for all f ∈ C0(M) follows from the definition of

Clifford multiplication. Indeed, one has cL(Z[φ])
2 = ‖Z[φ]‖2 = hσ(πC([φ]))([φ])2 since dh

σ(πC([φ]))
[φ]

has norm 1 for all [φ] as the dual of the tangent to the unique unit speed geodesic joining
σ(πC([φ])) to [φ], and so for any f ∈ C0(M), one simply has

(m(f)(1 +B2
1)−

1
2 ρ)([φ]) =

f(πC([φ]))

(1 + hσ(πC([φ]))([φ])2)
1
2

ρ([φ]).

Since f vanishes at infinity on the base M of CN →M , and since [φ] 7→ (1+hσ(πC([φ]))([φ])2)−
1
2

vanishes at infinity on the fibres of CN →M , the function [φ] 7→ f(πC([φ]))(1+hσ(πC([φ]))([φ])2)−
1
2

is an element of C0(CN), so that m(f)(1 + B2
1)−

1
2 is indeed a compact operator on the

C`(V ∗CN)-module XE1 .
Concerning commutators, it is clear that B1 commutes with the representation m of C0(M).

Thus it only remains to prove that B1 is appropriately equivariant. The idea of this is essentially
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the unbounded version of analogous results by Connes [19, Lemma 5.3] and Kasparov [41,
Section 5.3], but the details are somewhat technical so we give them here. Fix u ∈ G and
ρ ∈ Γc(CNr(u);E

1|CNr(u)). We calculate

(B1 −W 1
uB1W

1
u−1)ρ([φ]) =cL(Z[φ])ρ([φ])− u∗(B1W

1
u−1ρ)(u−1 · [φ])

=cL(Z[φ])ρ([φ])− u∗(cL(Zu−1·[φ])(W
1
u−1ρ)(u−1 · [φ]))

=cL(Z[φ])ρ([φ])− u∗(cL(Zu−1·[φ])(u
−1
∗ ρ([φ])))

=cL(Z[φ] − u∗Zu−1·[φ])ρ([φ])

where on the third line we have used the identity (4). Thus we must calculate a bound for the
norm of the covector Z[φ] − u∗Zu−1·[φ].

Denote σr := σ(r(u)) and σs := σ(s(u)). With this notation, we have

Z[φ] − u∗Zu−1·[φ] = hσr([φ])dhσr[φ] − u∗h
σs(u−1 · [φ])dhσs

u−1·[φ]
.

For any vector γ ∈ V[φ]CN we have

(u∗dh
σs
u−1·[φ]

)(γ) = dhσs
u−1·[φ]

(u−1
∗ γ) = d(hσs ◦ u−1)[φ](γ),

giving u∗dh
σs
u−1·[φ]

= d(hσs ◦ u−1)[φ], and since the action of G is isometric on the fibres we get

(hσs ◦ u−1)([φ]) = h(σs, u
−1 · [φ]) = h(u · σs, [φ]) = hu·σs([φ]).

Thus
u∗dh

σs
u−1·[φ]

= dhu·σs[φ] .

We then see that

hσr([φ])dhσr[φ] − u∗h
σs(u−1 · [φ])dhσs

u−1·[φ]
=hσr([φ])dhσr[φ] − h

u·σs([φ])dhu·σs[φ]

=
1

2
d

(
(hσr)2 − (hu·σs)2

)
[φ]

=
1

2
d

(
(hσr − hu·σs)(hσr + hu·σs)

)
[φ]

.

By the argument [41, Lemma 5.3], we have

‖dhσr[φ] − dh
u·σs
[φ] ‖ ≤ 2h(σr, u · σs)(hσr([φ]) + hu·σs([φ]))−1,

which we use to estimate

‖hσr([φ])dhσr[φ] − u∗h
σs(u−1 · [φ])dhσs

u−1·[φ]
‖2 ≤1

4
‖(dhσr[φ] − dh

u·σs
[φ] )(hσr([φ]) + hu·σs([φ]))‖2

+
1

4
‖(hσr([φ])− hu·σs([φ]))(dhσr[φ] + dhu·σs[φ] )‖2

≤h(σr, u · σs)2 + (h(σr, [φ])− h(u · σs, [φ]))2

=h(σr, u · σs)2 + h(σr, [φ])2 + h(u · σs, [φ])2

− 2h(σr, [φ])h(u · σs, [φ])

≤2h(σr, u · σs)2,

where the last line is a consequence of the cosine inequality for spaces of non-positive sectional
curvature [33, Corollary 13.2].

Thus for all [φ] ∈ CNr(u), we have ‖Z[φ] − u∗Zu−1·[φ]‖2 ≤ 2h(σ(r(u)), u · σ(s(u)))2 inde-
pendently of [φ] ∈ CNr(u), implying that B1 −W 1

uB1W
1
u−1 extends to a bounded operator on
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(XE1)r(u). Moreover u 7→ h(σ(r(u)), u ·σ(s(u))) is continuous hence bounded on compact Haus-
dorff sets, so for any element Ui of the cover U = {Ui}i∈I of G by Hausdorff open subsets, and
for any ϕ ∈ Cc(Ui) and f ∈ C0(M) we have that

ϕ ·mr
i (r
∗
i (f)) · (r∗iB1 − (W 1)i ◦ s∗iB1 ◦ ((W 1)i)−1) ∈ L(r∗iXE1).

It follows that (C0(M),mXE1 , B1) is an unbounded equivariant Kasparov C0(M)-C`(V ∗CN)-
module.

3.2 The foliation of the Connes fibration

Before we can construct a second Kasparov module and the semifinite spectral triple associated
to it, we need a closer study of the groupoid representation theory.

Let us come back to the frame bundle πF : F+N →M . This bundle is foliated [39, Example
1.11] in the sense that it admits a foliation FF of its total space F+N , for which the differential
of the projection πF is an isomorphism of T FF ⊂ TF+N onto T F ⊂ TM . We may then
consider the normal bundle NF := TF+N/T FF

The choice of a connection on πF : F+N → M determines in the usual way a horizontal
subbundle HF+N ⊂ TF+N and a direct sum decomposition TF+N = V F+N⊕HF+N , where
V F+N = ker(dπF ) is the vertical subbundle. Now, V F+N ∩ T FF is the zero section, and so
we find that the normal bundle to the foliation FF is

NF = V F+N ⊕ (HF+N/T FF ). (13)

The normal bundle NF is again a G-equivariant bundle, and with respect to the splitting (13)
we write

u∗ =

(
ã(u) c̃(u)

0 d̃(u)

)
for the action of u ∈ G on NF . Note that the zero appearing in the bottom left corner is a
consequence of the fact that by (8), G acts via diffeomorphisms between the fibres GL+(q,R)
of F+N →M , and so preserves the bundle V F+N →M of vectors tangent to the fibres.

Now we are not so interested in the frame bundle F+N as the Connes fibration CN . Since
the action of G on F+N commutes with the right action of SO(q,R), however, we find that we
also obtain a foliation on the total space of πC : CN →M .

To be more specific, let Q : F+N → CN be the quotient map. Then T FC := dQ(T FF ) is
an integrable subbundle of TCN , which determines a foliation FC of CN . Since πC ◦Q = πF ,
we see that dπC maps T FC isomorphically onto T F making πC : CN →M a foliated bundle.
The normal bundle NC of FC also admits a splitting

NC = V CN ⊕ (HCN/T FC),

where HCN is the isomorphic image under dQ of the horizontal subbundle HF+N ⊂ TF+N .
For convenience, we will denote HCN/T FC by simply H. Thus,

NC = V CN ⊕H.

Now, dπC maps the fibres of HCN isomorphically onto those of TM , and maps the fibres of
T FC isomorphically onto those of T F . It follows that dπC induces an isomorphism of the
fibres of H = HCN/T FC onto those of N = TM/T F . We can then equip H with a Euclidean
metric in the following way, due to Connes [19, Page 38].

Proposition 3.4. For h1, h2 ∈ H[φ] and with · denoting the Euclidean inner product in Rq, the
formula

mH
[φ](h1, h2) := φ−1(dπC(h1)) · φ−1(dπC(h2))

determines a well-defined Euclidean metric on the bundle H → CN .
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Proof. Suppose we were to choose a different representation φ′ = φ ◦ A of [φ], where A is
some matrix in SO(q,R). Then by the invariance of the Euclidean inner product under special
orthogonal transformations we have

(φ′)−1(dπC(h1)) · (φ′)−1(dπC(h2)) = (A−1φ−1(dπC(h1))) · (A−1φ−1(dπC(h2)))

= φ−1(dπC(h1)) · φ−1(dπC(h2)),

giving well-definedness. That we have defined a metric follows from the linearity of the maps φ
and dπC , and the fact that the Euclidean inner product is a metric on Rq.

Remarkably, holonomy translations are orthogonal with respect to this Euclidean structure
of H.

Proposition 3.5. The normal bundle NC → CN of the foliation FC of CN is a G-equivariant
vector bundle over the G-space CN . Moreover, with respect to the splitting NC = V CN ⊕H,
for u ∈ G and [φ] ∈ CNs(u) the holonomy action u∗ : (NC)[φ] → (NC)u·[φ] has the form

u∗ =

(
a(u) c(u)

0 d(u)

)
, (14)

with a(u) : V[φ]CN → Vu·[φ]CN and d(u) : H[φ] → Hu·[φ] orthogonal and orientation-preserving.

Proof. The holonomy groupoid for the foliation FC of CN is precisely the groupoid CN oG,
under which the normal bundle NC → CN is therefore equivariant. Thus NC → CN is a
G-equivariant vector bundle over the G-space CN .

Proposition 3.2 tells us that a(u) : V[φ]CN → Vu·[φ]CN is orthogonal and orientation-
preserving, and that the vertical bundle is preserved under holonomy translation, which accounts
for the 0 appearing in the bottom left corner of (14). Since πC : CN → M is the anchor map
for the G-space CN it is G-equivariant, implying that the identification dπC of fibres of H with
those of N is also G-equivariant.

That d(u) : H[φ] → Hu·[φ] is orientation-preserving is then a consequence of the fact that it
may be identified with the orientation-preserving action of u on the fibres of N . That d(u) is
orthogonal is a consequence of the following calculation for h1, h2 ∈ H[φ]:

mH
u·[φ](d(u)h1, d(u)h2) =(u∗ ◦ φ)−1((dπC ◦ d(u))(h1)) · (u∗ ◦ φ)−1((dπC ◦ d(u))(h1))

=(φ−1 ◦ u−1
∗ )((u∗ ◦ dπC)(h1)) · (φ−1 ◦ u−1

∗ )((u∗ ◦ dπC)(h2))

=φ−1(dπC(h1)) · φ−1(dπC(h2)) = mH
[φ](h1, h2),

where on the second line, we have used the equivariance of the anchor map dπC between H and
N .

The triangular shape of the matrix in Proposition 3.5 is what is referred to as an almost
isometric or triangular structure by Connes [19] and Connes-Moscovici [23] respectively.

The map c(u) : H[φ] → Vu·[φ]CN , for u ∈ G and [φ] ∈ CNs(u), is where the interesting
representation theory is encoded. Currently, however, the range of c(u) is too high in dimension
to be of much use, and these extra dimensions need to be “traced out”. Observing that there
is indeed a canonical trace trF+N : V F+N → R induced fibrewise by the usual matrix trace on
gl(q,R) = Mq(R), we now check that we can apply this map to V CN also.

Lemma 3.6. The map trF+N : V F+N → R descends to a well-defined map trCN : V CN → R
for which trCN ◦a(u) = trCN for all u ∈ G.
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Proof. For A ∈ GL+(q,R), we denote by RA : F+N → F+N the map φ 7→ φ ·A. By definition,
the action of A ∈ SO(q,R) on V F+N is then given for φ ∈ F+N and vφ ∈ VφF+N by

vφ ·A := (dRA)φ(vφ).

We compute

(dRA)φ(vφ) =
d

dt
(φ · exp(tv) ·A)

∣∣∣∣
t=0

=
d

dt
((φ ·A) · (A−1 exp(tv)A))

∣∣∣∣
t=0

= (A−1vA)φ·A,

from which we deduce that the action of A ∈ SO(q,R) in the trivialisation V F+N = F+N ×
gl(q,R) is given by

(φ, v) ·A = (φ ·A,A−1vA)

for all φ ∈ F+N , v ∈ gl(q,R). Now, trF+N : F+N × gl(q,R)→ R is by definition

trF+N (φ, v) := tr(v),

with tr denoting the usual matrix trace on q×q matrices, and with the range R of trF+N carrying
the trivial action of SO(q,R). Then since the matrix trace is invariant under conjugation, we
see that trF+N is equivariant:

trF+N ((φ, v) ·A) = tr(A−1vA) = tr(v) = trF+N (φ, v) ·A,

and so descends to a well-defined map trCN : V CN → R.
For the second assertion, note that since u commutes with the quotient map Q : F+N → CN

and since u∗ acts as the identity on the fibres of V F+N = F+N × Rq2 by (10), we have

trCN ◦a(u) ◦ dQ = trCN ◦dQ ◦ id = trCN ◦dQ.

Since dQ is surjective, we conclude that

trCN ◦a(u) = trCN

as claimed.

Remark 3.7. Note that what makes Lemma 3.6 possible is the fact that the map v 7→ tr(v)
on gl(q,R) is invariant under conjugation by invertible matrices. Thus in fact we could replace
tr with any other invariant polynomial on gl(q,R), parallelling the Chern-Weil construction of
characteristic classes, and still obtain a well-defined (but no longer necessarily linear) map on
the vertical tangent bundle of the Connes fibration. This observation is due to M. T. Benameur.

Let us put Lemma 3.6 to use in simplifying the groupoid representation theory. For u ∈ G
and [φ] ∈ CNs(u), define

δ(u) := trCN ◦c(u) : H[φ] → R .

This δ(u) is linear, and so can be regarded as an element of H∗[φ]. We also define

θ(u) := d(u−1)t : H∗[φ] → H∗u·[φ],

the action on the covector bundle for H coming from the transpose of d(u−1) : Hu·[φ] → H[φ].
We have the following “ax+ b group”-type transformation laws.

Lemma 3.8. For all u, v ∈ G(2), we have

θ(uv) = θ(u)θ(v), and δ(uv) = δ(v) + θ(v−1)δ(u).
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Proof. These identities follow from the triangular structure of the matrices (14) and Lemma
3.6. Specifically, since G acts on NC we have(

a(uv) c(uv)
0 d(uv)

)
=

(
a(u) c(u)

0 d(u)

)(
a(v) c(v)

0 d(v)

)
=

(
a(u)a(v) a(u)c(v) + c(u)d(v)

0 d(u)d(v)

)
,

from which we immediately deduce that d(uv) = d(u)d(v) and hence θ(uv) = θ(u)θ(v). We also
calculate

δ(uv) = trCN ◦c(uv) = trCN ◦a(u) ◦ c(v) + trCN ◦c(u) ◦ d(v)

= trCN ◦c(v) + trCN ◦c(u) ◦ d(v) = δ(v) + θ(v−1)δ(u),

using Lemma 3.6 for the third equality, giving the desired identities.

3.3 The Vey Kasparov module

We now go about constructing a second Kasparov module, referred to in this paper as the Vey
Kasparov module since it appears to be analogous to the Vey homomorphism considered in
previous work [35, 26]. Our first job in constructing a second Kasparov module is to endow
the total space H∗ of the horizontal covector bundle πH∗ : H∗ → CN with an action of G that
encodes both θ and δ from Lemma 3.8.

Proposition 3.9. For u ∈ G and η ∈ H∗|CNs(u), the formula

u · η := θ(u)η + δ(u−1)

determines the structure of a G-space on H∗ with anchor map πC ◦ πH∗ : H∗ →M .

Proof. It is clear that (πC ◦ πH∗)(u · η) = r(u) for all u ∈ G and η ∈ H∗|CNs(u) , and since by
Lemma 3.8 θ is the identity on units and δ is zero on units we get (πC ◦ πH∗)(η) · η = η for all
η. Thus it remains only to check that (uv) · η = u · (v · η) for all (u, v) ∈ G(2) and η ∈ H∗|CNs(v) .
For this we simply have

(uv) · η =θ(uv)η + δ(v−1u−1) = θ(u)
(
θ(v)η + δ(v−1)

)
+ δ(u−1) = u · (v · η),

with the second equality being a consequence of Lemma 3.8.

We can now construct another dual Dirac class in much the same way as we did for the
Connes fibration. Consider the bundle V H∗ := ker(dπH∗) of vertical tangent vectors over the
horizontal covector bundle πH∗ : H∗ → CN , and denote by πH : H → CN the projection for
the horizontal bundle. Since the fibres of H∗ are vector spaces, we have VηH

∗
[φ]
∼= H∗[φ] for all

[φ] ∈ CN and η ∈ H∗[φ]. Thus the dual space V ∗η H
∗
[φ] is a copy of H[φ] and so we can write V ∗H∗

as the fibered product
V ∗H∗ ∼= H∗ ×πH∗ ,πH H,

regarded as a vector bundle over H∗ by using the projection onto the first factor. Since H is
a G-equivariant Euclidean bundle over CN via the map d in Proposition 3.5, for all u ∈ G,
η ∈ H∗|CNs(u) and h ∈ H|CNs(u) , the formula

u∗(η, h) := (u · η, d(u)h) = (θ(u)η + δ(u−1), d(u)h)

defines on V ∗H∗ the structure of a G-equivariant Euclidean bundle over the G-space H∗. Then
by functoriality Cliff(V ∗H∗) is a G-equivariant bundle over H∗, and we denote the action of
u ∈ G on k ∈ Cliff(V ∗H∗|H∗

[φ]
) by k 7→ u�k for all [φ] ∈ CNs(u). Using these facts together with

Proposition 3.9, the following result is clear.
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Proposition 3.10. The formula

α2
u(ζ)(η) := u�ζ(u−1 · η) = u�ζ(θ(u−1)η + δ(u))

defined for ζ ∈ C`(V ∗H∗), u ∈ G and η ∈ H∗[φ] with [φ] ∈ CNr(u), determines the structure of a

G-algebra on C`(V ∗H∗).

We now come to the definition of an appropriate Hilbert module. Let

E2 := Λ∗(V ∗H∗)⊗ C

be the complexified exterior algebra bundle of V ∗H∗ over H∗, and define

XE2 := Γ0(H∗;E2),

which is a Hilbert C`(V ∗H∗)-module whose structure as such is determined in the same way as
for XE1 using the identification of E2 with Cliff(V ∗H∗) as vector bundles.

By equivariance of V ∗H∗ over H∗ and functoriality, for u ∈ G, [φ] ∈ CNs(u) and η ∈ H∗[φ]

we obtain a unitary holonomy transport map u∗ : E2
η → E2

u·η and an isomorphism W 2
u :

Γ0(H∗[φ];E
2|H∗

[φ]
)→ Γ0(H∗u·[φ];E

2|H∗
u·[φ]

) of Banach spaces defined by

(W 2
uζ)(η) := u∗ζ(u−1 · η) = u∗ζ(θ(u−1)η + δ(u)).

Using Lemma 2.1, we observe that

〈W 2
uζ1,W

2
uζ2〉C`(V ∗H∗)r(u)(η) = u�〈ζ1(θ(u−1)η + δ(u)), ζ2(θ(u−1)η + δ(u))〉

= α2
u(〈ζ1, ζ2〉C`(V ∗H∗)s(u))(η)

for all u ∈ G, [φ] ∈ CNr(u) and η ∈ H∗[φ], so (XE2 ,W 2) is a G-Hilbert C`(V ∗H∗)-module.

We can define an unbounded operator B2 on the dense submodule Xc
E2 = Γc(H

∗;E2) of
XE2 by the formula

(B2ζ)(η) := cL(η)ζ(η),

where for cL(η) we regard η ∈ H∗ as a vertical covector in V ∗H∗ = H∗ ×πH∗ ,πH H using the
Euclidean metric on H.

Finally, we take m2 to be the representation of C0(CN) on XE2 defined by

m2(f)ζ(η) := f(πH∗(η))ζ(η).

Using the fact that πH∗ is an equivariant map and that πH∗(η + η′) = πH∗(η) = [φ] for all
[φ] ∈ CN and η, η′ ∈ H∗[φ], a routine calculation shows that m2 is an equivariant representation.

Proposition 3.11. The triple (C0(CN),m2XE2 , B2) is an unbounded G-equivariant Kasparov
C0(CN)-C`(V ∗H∗)-module, defining a class

[B2] ∈ KKG(C0(CN),C`(V ∗H∗)).

Proof. The proof is essentially the same as the proof of Proposition 3.3. The only part that
must be changed is checking the equivariance condition. For any u ∈ G, [φ] ∈ CNr(u) and
η ∈ H∗[φ], we have

(W 2
uB2W

2
u−1)ζ(η) =u∗(B2W

2
u−1ζ)

(
θ(u−1)η + δ(u)

)
=u∗

(
cL
(
θ(u−1)η + δ(u)

)
(W 2

u−1ζ)
(
θ(u−1)η + δ(u)

))
=u∗

(
cL
(
θ(u−1)η + δ(u)

)(
u−1
∗ ζ
(
θ(u)

(
θ(u−1)η + δ(u)

)
+ δ(u−1)

)))
=u∗

(
cL
(
θ(u−1)η + δ(u)

)(
u−1
∗ ζ(η)

))
=cL

(
η − δ(u−1)

)
ζ(η)
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where the last line follows from the identity θ(u)δ(u) = −δ(u−1) arising from Lemma 3.8,
together with the identity (4). We then have

B2 −W 2
uB2W

2
u−1 = cL(δ(u−1)),

which defines a bounded operator on (XE2)r(u). The rest of the proof is then the same as in
Proposition 3.3.

4 The index theorem

4.1 Some simplifications in codimension 1

There are important simplifications in the codimension 1 case. Observe that for a codimension
1, transversely orientable foliation F of M , the conormal bundle N∗ → M is trivialised by a
choice of orientation, which is given by a choice of a transverse volume form dx. Such a choice
determines a dual section dx∗ of N → M and hence a map t : N → R defined by the equality
n = t(n)dx∗ for n ∈ N . Thus

N = M × R .

The action of u ∈ G on N will then be denoted by

u∗(s(u), n) := (r(u),∆(u)n), (15)

with ∆ : G → R∗+ a multiplicative homomorphism. Observe that under the correspondence
dx 7→ dx∗, this ∆(u) is precisely the Radon-Nikodym derivative of the transverse volume form
dx with respect to the holonomy translation u. The principal R∗+-bundle F+N of positively
oriented frames for N , which coincides with the Connes fibration CN since SO(1,R) = 1, is
then also trivial under the map φ 7→ (πC(φ), t ◦ φ):

CN = M × R∗+ .

The action of u on the fibres of CN , defined by (8) since q = 1, is induced by the same
homomorphism ∆(u):

u · (s(u), b) := (r(u),∆(u)b).

We will assume for ease of calculation that

CN = M × R

using the logarithm map on the fibres, so that the action of a groupoid element u ∈ G on CN
is now given by

u · (s(u), c) = (r(u), c+ log ∆(u)).

The horizontal and vertical bundles are both trivial line bundles, so

NC = V CN ⊕H = CN × (R⊕R).

Here we regard the horizontal bundle H = CN×R as a Euclidean bundle with metric m arising
from CN defined as in Proposition 3.4 by

mH
(x,c)(h1, h2) := (e−ch1) · (e−ch2) = e−2ch1h2.

We use the metric mH to identify H with its dual H∗, by mapping h ∈ H to the functional
mH(h, ·). More precisely, we identify h ∈ H(x,c) = R with ηh := e−2ch ∈ H∗(x,c). We then find
that the resulting metric on H∗ is

mH∗

(x,c)(ηh, ηh′) := mH
(x,c)(h, h

′) = e−2chh′ = e2cηhηh′ .
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Under this identification, the map θ(u) : H∗(s(u),c) → H∗(r(u),c+log ∆(u)) is precisely η 7→ ∆(u−1)η.
With no need to trace over the vertical fibres in the codimension 1 case, we can then write

the triangular structure of a holonomy transformation u ∈ G as

u∗ =

(
1 δ(u)
0 ∆(u)

)
.

This action of u∗ on V CN ⊕H ⊂ TCN is the differential of the action of u on CN . It follows
then that δ(u) is the derivative with respect to the transverse coordinate in M of the map
c 7→ c+ log ∆(u) on the fibres of CN . Since the normal bundle N over M has been trivialised,
we can write this derivative as the scalar δ(u) = ∂ log ∆(u), with ∂ denoting the derivative with
respect to the transverse coordinate. Thus

u∗ =

(
1 ∂ log ∆(u)
0 ∆(u)

)
.

Let us now consider the Kasparov module [B2]. The right-hand algebra in this case is
C`(V ∗H∗), and since for each (x, c, η) ∈ H∗ we can identify vertical tangent vectors in V(x,c,η)H

∗

with vectors in H∗(x,c), it follows that we can identify vertical covectors in V ∗(x,c,η)H
∗ with linear

functionals H∗(x,c) → R. Observe then that there is a nonvanishing section κ of V ∗H∗ → H∗

defined by
κ(x, c, η) := ecη, for (x, c, η) ∈ H∗.

One has

κ(r(u), c+ log ∆(u),∆(u−1)η) = ec+log ∆(u)∆(u−1)η = ecη = κ(s(u), c, η),

so κ is invariant under the action of G and therefore defines a trivialisation V ∗H∗ ∼= H∗ × R
for which the action of G is given by

u∗(s(u), c, η, s) = (r(u), c+ log ∆(u),∆(u−1)η, s) for c ∈ CN, s ∈ R, η ∈ H∗(s(u),c).

It follows that we can take C`(V ∗H∗) to be C0(H∗)⊗Cliff(R), where G acts trivially on Cliff(R).
That is, for all f ⊗ e ∈ C0(H∗)⊗ Cliff(R) we have

α2
u(f ⊗ e)(r(u), c, η) = f(s(u), c− log ∆(u),∆(u)η + ∂ log ∆(u))⊗ e, η ∈ H∗(r(u),c).

We define therefore an action α of G on C0(H∗) by

αu(f)(r(u), c, η) := f(s(u), c− log ∆(u),∆(u)η + ∂ log ∆(u))

for f ∈ C0(H∗), so that α2
u(f ⊗ e) = αu(f)⊗ e for all u ∈ G and e ∈ Cliff(R).

The same remarks carry over to the exterior bundle Λ∗V ∗H∗, so that Γ0(H∗; Λ∗(V ∗H∗)⊗C)
is just C0(H∗)⊗Cliff(R), on which the representation W 2 of G is defined by the same formula
as α2:

W 2
u (ρ⊗ e)(r(u), c, η) = ρ(s(u), c− log ∆(u),∆(u)η + ∂ log ∆(u))⊗ e

for all ρ⊗e ∈ C0(H∗)⊗Cliff(R). We thus define an action W of G on the Hilbert C0(H∗)-module
C0(H∗) by

Wu(ρ)(r(u), c, η) := ρ(s(u), c− log ∆(u),∆(u)η + ∂ log ∆(u))

for all ρ ∈ C0(H∗), and we see that W 2
u (ρ⊗ e) = Wu(ρ)⊗ e for all u ∈ G and e ∈ Cliff(R).

Finally, the operator B2 acts on C0(H∗)⊗ Cliff(R) by

(B2ρ⊗ e)(x, c, η) := ecηρ(x, c, η)⊗ cL(e1)e, e ∈ Cliff(R), η ∈ H∗(x,c),

where cL is the left Clifford multiplication and e1 is a fixed element of Cliff(R) with square 1.
We can now proceed with the construction of a spectral triple from this data and the proof of
the index theorem relating the spectral triple to the Godbillon-Vey invariant.

23



4.2 The spectral triple

Applying the descent map to the equivariant Kasparov module (C0(CN),m2XE2 , B2) of Propo-
sition 3.11 in codimension 1 gives us by Proposition 2.11 a Kasparov module

(Γc(CN oG,Ω
1
2 ), XE2 or G, r

∗B2) (16)

which defines a class in KK(C0(CN) or G,C`(V ∗H∗) or G). By the remarks of the previous
section, we actually have

C`(V ∗H∗) or G = (C0(H∗)⊗ Cliff(R)) or G = (C0(H∗) or G)⊗ Cliff(R)

since G acts trivially on Cliff(R). Thus the module (16) can be replaced [20, Proposition 13,
Appendix A, Chapter 4] by the odd Kasparov C0(CN) or G-C0(H∗) or G-module

(Γc(CN oG,Ω
1
2 ), C0(H∗) or G,B) (17)

where we define B on Γc(H
∗ oG; Ω

1
2 ) ⊂ C0(H∗) or G by

(B ρ)u(x, c, η) := (Br(u) ρu)(x, c, η) := ecηρu(x, c, η), η ∈ R .

Here we are using density of Γc(H
∗ o G; Ω

1
2 ) in C0(H∗) or G and density of Γc(CN o G; Ω

1
2 )

in C0(CN) or G as in the final paragraph of Section 2.3.
The G-invariant transverse volume form on CN is dνCN = e−cdxdc, and we let τCN be

the trace on Γc(CN o G; Ω
1
2 ) defined by integration over CN with respect to dνCN . The G-

invariant transverse volume form on H∗ is simply dνH∗ = dxdcdη, and we let τH∗ be the trace
on Γc(H

∗ oG,Ω
1
2 ) induced by integration over H∗ with respect to dνH∗ .

Putting the trace τH∗ together with the odd Kasparov module (17), by Proposition 2.13 we
obtain an odd semifinite spectral triple

(A,H,B)

relative to (N , τ) where:

1. A = Γc(CN oG; Ω
1
2 ) acts by convolution operators on

2. H, the Hilbert space completion of Γc(H
∗ oG; Ω

1
2 ) in the inner product

(ρ1|ρ2) = τH∗(ρ
∗
1 ∗ ρ2),

3. B is regarded as an operator on H with domain Γc(H
∗ oG; Ω

1
2 ),

4. N is the weak closure of Γc(H
∗ oG; Ω

1
2 ) in the bounded operators on H and,

5. τ is the normal extension of τH∗ to N .

We now apply the semifinite local index formula to (A,H,B) to prove the codimension 1
Godbillon-Vey index theorem.

4.3 The index theorem

We will apply the residue cocycle of [12, Definition 3.2] to prove the following theorem.

Theorem 4.1. Let (M,F) be a foliated manifold of codimension 1. The Chern character of

the semifinite spectral triple (A,H,B) given in Section 4.2 coincides up to a factor of (2πi)
1
2

with the Godbillon-Vey cyclic cocycle of Connes and Moscovici [22, Proposition 19].
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To apply the local index formula of [12] we need to check the summability and smoothness
of the spectral triple.

Lemma 4.2. The spectral triple (A,H,B) is smoothly summable of spectral dimension p = 1
and has isolated spectral dimension.

Proof. We first check finite summability. For s ∈ R, a ∈ Γc(CN o G; Ω
1
2 ) and ρ ∈ H, we

calculate

(a(1+B2)−
s
2 ρ)u(x, c, η) =

∫
v∈Gr(u)

av(x, c)
(
Wv(1 + B2

s(v))
− s

2 ρv−1u)(x, c, η)

=

∫
v∈Gr(u)

av(x, c)
(
1 + e2(c−log ∆(v))(∆(v)η + ∂ log ∆(v))2

)− s
2
(
Wvρv−1u

)
(x, c, η)

=

∫
v∈Gr(u)

av(x, c)(1 + e2c∆(v−1)2(∆(v)η + ∂ log ∆(v))2)−
s
2 (Wvρv−1u)(x, c, η)

=

∫
v∈Gr(u)

av(x, c)(1 + e2c(η − ∂ log ∆(v−1))2)−
s
2 (Wvρv−1u)(x, c, η),

where on the last line we have used Lemma 3.8 in simplifying ∆(v−1)∂ log ∆(v) = −∂ log ∆(v−1).
So a(1 + B2)−

s
2 is the half-density on H∗ oG defined by

((x, c, η), u) 7→ au(x, c)
(
1 + e2c(η − ∂ log ∆(u−1))2

)− s
2 ,

compactly supported in the u and (x, c) variables. Thus

τH∗(a(1 + B2)−
s
2 ) =

∫
M×R×R

a(x, c)
(
1 + e2cη2

)− s
2dxdcdη

=

∫
CN

a(x, c)dνCN

∫
R

(
1 + t2

)− s
2dt,

where we have made the substitution t = ecη. It is then clear that τH∗(a(1 + B2)−
s
2 ) is finite

for all s > 1. For smoothness, we fix a ∈ Γc(CN oG; Ω
1
2 ) and calculate

([B2, a]ρ)u(x, c, η) = e2cη2

∫
v∈Gr(u)

av(x, c)(Wvρv−1u)(x, c, η)

−
∫
v∈Gr(u)

av(x, c)(Wv B2
s(v) ρv−1u)(x, c, η)

=

∫
v∈Gr(u)

av(x, c)e
2c(η2 −∆(v−1)2(∆(v)η + ∂ log ∆(v))2)(Wvρv−1u)(x, c, η)

=

∫
v∈Gr(u)

av(x, c)e
2c
(
2η∂ log ∆(v−1)− (∂ log ∆(v−1))2

)
(Wvρv−1u)(x, c, η)

so that [B2, a] is convolution by the half-density on H∗ oG defined by

((x, c, η), u) 7→ au(x, c)e2c
(
2η∂ log ∆(u−1)− (∂ log ∆(u−1))2

)
.
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We also calculate

([B2, [B, a]]ρ)u(x, c, η) =e2cη2
(
[B, a]ρ

)
u
(x, c, η)−

(
[B, a]B2 ρ

)
u
(x, c, η)

=e2cη2

∫
v∈Gr(u)

av(x, c)e
c∂ log ∆(v−1)

(
Wvρv−1u

)
(x, c, η)

−
∫
v∈Gr(u)

av(x, c)e
c∂ log ∆(v−1)

(
Wv B2

s(v) ρv−1u

)
(x, c, η)

=e2cη2

∫
v∈Gr(u)

av(x, c)e
c∂ log ∆(v−1)(Wvρv−1u)(x, c, η)

−
∫
v∈Gr(u)

av(x, c)e
3c∂ log ∆(v−1)∆(v−1)2(∆(v)η + ∂ log ∆(v))2

× (Wvρv−1u)(x, c, η)

=

∫
v∈Gr(u)

av(x, c)e
3c
(
2η∂ log ∆(v−1)− (∂ log ∆(v−1))2

)
× ∂ log ∆(v−1)(Wvρv−1u)(x, c, η),

so that [B2, [B, a]] is the half-density on H∗ oG defined by

((x, c, η), u) 7→ au(x, c)e3c
(
2η∂ log ∆(u−1)− (∂ log ∆(u−1))2

)
∂ log ∆(u−1).

More generally, setting T (0) := T and then inductively defining T (k) := [B2, T (k−1)], we see that
[B, a](k) is the half-density on H∗ oG defined by

((x, c, η), u) 7→ au(x, c)e(2k+1)c
(
2η∂ log ∆(u−1)− (∂ log ∆(u−1))2

)k
∂ log ∆(u−1).

Now these computations show that for a ∈ A and k ∈ N, the operators a(k) and [B, a](k) are
half densities on H∗ oG, with compact support in the ((x, c), u) ∈ CN oG variables equal to
that of a, and growing like ηk in the fibre variable η ∈ H∗(x,c) for all (x, c) ∈ CN . Hence both

a(k)(1 + B2)−k/2 and [B, a](k)(1 + B2)−k/2 are bounded with compact support in the CN o G
directions. Hence for all a ∈ A the operator

(1 + B2)−k/2−s/4(a(k))∗a(k)(1 + B2)−k/2−s/4

is trace class whenever the real part of s is greater than 1, and similarly with a replaced by
[B, a]. Thus A∪[B,A] ⊂ B∞2 (B, 1) in the notation of [12]. Thus A2, the span of products
from A, satisfies A2 ∪[B,A2] ⊂ B∞1 (B, 1), showing that the semifinite spectral triple over A2 is
smoothly summable.

The last step to establish smooth summability is to observe that A has a (left) approximate
unit for the inductive limit topology by [47, Proposition 6.8]. This ensures that any compactly

supported section in A = Γc(CN oG; Ω
1
2 ) can be approximated by products while preserving

summability.
Finally the computations also show that (A,H,B) has isolated spectral dimension, as in [12,

Definition 3.1], since for all multi-indices k of length m ≥ 0 we have proved that

τH∗(a0[B, a1](k1) · · · [B, am](km)(1 + B2)−|k|−m/2−s)

has a meromorphic continuation in a neighbourhood of s = 0.

Finally we can prove the Theorem 4.1.

26



Proof of Theorem 4.1. Since the spectral dimension p = 1 and since the parity of the spectral
triple is 1, the only nonzero term in the residue cocycle is φ1 as defined in [12, Definition 3.2].

For any a ∈ Γc(CN oG; Ω
1
2 ) we have

(
[B, a]ρ

)
u
(x, c, η) =Br(u)

∫
v∈Gr(u)

av(x, c)(Wvρv−1u)(x, c, η)

−
∫
v∈Gr(u)

av(x, c)(Wv Bs(v) ρv−1u)(x, c, η)

=

∫
v∈Gr(u)

av(x, c)
(
Br(v)−Wv Bs(v)Wv−1

)
(Wvρv−1u)(x, c, η)

=

∫
v∈Gr(u)

av(x, c)e
c∂ log ∆(v−1)(Wvρv−1u)(x, c, η)

=(δ1(a)ρ)u(x, c, η),

where δ1 is the derivation of Γc(CN oG; Ω
1
2 ) defined by

δ1(a)u(x, c) := ec∂ log ∆(u−1)au(x, c).

The derivation δ1 is precisely the same as that given in [22, Page 39]. Thus for a0, a1 ∈
Γc(CN oG; Ω

1
2 ), we calculate

φ1(a0, a1) =2(2πi)
1
2 resz=0 τH∗

(
a0[B, a1](1 + B2)−

1
2
−z)

=2(2πi)
1
2 τCN (a0δ1(a1)) resz=0

∫
R

(1 + t2)−
1
2
−zdh

=2(2πi)
1
2 τCN (a0δ1(a1)) resz=0

Γ(1/2)Γ(z)

2Γ(1/2 + z)

=(2πi)
1
2 τCN (a0δ1(a1)).

This is, up to the factor (2πi)
1
2 , the Godbillon-Vey cyclic cocycle from [22, Proposition 19].

5 Concluding remarks

It is tempting to view the higher codimension version of the codimension 1 Kasparov module and
spectral triple as analogous data representing the Godbillon-Vey invariant in higher codimen-
sion. Sadly, despite the naturality of the constructions presented here, it is far from clear that
such an interpretation is warranted. Without an identification of the Chern character of these
spectral triples with the Godbillon-Vey class, they must remain an interesting construction.

One final remark on the constructions presented here: they all pass to real algebras and
real KK-theory. All our constructions are Real [40] for the obvious variations of complex
conjugation, in part because of our systematic use of the exterior algebra rather than the spinor
bundle. This means that we can at all stages retain contact with homology of manifolds with
real coefficients.
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