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Abstract. For bi-Hilbertian A-bimodules, in the sense of Kajiwara–Pinzari–Watatani, we
construct a Kasparov module representing the extension class defining the Cuntz–Pimsner
algebra. The construction utilises a singular expectation which is defined using the C∗-
module version of the Jones index for bi-Hilbertian bimodules. The Jones index data also
determines a novel quasi-free dynamics and KMS states on these Cuntz–Pimsner algebras.

1. Introduction

The Cuntz–Pimsner algebras introduced in [35] have attracted enormous attention over
the last fifteen years (see, for example, [1, 6, 7, 8, 9, 13, 18, 19, 22, 24, 26, 28, 32, 37]).
They are at once quite tractable and very general, including models for crossed products
and Cuntz–Krieger algebras [35], graph C∗-algebras [12], topological-graph C∗-algebras [21],
Exel crossed products [4], C∗-algebras of self-similar actions [33] and many others.

Particularly important in the theory of Cuntz–Pimsner algebras is the natural Toeplitz
extension 0 → End0

A(FE) → TE → OE → 0 of a Cuntz–Pimsner algebra by the compact
endomorphisms of the associated Fock module. For example, Pimsner uses this extension in
[35] to calculate the K-theory of a Cuntz–Pimsner algebra using that End0

A(FE) is Morita
equivalent to A and TE is KK-equivalent to A. It follows that the class of this extension
is important in K-theory calculations, and a concrete Kasparov module representing this
class could be useful, for example, in exhibiting Poincaré duality for appropriate classes of
Cuntz–Pimsner algebras.

When E is an imprimitivity bimodule, this is relatively straightforward (see Section 3.1)
because the Fock representation of TE is the compression of a natural representation of OE

on a 2-sided Fock module. But for the general situation, there is no such 2-sided module.
Pimsner sidesteps this issue in [35] by replacing the coefficient algebra A with the direct
limit A∞ of the algebras of compact endomorphisms on tensor powers of E, and E with
the direct limit E∞ of the modules of compact endomorphisms from E⊗n to E⊗n+1. This is
an excellent tool for computing the K-theory of OE: the module E∞ (rather than E itself)
induces the Pimsner–Voiculescu sequence in K-theory, and the Cuntz–Pimsner algebra of
E∞ is isomorphic to that of E. But at the level of KK-theory, replacing E with E∞ changes
things dramatically. The Toeplitz extension associated to E∞ corresponds to an element of
KK1(OE, A∞), rather than of KK1(OE, A), and the two are quite different: for example,
if E is the 2-dimensional Hilbert space, then A = C, whereas A∞ = M2∞(C), the type-2∞

UHF algebra.
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In this paper we consider the situation where E is a finitely generated bi-Hilbertian bi-
module, in the sense of Kajiwara–Pinzari–Watatani [18], over a unital C∗-algebra. Our main
result is a construction of a Kasparov-module representative of the class in KK1(OE, A)
corresponding to the extension of OE by End0

A(FE). We assume our modules E are both
full and injective. This situation is quite common, and we present a range of examples; but
much that we do could be extended to more general finite-index bi-Hilbertian bimodules,
[18].

After introducing some basic structural features of the modules we consider in Section 2,
we give a range of examples. We then examine the important special case of self-Morita
equivalence bimodules (SMEBs), which include crossed products by Z. This case was first
calculated by Pimsner [35] in order to show that A and TE are KK-equivalent. We present
the details here for completeness.

For SMEBs we can produce an unbounded representative of the extension

0→ End0
A(FE)→ TE → OE → 0

defining OE. Here E is our correspondence, FE the (positive) Fock space, and TE, OE are
the Toeplitz–Pimsner and Cuntz–Pimsner algebras, respectively.

Having an unbounded representative can simplify the task of computing Kasparov pro-
ducts. Since products with the class of this extension define boundary maps in K-theory and
K-homology exact sequences, this representative is a useful aid to computing K-theory via
the Pimsner–Voiculescu exact sequence. An application of this technique to the quantum
Hall effect appears in [3].

For the general case of (finitely generated) bi-Hilbertian bimodules, we do not obtain
an unbounded representative, but the construction of the right A-module underlying the
Kasparov module is novel. Using the bimodule structure, we construct a one-parameter
family Φs : TE → A, <(s) > 1, of positive A-bilinear maps. Provided the residue at s = 1
exists, we obtain an expectation Φ∞ = ress=1 Φs : TE → A, which vanishes on the covariance
ideal, and so descends to OE. We use Φ∞ to construct an A-valued inner product on OE, and
thereby obtain the underlying C∗-module in our OE–A-Kasparov module representing the
extension class. We provide a criterion for establishing the existence of the desired residue
in Proposition 3.5. We show that this criterion is readily checkable in some key examples; in
particular, we show in Example 3.8 that the residue exists when E is the bimodule associated
to a finite primitive directed graph.

The bimodule structure and Jones–Watatani index are essential ingredients in the con-
struction of Φ∞. The (right) Jones–Watatani index also provides a natural and interesting
one-parameter family of quasi-free automorphisms of OE, and we show that there is a natural
family of KMS states on OE parameterised by the states on A which are invariant for the
dynamics encoded by E. This construction combines ideas from [25] and [5].

There are also corresponding dynamics arising from the left Jones–Watatani index, and
the product of the left and right indices. The corresponding collections of KMS states would
also be interesting, but we do not address them here. The key point is that many important
Cuntz–Pimsner algebras arise from bi-Hilbertian modules, and this extra structure gives rise
to new tools that are worthy of study.

Acknowledgements. This work has profited from discussions with Bram Mesland and
Magnus Goffeng. The authors also wish to thank the anonymous referee for several sugges-
tions which have greatly improved the exposition.
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2. A class of bimodules

Throughout this paper, A will denote a separable, unital, nuclear C∗-algebra. Given a
right Hilbert A-module E (written EA when we want to remember the coefficient algebra), we
denote the C∗-algebra of adjointable operators by EndA(E), the compact endomorphisms by
End0

A(E) and the finite-rank endomorphisms by End00
A (E). The finite-rank endomorphisms

are generated by rank one operators Θe,f with e, f ∈ E.

Definition 2.1. Let A be a unital C∗-algebra. Following [18], a bi-Hilbertian A-bimodule is
a full right C∗-A-module with inner product (· | ·)A which is also a full left Hilbert A-module
with inner product A(· | ·) such that the left action of A is adjointable with respect to (· | ·)A
and the right action of A is adjointable with respect to A(· | ·).

If E is a bi-Hilbertian A-bimodule, then there are two Banach-space norms on E, arising
from the two inner-products. The following straightforward lemma shows that these norms
are automatically equivalent.

Lemma 2.2. Let E be a bi-Hilbertian A-bimodule. Then there are constants c, C ∈ R such
that ‖(e | e)A‖ ≤ c‖A(e | e)‖ and ‖A(e | e)‖ ≤ C‖(e | e)A‖ for all e ∈ E.

Proof. By symmetry it suffices to find c. Suppose that no such c exists. Then there is a
sequence en ∈ E such that ‖(en | en)A‖ > n‖A(en | en)‖. By normalising, we may assume
that each ‖(en | en)A‖ = 1, and hence each ‖A(en | en)‖ < 1

n
. So en → 0 in E, and then

continuity of (· | ·)A forces ‖(0 | 0)A‖ = 1, contradicting the inner-product axioms. �

Throughout the paper, if we say that A is a finitely generated projective bi-Hilbertian
A-bimodule, we mean that it is finitely generated and projective both as a left and as a right
A-module.

The next lemma characterises when a right A-module has a left inner product for a second
algebra. It provides a noncommutative analogue of ‘the trace over the fibres’ for endomor-
phisms of vector bundles.

For us, a frame for a right-Hilbert module EA is a sequence (ei)i∈N of elements such that
the series

∑
Θei,ei converges strictly to IdE; note that this would be called a countable right

basis in the terminology of [18], or a standard normalised tight frame in the terminology
of [14]. As discussed in [18, Section 1], every countably generated Hilbert module E over a
σ-unital C∗-algebra A admits a frame (in our sense), and it admits a finite frame if and only
if End0

A(E) = EndA(E). As discussed in the remark following [18, Proposition 1.2], if (ei) is
a frame for E, then the net

∑
i∈F Θei,ei(f) indexed by finite subsets F of {ei} converges to

f for all f ∈ E.
A less general version of the following basic lemma appears in [29, Lemma 3.23].

Lemma 2.3 (cf. [18, Lemma 2.6]). Let EA be a countably generated right-Hilbert A-module,
and let B ⊂ EndA(E) be a C∗-subalgebra.

(1) Suppose that B(· | ·) is a left B-valued inner product for which the right action of A
is adjointable. Then there is a B-bilinear faithful positive map Φ : End00

A (E) → B
such that Φ(Θe,f ) := B(e | f) for all e, f ∈ E. For any frame (ei) for E, we have

Φ(T ) =
∑

i B(Tei | ei) for all T ∈ End00
A (E).
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(2) Suppose that Φ : End0
A(E)→ B is a B-bilinear faithful positive map. Then B(e | f) :=

Φ(Θe,f ) defines a left B-valued inner product on E for which the right action of A is
adjointable.

Proof. (1) Choose a frame (ei) for E. Given a rank-one operator Θe,f , using the frame
property at the last equality, we calculate:∑

i

B(Θe,fei | ei) =
∑
i

B(e(f | ei)A | ei) =
∑
i

B(e | ei(ei | f)A)

=
∑
i

B(e | Θei,eif) = B(e | f).

It follows that there is a well-defined linear map Φ : End00
A (E) → B satisfying Φ(Θe,f ) =

B(e | f) as claimed. The remaining properties of Φ follow from straightforward calculations.
For example,

Φ(b1Θe,fb2) = Φ(Θb1e,b∗2f
) = B(b1e | b∗2f) = b1B(e | f)b2 = b1Φ(Θe,f )b2,

so Φ is B-bilinear. Positivity and faithfulness follow from the corresponding properties of
the inner product.

(2) Given Φ : End0
A(E)→ B, we define

B(e | f) := Φ(Θe,f ).

Since (e, f) 7→ Θe,f is a left End0
A(E)-valued inner-product on E, and since Φ is faithful

and B-linear, it is routine to check that B(· | ·) is positive definite. Since Φ is positive, it
is ∗-preserving, and so B(e | f) = B(f | e)∗. Write ϕ for the homomorphism B → EndA(E)
that implements the left action. Then B-linearity of Φ gives

bB(e | f) = bΦ(Θe,f ) = Φ(ϕ(b)Θe,f ) = Φ(Θb·e,f ) = B(b · e | f).

So Φ is a left B-valued inner product. For adjointability of the right A-action, observe that

B(e · a | f) = Φ(Θe·a,f ) = Φ(Θe,f ·a∗) = B(e | f · a∗). �

Remark 2.4. Unlike the Hilbert space case, the preceding result does not give any automatic
cyclicity properties for the map Φ (which we might otherwise be tempted to regard as an
operator-valued trace): for e, f ∈ E and U ∈ EndA(E) unitary, we have

Φ(Θe,fU) = B(e | U∗f) and Φ(UΘe,f ) = B(Ue | f).

The adjoint U∗ in the first expression is the adjoint with respect to the inner-product (· | ·)A,
which is the inverse of U . However, it is not clear that U−1 is an adjoint for U with respect
to B(· | ·), even assuming that U is adjointable for B(· | ·).

Remark 2.5. Consider the (very) special case where A is commutative, E is a symmetric
A-bimodule in the sense that a · e = e · a for all e ∈ E, and A(e | f) = (f | e)A. Then the
operator-valued weight associated to A(· | ·) is a trace: given Θe,f and Θg,h,

Φ(Θe,fΘg,h) = Φ(Θe(f |g)A,h) = A(e(f | g)A | h)

and

Φ(Θg,hΘe,f ) = A(g(h | e)A | f).
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The following computation shows that these are equal.

A(e(f | g)A | h) = (h | e(f | g)A)A = (h | e)A(f | g)A = (f(e | h)A | g)A

= A(g | f(e | h)A) = A(g(h | e)A | f).

Thus for vector bundles we recover the trace over the fibres of endomorphisms.

Remark 2.6. If T ∈ End0
A(E) commutes with all b ∈ B then Φ(T ) ∈ Z(B), because

bΦ(T ) = Φ(bT ) = Φ(Tb) = Φ(T )b.

2.1. Examples. We devote the remainder of this section to showing that many familiar
and important classes of correspondences give rise to bi-Hilbertian bimodules of the type we
consider.

2.1.1. Self-Morita equivalence bimodules (SMEBs). The following examples all share the
important property that both the left and right endomorphism algebras are isomorphic to
the coefficient algebra (or its opposite). This will turn out to be an important hypothesis,
and also covers many important examples.

Definition 2.7. Let A be a C∗-algebra. A self-Morita equivalence bimodule (SMEB) over
A is a bi-Hilbertian A-bimodule E whose inner products are both full and satisfy the im-
primitivity condition

A(e | f)g = e(f | g)A, for all e, f, g ∈ E.

Recall from [36, Proposition 3.8] that if EA is a self-Morita equivalence A-bimodule, then
A ∼= End0

A(E).

Example 2.8 (Crossed products by Z). Suppose that A is unital and nuclear, and let α :
A→ A be an automorphism. Then the C∗-correspondence αAA with the usual right module
structure, left action of A determined by α and left inner product A(a | b) = α−1(ab∗) is a
SMEB. The imprimitivity condition follows from the calculation

a · (b | c)A = ab∗c = α(α−1(ab∗))c = A(a | b) · c.

Example 2.9 (Line bundles). Suppose that A is unital and commutative, so that A ∼= C(X)
for some second-countable compact Hausdorff space X. Given a complex line bundle L→ X,
we obtain a SMEB over A by setting E = Γ(L), the continuous sections of L. The left and
right actions are by pointwise multiplication, and any Hermitian form 〈·, ·〉 on L determines
inner products by A(e | f)(x) := 〈e(x), f(x)〉 =: (f | e)A.

The next result shows that for SMEBs, the map Φ of Lemma 2.3 is an expectation.

Lemma 2.10. Suppose that E is a SMEB over a unital C∗-algebra A. The map Φ :
End0

A(E)→ A of Lemma 2.3(1) satisfies Φ(IdE) = 1A.

Proof. Choose a frame (ei) for E. Since E is a SMEB, [36, Proposition 3.8] says that the
map Θx,y 7→ A(x | y) determines an isomorphism ψ : End0

A(E) → A. In particular, ψ is
unital, and so

1A = ψ(IdE) = ψ
(∑

i

Θei,ei

)
=
∑
i

A(ei | ei) = Φ(IdE). �

Conversely, Corollary 4.14 of [18] shows that a bi-Hilbertian bimodule E satisfies Φ(IdE) =
1A if and only E can be given a left inner product which makes E into a SMEB.
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2.1.2. Crossed products by injective endomorphisms. Let A be a unital C∗-algebra and sup-
pose that α : A → A is an injective unital ∗-endomorphism. Assume there exists a faithful
conditional expectation Φ : A → α(A). Then L := α−1 ◦ Φ is a transfer operator [11,
Definition 2.1]; that is, L : A→ A is a positive linear map satisfying

L(α(a)b) = aL(b)

for all a, b ∈ A.
There is a bi-Hilbertian A-bimodule associated to the triple (A,α, L) as follows: A is a

pre-Hilbert A-bimodule with
a · e · b := aeα(b)

and
(e|f)A := L(e∗f)

for a, b, e, f ∈ A. Denote by E the completion of A for the norm ‖e‖2 = ‖(e|e)A‖. By
faithfulness of Φ, there is a left inner-product

A(e|f) = ef ∗

which is left A-linear and for which the right action of A on E is adjointable. The associated
Cuntz–Pimsner algebra satisfies

OE = Aoα,L N
where Aoα,L N is as defined by Exel [11].

2.1.3. Vector bundles. If E → X is a complex vector bundle over a compact Hausdorff
space, then the C(X)-module Γ(E) of all continuous sections under pointwise multiplication
is finitely generated and projective for any nondegenerate C(X)-valued inner products (left
and right). If we alter the left action by composing with an automorphism, we also need
to alter the left inner product as in Example 2.8. If E is rank one then we are back in the
SMEB case of Example 2.9.

2.1.4. Topological graphs. A topological graph is a quadruple G = (G0, G1, r, s) where G0, G1

are locally compact Hausdorff spaces, r : G1 → G0 is a continuous map and s : G1 → G0

is a local homeomorphism. For simplicity, we will assume that r and s are surjective.
Given a topological graph G, Katsura [21] associates a right Hilbert module as follows. Let
A = C0(G0). Then, similarly to Section 2.1.5, Cc(G1) is a right pre-Hilbert A-module with
left and right actions

(a · e · b)(g) := a(r(g)) e(g) b(s(g)), e ∈ Cc(G1), a, b ∈ A, g ∈ G1

and inner product

(e|f)A(v) =
∑
s(g)=v

e(g)f(g), e, f ∈ Cc(G1), v ∈ G0.

(Since s is a local homeomorphism, {g ∈ vG1 : e(g) 6= 0} is finite for e ∈ Cc(G
1), so this

formula for the inner-product makes sense.) We write E for the completion of Cc(G
1) in the

norm determined by the inner-product, and E is a right Hilbert A-module.
To impose a left Hilbert module structure on E, we restrict attention to topological graphs

where r is also a local homeomorphism, and define

A(e | f)(v) =
∑
r(g)=v

e(g)f(g), e, f ∈ Cc(G1), v ∈ G0.
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For the remainder of this section, suppose that G0 and G1 are compact. The following
lemma and its proof are due to Mitch Hawkins, [16].

Lemma 2.11. Suppose that r, s : G1 → G0 are local homeomorphisms. For each n ∈ N, the
sets {v ∈ G0 : |G1v| = n} and {w ∈ G0 : |vG1| = n} are compact open.

Proof. We show that {v ∈ G0 : |G1v| = n} is compact open; symmetry does the rest. It
suffices to show that {v ∈ G0 : |G1v| ≥ n} is both closed and open.

First suppose that v satisfies |G1v| ≥ n. Fix distinct e1, . . . , en ∈ G1v. Since G1 is Haus-
dorff, we can pick disjoint open neighbourhoods Ui of ei. Since s is a local homeomorphism,
we can shrink the Ui so that s(Ui) = s(Uj) for all i, j ≤ n and so that s|Ui is a homeomor-
phism for each i. Since s is a local homeomorphism, it is an open map, and so V = s(U1)
is an open neighbourhood of v. For each v′ ∈ V each Uiv

′ is a singleton, and the Ui are
mutually disjoint, so |G1v′| ≥ n. Hence V ⊆ {v ∈ G0 : |G1v| ≥ n}, and we deduce that the
latter is open.

We now show that it is also closed. Suppose that vm is a sequence in G0 converging to
v, and suppose that each |G1vm| ≥ n. For each m, choose distinct elements em,1, . . . , em,n
of G1vm. Since G1 is compact, by passing to a subsequence we may assume that each
sequence em,i converges to some ei ∈ G1. By continuity of s, we have s(ei) = v for each
i, so it suffices to show that i 6= j implies ei 6= ej. For this, fix a neighbourhood U of ei
on which s is a homeomorphism. Since em,i → ei, the em,i eventually belong to U . Since
each s(em,j) = vj = s(em,i) and each em,j 6= em,i, we see that em,j 6∈ Ui for large m. Since
em,j → ej, we deduce that ej 6∈ U , and in particular ej 6= ei. �

Corollary 2.12. For m,n ∈ N, let

G1
m,n := {e ∈ G1 : |r(e)G1| = m and |G1s(e)| = n}.

Then the G1
m,n are compact open sets, as are s(G1

m,n) and r(G1
m,n).

Proof. We have G1
m,n = s−1({v : |G1v| = n}) ∩ r−1({w : |wG1| = m}). Lemma 2.11 and

continuity of s and r imply that G1
m,n is clopen; since G1 is compact, each G1

m,n then also

compact. Since r, s are local homeomorphisms, they are open maps, so r(G1
m,n) and s(G1

m,n)

are open. They are compact as they are continuous images of the compact set G1
m,n. �

Since r, s are local homeomorphisms, each edge e has a neighbourhood Ue on which both
s and r are homeomorphisms. By the preceding corollary, we may assume that each Ue ⊆
G1
|r(e)G1|,|G1s(e)|. The Ue cover G1, so by compactness, there is a finite open cover U such that

each U ∈ U is contained in some G1
m(U),n(U). Choose a partition of unity on G1 subordinate

to U; say {fU : U ∈ U}. So 0 ≤ fU ≤ 1 and fU ∈ C0(U) for each U ∈ U, and
∑

U∈U fU(e) = 1
for all e ∈ G1.

Lemma 2.13. For each U ∈ U, define hU ∈ C(G1) by hU(e) :=
√
fU(e). The collection

{hU : U ∈ U} is a frame for both the left and the right inner-product on C(G1). We have
Φ(IdE)(v) = |vG1| for all v ∈ G0.

Proof. The situation is completely symmetrical in r and s, so we just have to show that the
fU form a frame for the right inner-product. For this, we fix g ∈ C(G1) and e ∈ G1 and
calculate

(2.1)
∑
U∈U

(θhU ,hUg)(e) =
∑
U

hU(e)(hU | g)C(G0)(s(e)) =
∑
U

∑
s(e′)=s(e)

√
fU(e)

√
fU(e′)g(e′)
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Since s restricts to a homeomorphism on each U ∈ U, we can only have fU(e) and fU(e′)
simultaneously nonzero in the sum on the right-hand side of (2.1) if e = e′. Since fU is

real-valued, we have
√
fU(e) =

√
fU(e), and so∑

U∈U

(θhU ,hUg)(e) =
∑
U∈U

hU(e)2g(e) =
(∑

U

fU(e)
)
g(e) = g(e).

This proves that the hU constitute a frame. For the final assertion, we calculate

Φ(IdE)(v) =
∑
U

C(G0)(hU | hU)(v) =
∑
U

∑
r(e)=v

hU(e)hU(e)

=
∑
r(e)=v

∑
U

fU(e) =
∑
r(e)=v

1 = |vG1|. �

2.1.5. Cuntz–Krieger algebras. As a specific case of the example above, suppose that G =
(G0, G1, r, s) is a finite directed graph where G0 and G1 both have the discrete topology. We
suppose for simplicity that G has no sources and no sinks. If B is the edge-adjacency matrix
of G, then the Cuntz–Pimsner algebra OE of the right Hilbert A-module EA is the Cuntz–
Krieger algebra OB [35, Example 2, page 193]. If we think of the left Hilbert A-module AE as
a right Hilbert Aop module Eop

Aop with eop ·aop = (a·e)op and (eop | f op)Aop =
(
A(f | e)

)op
, then

the Cuntz–Pimsner algebra OEop is the Cuntz–Krieger algebra OBt given by the transpose
of the matrix B, which is given by the graph Gop defined by reversing the edges of G.

2.1.6. Twisted topological graphs. The following construction is due to Li [27]. Suppose that
G = (G0, G1, r, s) is a topological graph. Let N = {Nα : α ∈ Λ} be an open cover of G1.
Given α1, . . . , αn ∈ Λ, write Nα1...αn =

⋂n
i=1Nαi . A collection of functions

S = {sαβ ∈ C(Nαβ,T) : α, β ∈ Λ}

is called a 1-cocycle relative to N if sαβsβγ = sαγ on Nαβγ.
Let

Cc(G,N, S) :=
{
x ∈

∏
α∈Λ

C(Nα) : xα = sαβxβ on Nαβ and xαxα ∈ Cc(E1)
}

For x ∈ Cc(G,N, S) and g ∈ G1, we write x(g) for the tuple
(
x(g)α

)
α∈Λ

, with the convention

that x(g)α = 0 when g 6∈ Nα. Choose for each g ∈ E1 an element α(g) such that g ∈ Nα(g);

since the sαβ are circle valued, for x, y ∈ Cc(G,N, S), the map g 7→ x(g)α(g)y(g)α(g) does not
depend on our choice of the assignment g 7→ α(g). Now Cc(G,N, S) becomes a pre-right-
Hilbert C0(G0)-module under the operations

(x · a)(g)α = x(g)αa(s(g)),

(x | y)A(v) =
∑
s(g)=v

x(g)α(g)y(g)α(g), and

(a · x)(g)α = a(r(g))x(g)α

for x, y ∈ Cc(G,N, S), a ∈ A, α ∈ Λ and v ∈ G0. Theorem 3.3 of [27] ensures that the
completion E(G,N, S) of Cc(G,N, S) is a right-Hilbert A-bimodule.
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If r : G1 → G0 is a local homeomorphism, then there is a left inner-product on E(G,N, S)
satisfying

A(x | y)(v) =
∑
r(g)=v

x(g)α(g)y(g)α(g),

which again does not depend on our choice of assignment g 7→ α(g). The right action is
adjointable for this left inner-product, and E(G,N, S) is then a bi-Hilbertian A-bimodule.

3. A Kasparov module representing the extension class

We now show how to represent the Kasparov class arising from the defining extension of
a Cuntz–Pimsner algebra of a bimodule. The easy case turns out to be the SMEB case,
which we treat first, since in this case we can also obtain more information in the form of
an unbounded representative of the Kasparov module.

The SMEB case does not immediately show how to proceed in the general case: the dilation
of the representation-mod-compacts of OE on the Fock module to an actual representation
of OE is easily achieved in the SMEB case by using a two-sided Fock module.

Utilising the extra information coming from the bi-Hilbertian bimodule structure allows
us to handle the general case, by constructing an A module with a representation of OE.

3.1. The SMEB case. The following theorem summarises the situation when Φ(IdE) = 1A.
The bounded Kasparov module representing the extension in this case is implicit in Pimsner
[35], and numerous similar constructions of Kasparov modules associated to circle actions
have appeared in [2, 5, 30, 34] amongst others. Similar results for the unbounded Kasparov
module were obtained in [15]. The Fock module associated to C∗-bimodules E over a C∗-
algebra A is defined as

FE :=
⊕
n≥0

E⊗n

with E⊗0 := A, where the internal product E⊗n is taken regarding E as a right A-module
with a left action of A. We let [ext] denote the class of the extension

0→ End0
A(FE)→ TE → OE → 0

in KK1(OE,End0
A(E)), and [FE] ∈ KK(End0

A(FE), A) the class of the Morita equivalence.

Theorem 3.1. Let E be a SMEB over A. For Z 3 n < 0, define E⊗n := E
⊗|n|

. Let FE,Z
denote the Hilbert-bimodule direct sum

FE,Z :=
⊕
n∈Z

E⊗n,

and define an operator N on the algebraic direct sum
⋃∞
n=1

⊕n
m=−nE

⊗m ⊆ FE,Z by Nξ := nξ
for ξ ∈ E⊗n. There is a homomorphism ρ : OE → EndA(FE,Z) such that ρ(se)ξ = e⊗ ξ for
all e ∈ E and ξ ∈

⋃
E⊗n. The triple

(OE, (FE,Z)A, N)

is an unbounded Kasparov OE–A module that represents the class [ext] ⊗End0
A(FE) [FE] ∈

KK1(OE, A).
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Proof. If E is a SMEB, then the conjugate module E is also a SMEB, and we have E⊗AE ∼=
End0

A(E) ∼= A, and similarly E ⊗A E ∼= A. This shows that the coefficient algebra A is the
fixed point algebra for the gauge action, and that the spectral subspaces for the gauge action
are full. Then by [5, Proposition 2.9], (OE, (FE,Z)A, N) is an unbounded Kasparov module.

The corresponding bounded Kasparov module is determined by the non-negative spectral
projection of N , denoted P+, [20, Section 7]. Since P+FE,Z is canonically isomorphic to FE
and compression by P+ implements a positive splitting for the quotient map q : TE → OE,
we deduce that (OE, FE,Z, 2P+ − 1) represents [ext], and hence (OE, FE,Z, N) does too. �

3.2. An operator-valued weight. Our next goal is to construct a Kasparov module repre-
senting the extension class in the case when E is not a SMEB. To do so, we seek to dilate the
Fock representation of TE to a representation of OE, but we cannot do this using the module
FE,Z above when E is not a SMEB; the 2-sided direct sum does not carry a representation
of OE by translation operators. In [35], Pimsner circumvents this problem by enlarging E
to a module E∞ over the core O

γ
E, and enlarging the Fock module accordingly. This has the

disadvantage, however, that the resulting exact sequence

0→ End0
O
γ
E

(FE∞)→ TE∞ → OE∞
∼= OE → 0

is very different from the sequence 0 → End0
A(FE) → TE → OE → 0 in which we were

originally interested. For example, if A = C and E = C2, then End0
A(FE) ∼= K, whereas

EndO
γ
E

(FE∞) is Morita equivalent to the UHF algebra M2∞(C).
In this subsection, we show how to dilate the Fock representation without changing coeffi-

cients when E is a finitely generated bi-Hilbertian bimodule satisfying an analytic hypothesis,
and present some examples of this situation. This will require some set-up building on the
tools developed in Section 2. We construct the desired Kasparov module in subsection 3.3.

Fix a bi-Hilbertian A-bimodule E, and let {ei} be a frame for the right module EA. Given
a multi-index ρ = (ρ1, . . . , ρk) we write eρ = eρ1 ⊗ · · · ⊗ eρk for the corresponding element of
the natural frame of E⊗k. We define

(3.1) eβk =
∑
|ρ|=k

A(eρ | eρ) = Φk(IdE⊗k),

and just write eβ for eβ1 . Provided that EA is full and finitely generated, eβk is a positive,
invertible and central element of A, [18], so that βk ∈ A is the logarithm of Φk(IdE⊗k). Since
E will always be clear from context, this justifies our notation

(3.2) β := log(Φ(IdE)), βk := log(Φ(IdE⊗k)).

We write ρ = ρρ for the decomposition of a multi-index ρ into its initial and final segments,
whose lengths will be clear from context. From the formula

A(eρ | eρ) = A(eρ A(eρ | eρ) | eρ)

we see that for 0 ≤ n ≤ k

eβk =
∑
|ρ|=k−n

A(eρe
βn | eρ) ≤ ‖eβn‖ eβk−n .
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Lemma 3.2. Let E be a finitely generated bi-Hilbertian A-bimodule and for k ≥ 0, define
Φk : EndA(E⊗k)→ A by

(3.3) Φk(T ) :=
∑
|ρ|=k

A(Teρ | eρ),

where A(· | ·) is the left A-valued inner product on FE. For n ≤ k and ξ, η ∈ E⊗n we have

Φk(Θξ,η ⊗ Idk−n) = A(ξ | ηeβ(k−|η|)).

Proof. We calculate, using centrality of eβk in A at the fifth step,

Φk(Θξ,η ⊗ Idk−n) =
∑
|ρ|=k

A(Θξ,ηeρ | eρ) =
∑
|ρ|=k

A(ξ · (η | eρ)A eρ | eρ)

=
∑
|ρ|=k

A(ξ · (η | eρ)A A(eρ | eρ) | eρ) =
∑
|ρ|=|η|

A(ξ · (η | eρ)A eβ(k−|η|) | eρ)

=
∑
|ρ|=|η|

A(ξ · eβ(k−|η|)(η | eρ)A | eρ) =
∑
|ρ|=|η|

A(ξ · eβ(k−|η|) | eρ · (eρ | η)A)

= A(ξ · eβ(k−|η|) | η) = A(ξ | η · eβ(k−|η|)). �

Lemma 3.3. Let E be a finitely generated bi-Hilbertian A-bimodule, and for each k ≥ 0,
let Φk : End0(E⊗k) → A be the positive map of Lemma 2.4(1). For 0 ≤ T ∈ TE, and for
<(s) > 1, the series

(3.4)
∞∑
k=0

Φk(T )e−βk(1 + k2)−s/2

converges to an element Φs
∞(T ) of A which is positive for s real.

Proof. By definition, we have Φk(IdE⊗k)e
−βk = 1A. Thus for <(s) > 1, the series

∞∑
k=0

Φk(IdE⊗k)e
−βk(1 + k2)−s/2 =

( ∞∑
k=0

(1 + k2)−s/2
)

1A

converges in norm. The function s 7→
∑

Φk(IdE⊗k)e
−βk(1 + k2)−s/2 has well-defined residue

1A at s = 1. Since TE can be regarded as a subalgebra of EndA(FE), the formula (3.3)
makes sense for T ∈ TE. Indeed, if Pk : FE → E⊗k is the projection, then Pk EndA(FE)Pk ∼=
EndA(E⊗k), and then Φk(T ) = Φk(PkTPk) for all T ∈ TE.

For 0 ≤ T ∈ TE, the inequality T ≤ ‖T‖ IdTE shows that

(3.5) Φk(T )e−βk ≤ ‖T‖ 1A.

So for s ∈ C with <(s) > 1, the series (3.4) converges in norm. �

We now construct an A-valued map on TE by taking the residue at s = 1 of the map Φs
∞

of Lemma 3.3, and then show that this residue functional factors through OE.
Recall that, given sequences (xn), (yn) of real numbers, we write xn ∈ O(yn) if there is a

constant C such that xn ≤ Cyn for large n.
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Lemma 3.4. Let E be a finitely generated bi-Hilbertian A-bimodule, take η ∈ E⊗n and
suppose that the sequence

(
e−βkηeβ(k−|η|)

)
k

converges; write η̃ for its limit. Suppose that there
exists δ > 0 such that

‖e−βkηeβ(k−|η|) − η̃‖ ∈ O(k−δ).

For ξ ∈ FE the function s 7→ Φs
∞(TξT

∗
η ) has a well-defined residue Φ∞(TξT

∗
η ) at s = 1, and

we have Φ∞(TξT
∗
η ) = A(ξ | η̃), where the inner-product is taken in FE.

Proof. For k > |η|, and for a multi-index ρ = ρρ of length k with |ρ| = |η|, we have
TξT

∗
η eρ = Θξ,η(eρ)⊗ eρ. So for k > |η|,

Φk(TξT
∗
η ) = δ|ξ|,|η|

∑
|ρ|=k

A(Θξ,η(eρ)⊗ eρ | eρ)

= δ|ξ|,|η|
∑
|ρ|=k

A(Θξ,η(eρ) · A(eρ | eρ) | eρ)

= δ|ξ|,|η|
∑
ρ

A(Θξ,η(eρ) · e−βk−|η| | eρ).(3.6)

Since e−βk−|η| is central and self-adjoint, we have

Θξ,η(eρ) · e−βk−|η| = ξ · (η | eρ)Ae−βk−|η| = ξ · e−βk−|η|(η | eρ)A = ξ · (η · e−βk−|η| | eρ)A.

So (3.6) gives

Φk(TξT
∗
η ) = δ|ξ|,|η|Φ|η|(Θξ,η·eβ(k−|η|) ) = δ|ξ|,|η|A(ξ | η · eβ(k−|η|)).

Since the summands of FE are, by definition, mutually orthogonal in its inner product, we
deduce that for any ξ, η and k, we have

Φk(TξT
∗
η )e−βk = χ{1,...,k}(|η|)A(ξ | η · eβ(k−|η|))e−βk

= χ{1,...,k}(|η|)A(ξ | η̃) + A(ξ | e−βk · η · eβ(k−|η|) − η̃),

and so ‖Φk(TξT
∗
η )e−βk − A(ξ | η̃)‖ ∈ O(k−δ). In particular, ress=1 Φs

∞(TξT
∗
η ) exists and is

equal to A(ξ | η̃) as claimed. �

Proposition 3.5. Let E be a finitely generated bi-Hilbertian A-bimodule. Suppose that for
every η ∈ FE the limit η̃ := limk→∞ e

−βkηeβ(k−|η|) exists and that for each η there is a δ such
that

‖e−βkηeβ(k−|η|) − η̃‖ ∈ O(k−δ).

Then there is a conditional expectation Φ∞ : TE → A such that

Φ∞(TξT
∗
η ) = ress=1 Φs

∞(TξT
∗
η ),

and this Φ∞ descends to a well-defined functional Φ∞ : OE → A.

Proof. For T ∈ End0
A(E⊗k) self-adjoint, we have

Φk(T )e−βk = Φk(PkTPk)e
−βk ≤ Φk(‖T‖Pk)e−βk = ‖T‖.

So for a self-adjoint finite sum
∑

i TξiT
∗
ηi

, ‖
∑

i Φ
s
∞(TξiT

∗
ηi

)‖ ≤ ‖
∑

i TξiT
∗
ηi
‖
∑∞

k=0(1 + k2)−s/2.
Since every T can be expressed as a sum of two self-adjoints, we deduce that Φ∞ is bounded
on span{TξT ∗η : ξ, η ∈ FE}. It follows that Φ∞ extends by linearity to a bounded linear map
on span{TξT ∗η : ξ, η ∈ FE}, and so extends to TE.
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It is routine to check from the defining formula that Φ∞ is positive, idempotent and
A-linear.

For the last assertion, we compute:

Φ∞(a−
∑
j

Θej ,eja) = ress=1

∞∑
k=0

(a−
∑
j

A(ej | ej · eβ(k−1))e−βka)(1 + k2)−s/2

= ress=1

∞∑
k=0

(a− eβke−βk · a)(1 + k2)−s/2

= ress=1

∞∑
k=0

(a− a)(1 + k2)−s/2 = 0.

Hence Φ∞ vanishes on the covariance ideal, and so descends to the quotient OE. �

Example 3.6 (Cuntz algebras). Fix N ≥ 1. Let E be the Hilbert space CN = span{ei : 1 ≤
i ≤ N}, which is a bi-Hilbertian C-bimodule in the obvious way. Then OE

∼= ON . We have
eβk = Nk for k ≥ 1. If η ∈ E⊗n and k ≥ n then

e−βk · η · eβk−n = N−kηNk−n = N−nη

and so the hypotheses of Proposition 3.5 are satisfied and Φ∞ exists. In fact, we have

Φ∞(SηS
∗
ζ ) =

1

N |η|
δη,ζ ,

and Φ∞ is the usual KMS state for the gauge action on ON .

For the next example, we need to recall a bit of Perron–Frobenius theory and state an ele-
mentary lemma. If A is a primitive nonnegative matrix, then the Perron–Frobenius theorem
(see, for example [31, Chapter 8]) says that A has a unique eigenvector x with nonnegative
entries and unit 2-norm. The entries of x are in fact all strictly positive, and Ax = rσ(A)x
where rσ(A) is the spectral radius of A. (We avoid the usual notation, ρ(A), for the spectral
radius because the symbol ρ is used extensively as a multi-index elsewhere in the paper.)
The sequence rσ(A)−kAk converges in norm to the rank-one projection P onto Cx, which
commutes with A. The following elementary lemma describes the rate of convergence of this
sequence.

Lemma 3.7. Let A be a primitive nonnegative matrix, x its 2-norm-unimodular Perron–
Frobenius eigenvector, and P the projection onto Cx. Then there exist C > 0 and α < 1
such that ‖rσ(A)−kAk − P‖ ≤ Cαk for all k.

Proof. Since P commutes with A, we have Ak = PAkP+(1−P )Ak(1−P ) = (PAP )k+((1−
P )A(1 − P ))k for all k. Since PAkP = rσ(A)kP for all k, we then have rσ(A)−kAk − P =
rσ(A)−k(1 − P )Ak(1 − P ). So ‖rσ(A)−kAk − P‖ = rσ(A)−k‖(1 − P )Ak(1 − P )‖ for all
k. Let λ := rσ((1 − P )A(1 − P )). Then λ is an eigenvalue of A and hence the Perron–
Frobenius theorem gives |λ| < rσ(A). The spectral-radius formula then gives ‖(1−P )Ak(1−
P )‖1/k → |λ| < rσ(A), and so there exists l such that ‖(1 − P )Al(1 − P )‖ < rσ(A)l. So
α := ‖(1−P )Al(1−P )‖1/lrσ(A)−l < 1. For every k, we have rσ(A)−kl‖(1−P )Akl(1−P )‖ ≤
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rσ(A)−kl‖(1− P )Al(1− P )‖k < αkl. Now for any p < l, we have

rσ(A)−kl−p‖(1− P )Akl+p(1− P )‖ ≤ rσ(A)−p‖(1− P )Ap(1− P )‖αkl

= rσ(A)−pα−p‖(1− P )Ap(1− P )‖αkl+p,
and so any C ≥ maxp<l rσ(A)−pα−p‖(1− P )Ap(1− P )‖ does the job. �

Example 3.8 (C∗-algebras of primitive graphs). Fix a finite primitive directed graph G and

let E(G) be the associated CG0
-module. Write A = AG ∈ MG0(Z) for the vertex adjacency

matrix of G. For k ≥ 1 we have

eβk =
∑
v∈G0

|vGk|δv =
∑

v,w∈G0

Ak(v, w)δv

Fix λ ∈ Gn. We write δλ = δλ1 ⊗ · · · ⊗ δλn ∈ E(G)⊗n. For k > n we have

e−βk · δλ · eβk−n =
|s(λ)Gk−n|
|r(λ)Gk|

δλ =
‖(At)k−nδs(λ)‖1

‖(At)kδr(λ)‖1

δλ

We show first that limk→∞ e
−βk · δλ · eβk−n exists. Since G is a finite primitive directed

graph, we can apply Perron–Frobenius theory to the transpose At of its vertex-adjacency
matrix. Let x ∈ CG0

be the 2-norm-unimodular Perron–Frobenius eigenvector for At; so
Atx = rσ(At)x, and ‖x‖2 = 1. Let P be the projection onto Cx. By Lemma 3.7, there exist
α < 1 and C > 0 such that ‖rσ(At)−k(At)k − P‖ ≤ Cαk for all k. Since x has real entries,
we have

lim
k→∞

rσ(At)−k(At)kδv = Pδv = x〈δv, x〉 = xvx

for each v ∈ E0. Hence

lim
k→∞

e−βk · δλ · e−βk−n = lim
k→∞

∑
v∈E0 Ak−n(s(λ), v)∑
w∈E0 Ak(r(λ), w)

δλ

= lim
k→∞

rσ(At)k−n

rσ(At)k

(
‖ limk→∞

1
rσ(At)k−n

(At)k−nδs(λ)‖1

‖ limk→∞
1

rσ(At)k
(At)kδr(λ)‖1

)
δλ(3.7)

=
1

rσ(At)n
xs(λ)

xr(λ)

δλ.

To calculate the rate of convergence, we use Equation (3.7) to write∣∣∣rσ(At)n
(
e−βk · δλ · e−βk−n −

1

rσ(At)n
xs(λ)

xr(λ)

δλ

)∣∣∣ =

∣∣∣∣∣‖rσ(At)n−k(At)k−nδs(λ)‖1

‖rσ(At)−k(At)kδr(λ)‖1

−
‖xs(λ)x‖1

‖xr(λ)x‖1

∣∣∣∣∣.
We have ‖rσ(At)−k(At)kδr(λ) − xr(λ)x‖1 ≤ Cαk‖x‖1 for all k. For k ∈ N we have

(1− Cαk)‖xr(λ)x‖1 ≤ ‖rσ(At)−k(At)kδr(λ)‖1 ≤ (1 + Cαk)‖xr(λ)x‖1,

and hence

(1 + Cαk)−1‖rσ(A)n−k(At)k−nδs(λ)‖1

‖xGr(λ)x
G‖1

≤
‖rσ(A)n−k(At)k−nδs(λ)‖1

‖rσ(A)−k(At)kδr(λ)‖1

≤ (1− Cαk)−1‖rσ(A)n−k(At)k−nδs(λ)‖1

‖xGr(λ)x
G‖1

.
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Consequently∣∣∣∣∣‖rσ(At)n−k(At)k−nδs(λ)‖1

‖rσ(At)−k(At)kδr(λ)‖1

−
‖xs(λ)x‖1

‖xr(λ)x‖1

∣∣∣∣∣
≤ max

{∣∣∣∣∣(1 + Cαk)−1‖rσ(At)n−k(At)k−nδs(λ)‖1 − ‖xs(λ)x‖1

‖xr(λ)x‖1

∣∣∣∣∣,∣∣∣∣∣(1− Cαk)−1‖rσ(At)n−k(At)k−nδs(λ)‖1 − ‖xs(λ)x‖1

‖xr(λ)x‖1

∣∣∣∣∣
}
.

Using the identity (1 + Cαk)−1 = 1− Cαk(1 + Cαk)−1, we see that∣∣(1 + Cαk)−1‖rσ(At)n−k(At)k−nδs(λ)‖1 − ‖xs(λ)x‖1

∣∣
≤
∣∣‖rσ(At)n−k(At)k−nδs(λ)‖1 − ‖xs(λ)x‖1|

∣∣
+
∣∣Cαk(1 + Cαk)−1‖rσ(At)n−k(At)k−nδs(λ)‖1

∣∣.
The first term is in O(αk) by the reverse triangle inequality and Lemma 3.7. The second term
is in O(αk) because the sequences (1+Cα−k)−1 and ‖rσ(At)n−k(At)k−nδs(λ)‖1 are convergent,

and hence bounded. Similar estimates show that
∣∣(1 − Cαk)−1‖rσ(At)k−n(At)n−kδs(λ)‖1 −

‖xs(λ)x‖1

∣∣ is in O(αk). Hence∥∥∥e−βk · δλ · eβk−n − 1

rσ(At)n
xs(λ)

xr(λ)

δλ

∥∥∥ ∈ O(αk).

Since the δλ span E⊗n, it follows that ‖e−βk · η · eβk−n − η̃‖ ∈ O(αk) for each η ∈ E⊗n.
Since every δ > 1 satisfies k−δ > αk for large k, it follows that the module E satisfies the
hypotheses of Proposition 3.5.

Remark 3.9. Since the Cuntz–Krieger algebra of a {0, 1}-matrix A is isomorphic to the
graph C∗-algebra of the graph with adjacency matrix A [23, Proposition 4.1], the preceding
example shows that Proposition 3.5 covers the situation of Cuntz-Krieger algebras associated
to primitive matrices.

The following example is the graph C∗-algebraic realisation of the C∗-algebra of SUq(2)
[17]. Since the graph in question is not primitive, the analysis of the preceding example does
not apply, but we can check the hypotheses of Proposition 3.5 by hand.

Example 3.10. Consider the following graph G.

vw
f

eg

The module E is a copy of C3 which we write as span{δe, δf , δg}. The left action of the
projection pv is by 1 on δe and zero elsewhere, and pw = 1 − pv. The right action has pv
acting by 1 on both δe and δf and by zero on δg. Schematically,

E =

δeδf
δg

 , L(pv) =

1 0 0
0 0 0
0 0 0

 , R(pv) =

1 0 0
0 1 0
0 0 0

 .
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Hence eβ = pv + 2pw. We have

E⊗n =



δe⊗n
δf⊗e⊗n−1

δg⊗f⊗e⊗n−2

...
δg⊗n−1⊗f
δg⊗n


and the left action of pv is nonzero only on δe⊗n , while the right action of pw is nonzero only
on g⊗n. Hence eβn = pv + (n+ 1)pw. So for a path λ ∈ Gn

e−βkδλe
β(k−n) =


δλ λ = en
k+1−n
k+1

δλ λ = gn
1

k+1
δλ otherwise.

Hence the hypotheses of Proposition 3.5 are satisfied and Φ∞ is well-defined for the algebra
of this graph.

Remark 3.11. The boundedness of the sequence Φk(T )e−βk , for T ∈ TE, suggests that we
could extend the definition of Φ∞ using Dixmier trace methods. The difficulty is with the
meaning of ω-limits in the C∗-algebra A. Victor Gayral has pointed out to us that in any
representation π : A→ B(H), for any vectors ξ, η ∈ H, and for a suitable generalised limit
ω ∈ (L∞([0,∞)))∗, the functional

T 7→ ω-lim
N

(
N∑
k=0

〈ξ,Φk(T )e−βkη〉(1 + k2)−1/2

)
is well-defined and so we can make sense of ‘weak ω-limits’. Unfortunately, however, the
resulting limits in general lie in A′′ rather than A, so they are not well suited to our purposes.

In the special case where βf = fβ for all f ∈ E, the limits above always exist.

Lemma 3.12. If βf = fβ for all f ∈ E, then

eβn = eβn

where β = β1. Consequently e−βkηeβk−|η| = e−β|η|η for all η ∈ FE and all k.

Proof. This is just from the definition: for each multi-index ρ of length n, we write ρ = (ρ, ρn)
where ρ has length n− 1, and calculate:

eβn =
∑
|ρ|=n

A(eρ | eρ) =
∑
|ρ|=n

A(eρA(eρn | eρn) | eρ) =
∑
|ρ|=n

A(eρe
β | eρ)

= eβ
∑
|ρ|=n

A(eρ | eρ) = eβeβn−1 . �

3.3. The Kasparov module representing the extension. For this section we assume
that the bimodule E satisfies the hypotheses of Proposition 3.5, so that the expectation
Φ∞ : OE → A is defined.
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The functional Φ∞ is, by construction, gauge invariant in the sense that if ξ ∈ E⊗k and
η ∈ E⊗n with k 6= n then Φ∞(TξT

∗
η ) = 0. We define an A-valued inner product on OE by

(3.8) (S1 | S2)A := Φ∞(S∗1S2), S1, S2 ∈ OE.

We observe that N = {T ∈ TE : Φ∞(T ∗T ) = 0} is an A-bimodule: it carries a right action
because Φ∞ is A-bilinear and it carries a left action because Φ∞(T ∗a∗aT ) ≤ ‖a‖2Φ∞(T ∗T ).
Similarly N is a left TE module, and as Φ∞ vanishes on End0

A(FE) we have k · TE ⊂ N for
all k ∈ End0

A(FE). These observations justify the following definition.

Definition 3.13. We let (OE)Φ
A denote the right C∗-A-module obtained as the completion

of OE/N in the norm ‖S + N‖ := ‖Φ∞(S∗S)‖A. We denote the class of SµS
∗
ν in (OE)Φ

A by
Wµ,ν , and as a notational shortcut, we write Wµ for the class of Sµ instead of Wµ,1.

Our notational ambiguity will not cause problems: we have written Φ∞ for the functional
TE → A obtained from Proposition 3.5, and also for the functional on OE to which this
functional descends. So we can form a Hilbert bimodule either by using the former Φ∞
to define an A-valued sesquilinear form on TE, or by using the latter Φ∞ to define one on
OE. But since Φ∞ vanishes on the covariance ideal, these two modules coincide, and the
canonical representation of TE on the former induced by multiplication actually descends to
the corresponding representation of OE on the latter.

In particular, the module (OE)Φ
A carries a representation of OE, defined by left multiplica-

tion, and so, for instance, SµS
∗
ν ·Wσ,ρ = W

µ·(eν | eσ)A·σ,ρ
when |ν| ≤ |σ|.

Using the module (OE)Φ
A, we can now produce a Kasparov module representing the exten-

sion class [ext]⊗End0(FE) [FE].

Theorem 3.14. If EA is a finitely generated projective A-bimodule satisfying the hypotheses
of Proposition 3.5, and e1, . . . , eN is a frame for EA, then the series∑

k≥0

∑
|ρ|=k

ΘWeρ ,Weρ

converges strictly to a projection P ∈ EndA((OE)Φ
A). The map ξ 7→ Wξ is an isometric

isomorphism of FE onto P (OE)Φ
A. The left action of OE on (OE)Φ

A has compact commutators
with P . The triple

(OE, (OE)Φ
A, 2P − 1)

is a Kasparov module which represents the class [ext]⊗End0(FE) [FE].

Proof. The map ι : (FE)A → (OE)Φ
A given by ξ 7→ ι(ξ) := Wξ is isometric. This follows from

the computation

(Wξ|Wξ)A = Φ∞(W ∗
ξWξ) = Φ∞((ξ|ξ)A) = (ξ|ξ)A,

and polar decomposition. We now define projections Pk for k ≥ 0 by

Pk :=
∑
|ρ|=k

ΘWeρ ,Weρ
.

The Pk are adjointable because they are finite sums of rank one operators for which Θ∗ξ,η =
Θη,ξ, and this formula then shows that the Pk are self-adjoint. The projection property
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follows from the computation

PkP` =
(∑
|ρ|=k

ΘWeρ ,Weρ

)(∑
|σ|=`

ΘWeσ ,Weσ

)
=

∑
|ρ|=k, |σ|=`

ΘWeρ (Weρ |Weσ ),Weσ

=

{
0 k 6= `∑
|ρ|=k ΘWeρ ,Weρ

k = `

= δk,`Pk

which also shows that the various Pk are mutually orthogonal. From these computations,
it is immediate that P :=

∑
k≥0 Pk is a projection. Next observe that the image of P is

contained in ι(FE) ⊂ (OE)Φ
A, since

PWµ,ν =
∑

0≤|ρ|≤|µ|

WeρΦ∞(S∗eρSµS
∗
ν) =

∑
0≤|ρ|≤|µ|

WeρΦ∞
(
(eρ | µ)ASµS

∗
ν

)
= lim

k→∞

∑
0≤|ρ|≤|µ|

Weρ(eρ | µ)AA(µ | νeβ(k−|ν|))e−βk

= lim
k→∞

∑
0≤|ρ|≤|µ|

Weρ(eρ|µ)A A(µ | νeβ(k−|ν|))e−βk .

If |µ| 6= |ν|, then A(µ | νeβ(k−|ν|)) = Φ∞(SµS
∗
νe
βk−|ν|

) = 0, and so we see that PWµ,ν = 0 if

|µ| < |ν|, and

PWµ,ν = WµΦ∞(SµS
∗
ν) if |µ| ≥ |ν| and µ = µ⊗ µ with |µ| = |ν|.

Thus PWµ,ν ∈ ι(FE) ·A ⊂ ι(FE). Since the image of P can easily be seen to contain Weρ for
all multi-indices ρ, it follows that the image of P equals FE. Thus we also learn that FE is a
complemented sub-module of (OE)Φ

A and that the isometric inclusion ι : FE ↪→ (OE)Φ
A is also

adjointable. It is straightforward to check that the map ι also intertwines the actions of TE
on these copies of FE. Thus the compression of the action of OE on (OE)Φ

A to the subspace

P (OE)Φ
A gives a positive splitting of the quotient map TE

q→ OE.
To see that (OE, (OE)Φ

A, 2P − 1) is a Kasparov module, we must verify the compactness of
the commutators [P, Sµ]. Fix elementary tensors ρ, σ, µ ∈ FE, and observe that

PSµWρ,σ = 0 if |µ|+ |ρ| − |σ| < 0, and SµPWρ,σ = 0 if |ρ| − |σ| < 0.

In the following, if |µ| + |ρ| − |σ| ≥ 0 then we split µ = µ ⊗ µ so that |µ| + |ρ| − |σ| = 0.
Then to complete the proof, first observe the easy relation (proved above)

PWµ · c = Wµ · Φ∞(c), c ∈ span{SαS∗β : |α| = |β|}.
Then

PSµWρ,σ − SµPWρ,σ

=

{
PWµρ,σ −WµρΦ∞(SρS

∗
σ) |ρ| − |σ| ≥ 0

PWµρ,σ |ρ| − |σ| < 0
=

 0 |ρ| − |σ| ≥ 0
Wµρ,σ −|µ| ≤ |ρ| − |σ| < 0
0 |ρ| − |σ| < −|µ|

=
−1∑

j=−|µ|

PjSµWρ,σ
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which is explicitly the action of a finite sum of finite rank operators, and so certainly compact.
Since (2P − 1)2 = 1, (2P − 1)∗ = (2P − 1) and [2P − 1, SµS

∗
ν ] is compact for all vectors

µ, ν ∈ FE, we have completed the proof that we obtain an odd Kasparov module. So it suffices
to show that the Busby invariant agrees with that of the class [ext]⊗End0

A(FE) [FE]. We have

seen that the representation of TE on P (OE)Φ
A is isomorphic to the Fock representation, so we

just need to show that the representation π : OE → EndA((OE)Φ
A) induced by multiplication

is faithful. Since Φ∞ is the identity map on A, the image of A in the module (OE)Φ
A is a

copy of the standard module AAA, and so π is faithful on A. As discussed above, the gauge
action on OE determines a unitary action of T on (OE)Φ

A, and this unitary action induces an
action β of T on EndA((OE)Φ

A). It is routine to check that βz ◦ π = π ◦ γz for all z. So the
gauge-invariant uniqueness theorem [21, Theorem 4.5] shows that π is injective. �

Corollary 3.15. Let E be a finitely generated bi-Hilbertian A-bimodule. Then the boundary
maps in the K-theory and K-homology exact sequences for Cuntz–Pimsner algebras, labelled
(1) and (2) in [35, Theorem 4.1], are given by the Kasparov product with (OE, (OE)Φ

A, 2P−1).

Remark 3.16. If E is a SMEB then the class (OE, (OE)Φ
A, 2P −1) is just the class of the Fock

module presented earlier.

4. KMS functionals for bimodule dynamics

Given a bi-Hilbertian bimodule E over a unital algebra A, we have seen that the (right)
Jones–Watatani index Φ(IdE) = eβ ∈ Z(A) carries useful structural information about the
associated Cuntz-Pimsner algebra. The Jones–Watatani index can be defined for a much
wider class of bimodules than those considered here, and we refer to [18] for further examples,
the general framework, and relations to conjugation theory.

Our aim in this final section is to show that the Jones–Watatani index of the bimodule E
also determines a natural one-parameter group of automorphisms of OE that often admits
a natural KMS state. The dynamics and most of the ingredients of the KMS states we
construct arise from the bimodule alone, but we require one additional ingredient: a state
on A which is invariant for E in an appropriate sense.

Definition 4.1. Let E be a bi-Hilbertian bimodule over a unital C∗-algebra A. A state
φ : A→ C is E-invariant if for all e1, e2 ∈ E we have φ((e1|e2)A) = φ(A(e2|e1)).

Lemma 4.2. If a state φ : A→ C is E-invariant, then it is a trace.

Proof. For e, f ∈ E and a ∈ A, we have

φ((e | f)Aa) = φ((e | fa)A) = φ(A(fa | e)) = φ(A(f | ea∗)) = φ((ea∗ | f)A) = φ(a(e | f)A).

So in particular φ is tracial on the range of (· | ·)A. Since the right inner-product is full, this
completes the proof. �

Before proceeding, we present some examples that demonstrate that the existence of an
invariant trace is not a prohibitively restrictive hypothesis.

Example 4.3 (Crossed products by Z). Let E be the module A with left action given by an
automorphism α, as in Example 2.8. Then the definition of an E-invariant state φ : A→ C
immediately says that φ is α-invariant. When A = C(X) is abelian, this is of course just an
α-invariant measure.
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Example 4.4 (Directed graphs). Let G = (G0, G1, r, s) be a finite directed graph with no

sinks or sources. Let A = C|G0| and let E = Cc(G1) be the bi-Hilbertian A-bimodule from
Example 2.1.5. Define A→ C by

ϕ(f) =
∑
v∈G0

f(v)

where f ∈ C(G0). If ξ, η ∈ Cc(G1) we have

ϕ((ξ|η)A) =
∑
v∈G0

(ξ|η)A(v) =
∑
v∈G0

∑
s(e)=v

ξ(e)η(e) =
∑
v∈G0

∑
r(e)=v

η(e)ξ(e) = ϕ(A(η|ξ))

so ϕ is E-invariant.

Example 4.5 (Topological graphs). Let G = (G0, G1, r, s) be a topological graph with r :
G1 → G0 a local homeomorphism. Let E be the bi-Hilbertian bimodule over A = C0(G0)
from Example 2.1.4. Suppose that µ is a probability measure on G0 satisfying∫

r(supp ξ)

ξdµ =

∫
s(supp ξ)

ξdµ

whenever ξ ∈ Cc(G1) with r and s bijective on supp ξ. Given f ∈ A define

ϕ(f) =

∫
fdµ.

Then ϕ is E-invariant.

It is fairly clear that the preceding example can be further generalised to the twisted
topological graph algebras of Li [27] (see Example 2.1.6).

We now show how an E-invariant trace can be used to construct a KMS state for a
dynamics on OE determined by the Jones–Watatani index of the module.

Lemma 4.6. Let E be a finitely generated bi-Hilbertian A-bimodule, and let (T, π) denote
the universal generating Toeplitz representation of E in TE. There is a dynamics γ : R →
Aut(TE) such that

γt(Te) := π(eiβt)Te, e ∈ E, and γt(π(a)) = π(a), a ∈ A.
Moreover, this dynamics descends to a dynamics, also denoted γ, on OE.

Proof. Fix t ∈ R and define R : E → TE by Re := eiβtTe. Then R is a linear map, and since
eiβt is central in A, we have

π(a)Re = π(aeiβt)Te = π(eiβta)Te = Ra·e.

We have Reπ(a) = Re·a by associativity of multiplication. For e, f ∈ E, we have R∗eRf =
T ∗e π(e−iβteiβt)Tf . Since eβ is invertible and positive, eiβt is unitary, with adjoint e−iβt, and
so R∗eRf = T ∗e Tf = π((e | f)A). So (R, π) is a Toeplitz representation.

Now the universal property of TE shows that there is a homomorphism γt : TE → TE
satisfying the desired formulae. Clearly γs ◦ γt = γs+t and γe = IdTE on generators, and it
follows that t 7→ γt is a homomorphism of R into Aut(TE). A routine ε/3-argument shows
that this homomorphism is strongly continuous, completing the proof.

To see that γ descends to a dynamics on OE, observe that with (R, π) as above, for
e, f ∈ E, we have

R(1)(θe,f ) = ReR
∗
f = π(eiβt)TeT

∗
f π(e−iβt).
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So for a ∈ A, writing φ(a) ∈ End0
A(E) for the compact operator given by φ(a)e = a · e for

e ∈ E, we have R(1)(φ(a)) = π(eiβt)T (1)(φ(a))π(e−iβt). Since eiβt is a central unitary in A,
we have π(a) = π(eiβtae−iβt) for all a ∈ A, and hence

γt(T
(1)(φ(a))− π(a)) = R(1)(φ(a))− π(a)

= π(eiβt)T (1)(φ(a))π(e−iβt)− π(eiβtae−iβt)

= π(eiβt)
(
T (1)(φ(a))− π(a)

)
π(e−iβt).

So each γt preserves the covariance ideal and therefore descends to OE as claimed. �

Note that, in general, eiβtf 6= feiβt for f ∈ E. So we typically have

γt(SeρS
∗
eγ ) 6= eiβ|ρ|tSeρS

∗
eγe
−iβ|γ|t.

The dynamics on TE described in Lemma 4.6 is implemented by the second quantisation
of the one parameter unitary group t 7→ Ut = eiβt, [25]. The second quantisation is given by
Γ(Ut) = IdA⊕Ut ⊕ (Ut ⊗ Ut)⊕ · · · . We let

D = ⊕n∈N
(
β ⊗ IdE⊗n−1 + IdE ⊗ β ⊗ IdE⊗n−2 + · · ·+ IdE⊗n−1 ⊗ β

)
be the (self-adjoint, regular) generator of the unitary group Γ(Ut). Combining ideas from
[5, 25] we can construct a KMS state for γ. Recall from [25, Theorem 1.1] that if φ is a
trace on A, and M is a right-Hilbert A-module, then there is a norm lower semicontinuous
semifinite trace Trφ on End0(M) such that

(4.1) Trφ(Θξ,η) = φ((η | ξ)A) for all ξ, η ∈M .

Note that if M is finitely generated, then Trφ is finite.

Proposition 4.7. Let E be a finitely generated bi-Hilbertian A-bimodule, φ an E-invariant
trace on A, and β ∈ Z(A) as defined in Equation (3.2). Let N denote the number operator
on the Fock space. Then there is a state φD on TE such that

φD(TξT
∗
η ) = ress=1 Trφ(e−DTξT

∗
η (1 +N2)−s/2) for all ξ, η ∈

⋃
nE

⊗n.

This φD vanishes on End00(FE), and descends to a linear functional, still denoted φD on OE.
Moreover, φD is a KMS1-state of OE for γ.

Proof. Let Trφ be the functional obtained from (4.1) with M = FE, and for each k, let Trφ,k
be the functional obtained from (4.1) with M = E⊗k. If η ∈ E⊗k and ζ ∈ E⊗l with k 6= l,
then (η | ξ)A = 0 in FE, and so (4.1) gives Trφ(Θξ,η) = 0; and if ξ, η ∈ E⊗k then (4.1) gives
Trφ(Θξ,η) = Trφ,k(Θξ,η).

For each n, let Pn ∈ EndA(FE) be the projection onto E⊗n. For ξ, η ∈
⋃
k E
⊗k, we have

e−DTξT
∗
η (1 +N2)−s/2 =

∞∑
n,m=0

Pne
−DTξT

∗
η (1 +m2)−s/2Pm,

and so

Trφ(e−DTξT
∗
η (1 +N2)−s/2) =

∞∑
n=0

Trφ,n(Pne
−DTξT

∗
η (1 + n2)−s/2Pn).

Since ξ, η ∈ E⊗k,

Trφ,n(Pne
−DTξT

∗
ηPn) =

{
0 n < k
Trφ,n(e−DΘξ,η ⊗ IdE⊗n−k) n ≥ k
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Fix n ≥ k, let {eρ} be a frame for E⊗n−k, and compute:

Trφ,n(e−DΘξ,η ⊗ IdE⊗n−k) =
∑
|ρ|=n−k

Trφ,n(e−DΘξ⊗eρ,η⊗eρ)

=
∑
|ρ|=n−k

φ
(
(η ⊗ eρ | e−Dξ ⊗ eρ)A

)
=

∑
|ρ|=n−k

φ
(
(eρ | (η | e−Dξ)Ae−Deρ)A

)
=

∑
|ρ|=n−k

φ
(
(⊗n−kj=1 e

−β/2eρj |
(
η | e−Dξ)A ·

(
⊗n−kj=1 e

−β/2eρj
)
)A
)

=
∑
|ρ|=n−k

φ
(
A

(
(η | e−Dξ)A ·

(
⊗n−kj=1 e

−β/2eρj
)
| ⊗n−kj=1 e

−β/2eρj
))

=
∑
|ρ|=n−k

φ
(
(η | e−Dξ)A A(⊗n−kj=1 e

−β/2eρj | ⊗n−kj=1 e
−β/2eρj)

)
.

We have
∑

A(⊗n−kj=1 e
−β/2eρj | ⊗n−kj=1 e

−β/2eρj) = 1A by the calculations of Lemma 3.2. Hence

Trφ,n(e−DΘξ,η ⊗ IdE⊗n−k) = φ((η|e−Dξ)A).

Hence

Trφ(e−DTξT
∗
η (1 +N2)−s/2) =

∞∑
n=k

φ((η | e−Dξ)A)(1 + n2)−s/2,

and we see that φD(TξT
∗
η ) := ress=1 Trφ(e−DTξT

∗
η (1 +N2)−s/2) is well-defined, and

(4.2) φD(TξT
∗
η ) = φ((η | e−Dξ)A).

Fix a ∈ A. By the calculation of Lemma 3.2, and centrality of β,

φD(a) = φD(a1TE)

= ress=1

∑
n

Trφ,n(e−DaIdE⊗n)(1 + n2)−s/2

= ress=1

∑
n

φ
( ∑
|ρ|=n

(eρ|e−Daeρ)A
)

(1 + n2)−s/2

= ress=1

∑
n

φ
( ∑
|ρ|=n

A

(
a ·
(
⊗nj=1 e

−β/2eρj
) ∣∣∣⊗nj=1e

−β/2eρj)
)

(1 + n2)−s/2

= ress=1

∑
n

φ(a1A)(1 + n2)−s/2 = φ(a).(4.3)

To check that φD extends to a norm-decreasing linear map on TE, apply (4.3) to a = 1A ∈ A
to see that φD(1TE) = φ(1A) = 1. Equation (4.2) shows that the formula

∑
i TξiT

∗
ηi
7→∑

i φD(TξiT
∗
ηi

) carries positive elements of span{TξT ∗η : ξ, η ∈
⋃
k E
⊗k} to [0,∞). Hence, for

T =
∑

i TξiT
∗
ηi

self-adjoint, |φD(T )| ≤ ‖T‖φD(1TE) = ‖T‖. So the formula φD(
∑

i TξiT
∗
ηi

)
is well-defined and bounded, so extends to a bounded linear functional on TE satisfying
φD(1) = 1; that is, a state.
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A calculation like (4.2) shows that φD

(
a
∑N

j=1 Θej ,ej

)
= φ(a) as well. So φD vanishes on

the covariance ideal, and hence descends to a state on OE.
We check the KMS condition. For S1, S2 ∈ span{SξS∗η : ξ, η ∈

⋃
k E
⊗k}, we have

Trφ(e−DS1S2(1 +N2)−s/2) = Trφ(e−D(eDS2e
−D)S1(1 +N2)−s/2 + e−DS1[S2, (1 +N2)−s/2]).

Now we show that the commutator [S2, (1 + N2)−s/2] is ‘trace-class’. For 0 < s < 2 we
employ the integral formula for fractional powers to find

[S2, (1 +N2)−s/2] =
sin(sπ/2)

π

∫ ∞
0

λ−s/2(1 + λ+N2)−1[N2, S2](1 + λ+N2)−1dλ.

We claim that the integral on the right converges in norm for all 2 > s > 0, proving finiteness
of the sum defining Trφ(e−DS1[S2, (1 + N2)−s/2]) at s = 1. To see this, observe that gauge
invariance says that we need only consider the case when S1S2 is homogenous of degree 0 for
the gauge action. If S2 is of degree zero, then there is nothing to prove. For S2 homogenous
of degree m we have

Trφ(e−DS1[S2, (1 +N2)−s/2]) =
∞∑
n=0

Trφ,n(Pne
−DS1[S2, (1 +N2)−s/2]Pn)

=
∞∑
n=0

Trφ,n

(
Pne

−DS1
sin(sπ/2)

π

×
∫ ∞

0

λ−s/2(1 + λ+N2)−1(N [N,S2] + [N,S2]N)(1 + λ+N2)−1Pn dλ
)

= m
∞∑
n=0

Trφ

(
Pne

−DS1S2Pn

)
sin(sπ/2)

π
fn(s)

where

fn(s)=

∫ ∞
0

λ−s/2
(

(1+λ+(n+m)2)−1(n+m)(1+λ+n2)−1+(1+λ+(n+m)2)−1n(1+λ+n2)−1
)
dλ.

Now observe that
∣∣∣Trφ

(
Pne

−DS1S2Pn

)∣∣∣ < ‖S1S2‖ for all n, and use the elementary estimates

(1+λ+n2)−1n ≤ 1√
2

(1+λ)−1/2, (1+λ+n2)−1 ≤ (1/2+λ)−ε(1/2+n2)−(1−ε) for 1 > ε > 0

to see that

fn(s) ≤ 1√
2

(
(1/2 + n2)−(1−ε) + (1/2 + (n+m)2)−(1−ε)

)∫ ∞
0

λ−s/2(1 + λ)−1/2(1/2 + λ)−ε dλ.

These estimates, along with a suitable choice of ε, show that Trφ(e−DS1[S2, (1 +N2)−s/2]) is
finite for all 2 > s > 0, and more generally for 2 > <(s) > 0.

Taking the derivative with respect to s of the function s 7→ Trφ(e−DS1[S2, (1 + N2)−s/2])
and repeating the estimate (now with an extra log(λ) in the integral defining fn(s)) shows
that the derivative is also finite at s = 1, proving holomorphicity. Hence the residue at s = 1
of s 7→ Trφ(e−DS1[S2, (1 +N2)−s/2]) vanishes and φD is KMS. �
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Remark 4.8. It is tempting to consider a dynamics on OE coming from the unitary group
Wt = ⊕k≥0e

iβkt, where βk = log(Φk(IdE⊗k)). There is a dynamics σ on EndA(FE) given by
σt(T ) = WtTW

∗
t , and it is natural to ask whether σ restricts to a dynamics on TE.

Observe, however, that since eβ0 = 1A and eβ1 = eβ, the dynamics σ agrees on the
generators of TE with the dynamics defined in Lemma 4.6. So if σ does indeed extend to
TE, then it agrees with γ, and the analysis above applies. That is, there is nothing new to
be gained by considering the dynamics σ, at least for the algebra TE.

Proposition 4.7 combined with the results of [5] yields the following.

Corollary 4.9. Let E be a bi-Hilbertian module over A and φ : A→ C an E-invariant state.
Let H = L2(OE, φD) be the GNS space of φD : OE → C, and N ⊂ B(H) the weak closure of
the algebra generated by OE and the spectral projections Pk for the unitary extension of the
dynamics γ to H. Then (OE,H,D,N, φD) is a modular spectral triple.
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