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Abstract

We show that finiteness of the Lorentzian distance is equivalent to the existence of generalised
time functions with gradient uniformly bounded away from light cones. To derive this result we
introduce new techniques to construct and manipulate achronal sets. As a consequence of these
techniques we obtain a functional description of the Lorentzian distance extending the work of
Franco and Moretti, [6, 12].

1 Introduction

This paper originated from asking whether Franco and Moretti’s formula for the Lorentzian distance
function d : M ×M → [0,∞] could be extended to stably causal manifolds, [6, 12]. Their proofs
were valid only in the globally hyperbolic case. The technical difficulties raised by this problem led
to a consideration of the delicate interplay between the Lorentzian distance function, causality and
time functions.

Ultimately we were led to develop new techniques for the construction of achronal sets, the manip-
ulation of these sets and a new class of generalised time function. These new techniques allow us to
prove our two main results.

Finiteness of the Lorentzian distance. Let (M, g) be a Lorentzian manifold. The Lorentzian
distance is finite if and only if there exists a function f : M → R, strictly monotonically increasing
on timelike curves, whose gradient exists almost everywhere and is such that ess sup g(∇f,∇f) ≤ −1.

The Lorentzian distance formula. Let (M, g) have finite Lorentzian distance. Then for all
p, q ∈M

d(p, q) = inf {max{f(q)− f(p), 0} : f : M → R, f future directed, ess sup g(∇f,∇f) ≤ −1} . (1)
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We will refer to equality (1) as the distance formula below.

Franco and Moretti had as their initial motivation the extension of Connes’ formula for the Rieman-
nian distance to Lorentzian manifolds, [5], and we note that early investigations and counter-examples
appear in [14]. The tools of noncommutative geometry have thus far not been seriously extended
past the globally hyperbolic setting, and we hope that our results stimulate further work on this
topic.

The paper is organised as follows. Section 2 summarises those ideas from Lorentzian geometry that
we require, and sets notation. In addition we review, and mildly extend, the results of Franco and
Moretti. We also prove a ‘reverse Lipschitz’ characterisation of our generalised time functions in
Proposition 2.18, which is essential for applications to Connes-type formulae for the distance.

In brief, the idea of our proof is as follows. Let S ⊂M be an achronal set in the Lorentzian manifold
(M, g). Then ifM = I+(S)∪S∪I−(S), we can try to define a function f(x) = d(S, x) = sups∈S d(s, x)
when x is in the future of S, and similarly for other cases. The chief difficulty with this definition is
the finiteness of f , even when the Lorentzian distance function d only takes finite values. Much of
the difficulty is in finding a suitable set S ⊂M with which to define f .

Section 3 contains the technical advances, and is divided into three subsections. The first shows that
if the Lorentzian distance is finite then it is possible to choose an achronal subset of the manifold that
‘bounds’ any divergent behaviour of the metric. The second proves that, under mild assumptions
on M , and starting from a suitable achronal set, there exists an achronal surface which divides the
manifold into the future of the set, the surface itself and the past of the surface. This is a refinement
of a construction of Penrose, [15, Proposition 3.15]. The third section shows how, starting from such
a ‘bounding’ achronal set, to construct a new achronal set. This produces a new achronal set S
which separates the manifold M into the future of S, S itself and the past of S. The advantage of
this new set is that we can define a generalised time function by taking the Lorentzian distance of a
point to S, and this function takes finite values.

Finally, Section 4 presents the proofs of our two main results.

The Appendix provides the details on the regularity of our generalised time functions. A simi-
lar concept, also called generalised time functions, has appeared previously, [8]. Our generalised
time functions have poor regularity, but in the Appendix we prove that they are continuous almost
everywhere, and do have all directional derivatives, and so gradient, existing almost everywhere.

Acknowledgements: We thank Koenraad van den Dungen for pointing out some errors in an earlier
version. The first author acknowledges the support of the Australian Research Council. The second
author would like to thank the relativity group at the Department of Mathematics and Statistics
at the University of Otago for useful comments during review and acknowledges the support of the
Royal Society of New Zealand’s Marsden fund. The authors thank the anonymous referee for their
comments which have improved the paper, and for bringing the article [14] to our attention.

2 Background definitions, notation and results

In the following (M, g) will always be a C∞, time orientable, path-connected, Lorentzian manifold
M of dimension n+ 1 ≥ 2 equipped with a Lorentzian metric g with signature (−1, 1, . . . , 1). We let
T denote the vector field defining the time orientation. The non-time orientable case can be studied
via Lorentzian covering manifolds, [9, p 181]. Here and below the measure is always the Lebesgue
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measure arising from
√
−det g. Throughout the rest of the paper, unless otherwise noted, we shall

use the notation as given in [1]. In particular, for any U ⊂ M , I±(U) =
⋃
x∈U I

±(x) and that for
any x ∈M , I+(x) = {y ∈M : d(x, y) > 0}.
A curve γ is a C0, piecewise C1, function from an interval I ⊂ R into M so that the tangent vector
γ′ = γ∗(∂t) is almost everywhere (a.e.) non-zero. For x, y ∈M we let Ωx,y denote the set of future-
directed causal curves from x to y. Thus γ ∈ Ωx,y satisfies g(γ′, γ′) ≤ 0 (causal) everywhere it exists
and g(T, γ′) < 0 (future-directed).

By a standard abuse of notation, we sometimes treat γ as a set rather than a curve. Thus x, y ∈ γ
means x, y ∈ γ(I), γ ⊂ U means γ(I) ⊂ U , and so on. Given a causal curve γ : [a, b] → M , the
length of γ, denoted L(γ) is defined by

L(γ) =

∫ b

a

√
−g(γ′, γ′)(t)dt.

Definition 2.1 ([1, Chapter 4]). Let (M, g) be a Lorentzian manifold. The Lorentzian distance
d : M ×M → R is given by

d(p, q) :=

 sup
γ∈Ωp,q

L(γ) Ωp,q 6= ∅

0 Ωp,q = ∅.

The Lorentzian distance is always lower semi-continuous, [1, Lemma 4.4].

We make use of the reverse triangle inequality for the Lorentzian distance, [1, page 140]: if x ∈ M ,
y ∈ I+(x) and z ∈ I+(y) then d(x, z) ≥ d(x, y) + d(y, z). If for all x, y ∈ M , d(x, y) < ∞ then we
say that the Lorentzian distance is finite, or that M has finite Lorentzian distance.

Definition 2.2. Let S ⊂M be a subset of M . We define the functions d(S, ·) : M → R ∪ {∞} and
d(·, S) : M → R ∪ {∞} by d(S, x) = sup{d(s, x) : s ∈ S} and d(x, S) = sup{d(x, s) : s ∈ S}.

These functions satisfy a version of the reverse triangle inequality.

Lemma 2.3. Let x ∈M , y ∈ I+(x) and S ⊂M . Then:

1. x ∈ I+(S) implies that d(S, y) ≥ d(S, x) + d(x, y);

2. y ∈ I−(S) implies that d(x, S) ≥ d(x, y) + d(y, S).

Proof. In each case, the reverse triangle inequality implies that:

1. d(z, y) ≥ d(z, x) + d(x, y) when z ∈ S ∩ I−(x);

2. d(x, z) ≥ d(x, y) + d(y, z) when z ∈ S ∩ I+(y).

Taking the supremum over these inequalities with respect to z proves the result.

Definition 2.4. A function f : M → R such that for all timelike curves from x to y the function
f ◦ γ is strictly monotonically increasing is called a future-directed generalised time function. A
past-directed generalised time function f is a function so that −f is a future-directed generalised
time function.
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It is worth noting that our definition of a generalised time function is slightly more general than that
used in the literature, [1, Definition 3.23] or [11, Definition 3.48], as we do not require our generalised
time functions to be strictly monotonically increasing along null curves.

We show, in Appendix A, that if f is monotonic on all timelike curves, as are generalised time
functions, then all directional derivatives of f exist a.e. This is an application of the well-known
differentiability a.e. of real-valued monotonic functions on an internal, [7, Theorem 9.3.1]. Moreover,
[16, Chapter 5, Theorem 2], for any function f : M → R and any curve γ : [0, 1]→M such that f ◦γ
is (not necessarily strictly) monotonically increasing, the derivative of f ◦ γ exists a.e., is integrable,
and we have the inequality ∫ 1

0

d

dt
(f ◦ γ)(t)dt ≤ f(1)− f(0). (2)

In what follows we will be interested in generalised time functions, f : M → R, so that we have
the inequality ess supMg(∇f,∇f) ≤ −1. This condition ensures that wherever ∇f exists, and it
must exist a.e., it is timelike, as we show in Proposition 2.18. As the following example shows, this
is unfortunately not enough to ensure that f is strictly monotonically increasing along all causal
curves.

Example 2.5. Let M = (−1, 1) × (0, 1) considered as a sub-manifold of 2-dimensional Minkowski
space. Let S = M ∩ ∂I+((0, 0)) be the portion of the future null cone of the origin that lies in M .
By construction S is achronal and by definition of M , M = I+(S) ∪ S ∪ I−(S). The Lorentzian
distance of M is bounded above by 1 and hence is finite. Thus the function defined by

f(x) =


d(S, x) if x ∈ I+(S)
0 if x ∈ S
−d(x, S) if x ∈ I−(S)

.

is well defined and a generalised time function. Proposition 3.13 shows that f satisfies the gradient
bound ess supMg(∇f,∇f) ≤ −1. However the level surface S = f−1(0) is not acausal, and contains
null geodesics on which f is constant. The function f is therefore not strictly monotonically increasing
along all causal curves.

Lorentzian manifolds, (M, g), can be classified into a causal hierarchy. Of that hierarchy we shall
need the following definitions:

• stably causal if there exists a continuous function f : M → R that is strictly monotonically
increasing on all causal curves,

• causally simple if it is causal and J±(x) is closed for all x ∈M ;

• globally hyperbolic if and only if it is causal and, for all x, y ∈M , the intersection J+(x)∩J−(y)
is compact. This is equivalent to M being isometric to the product R × N . See [11, Section
3.11.3 and Theorem 3.78] for a review of Bernal and Sanchez’s work on this, [2, 3, 4].

Global hyperbolicity implies causal simplicity which implies stable causality. See [11] for further
details and examples.

The following example of a non-continuous generalised time function with timelike gradient a.e.
everywhere demonstrates that the lack of continuity in our definition of generalised time function
can have a serious impact on the relationship between time functions and stable causality.
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Example 2.6. Let

T = [−π, π]× R \
({(π

4
, x
)

: x ≤ π

4

}⋃{(
−π

4
, x
)

: x ≥ −π
4

})
,

with coordinates t ∈ [−π, π] and s ∈ R. A diagram representing this manifold can be found in [11,
Figure 7] and additional discussion of this example can be found in [9, Page 193] and [1, Figure 3.4].
Let (t, s), (τ, σ) ∈ T and define an equivalence relation, ∼, on T by (t, s) ∼ (τ, σ) if and only if s = σ
and t = −τ = ±π. Let M = T/∼. Topologically M is S1 ×R with two half lines removed. Define a
metric g on M by pushing the metric g = −dt2 + ds2 on T onto M via the induced map from T to
M .

We claim that (M, g) is not stably causal. Indeed, consider the point (0, 0). For any metric with
slightly wider lightcones, there will exist ε > 0 such that the point

(
π
4 ,

π
4 + ε

)
is in the future of (0, 0)

and
(
−π

4 ,−
π
4 − ε

)
is in the past of (0, 0). By the definition of M , the point

(
−π

4 ,−
π
4 − ε

)
is in the

future of
(
π
4 ,

π
4 + ε

)
, and hence there will exist a closed timelike curve for any metric with slightly

wider lightcones.

Let

A =
{

(t, s) : t >
π

4
, s ∈ R

}⋃{
(t, s) : t > −π

4
, s > t

}
B =

{
(t, s) : t <

π

4
, s < t

}⋃{
(t, s) : t < −π

4
, s ∈ R

}
and define f : M → R by

f(t, s) =

{
t (t, s) ∈ A

t+ 2π (t, s) ∈ B

It can easily be checked that ∇f = ∂t wherever it exists and that f is a generalised time function
despite M failing to be stably causal.

Definition 2.7. A set F is a future set (P is a past set) if F = I+(F ) (P = I−(P )), [15, Definition
3.1]. A set S is achronal if S∩I+(S) = ∅, [15, Definition 3.11], or equivalently S∩I−(S) = ∅. A set
S is an achronal surface (or sometimes also called an achronal boundary) if S = ∂F (S = ∂P ) where
F is a future set (P is a past set), [15, Definition 3.13 and Proposition 3.14]. Achronal surfaces are
achronal sets, [15, Definition 3.13].

The following result, which is a paraphrase of a result by Penrose, highlights the importance of
achronal surfaces.

Proposition 2.8 ([15, Proposition 3.15]). Let (M, g) be a Lorentzian manifold. If S 6= ∅ is an
achronal surface then there is a unique future set F and a unique past set P so that F, P, S are
disjoint, M = F ∪S∪P and S = ∂F = ∂P . Furthermore, any timelike curve from P to F intersects
S in a unique point.

Proposition 2.8 will play a pivotal role below. To simplify its application we use the following two
results.

Corollary 2.9. Let (M, g) be a Lorentzian manifold and let S ⊂ M be an achronal surface. If
S = ∂I+(S) then F = I+(S) and P = M \ (I+(S) ∪ S) are the unique future and past sets given by
Proposition 2.8. In particular any timelike curve from P to F intersects S in a unique point.
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Proof. By assumption S = ∂F = ∂P and M = F ∪ S ∪ P . The result now follows directly from
Proposition 2.8.

Lemma 2.10. Let (M, g) be a Lorentzian manifold. If A ⊂M then ∂I+(∂I+(A)) = ∂I+(A).

Proof. Since ∂I+(A) is achronal, ∂I+(A) ⊂ ∂I+(∂I+(A)). Let a ∈ ∂I+(∂I+(A)). Then I+(a) ⊂
I+(∂I+(A)). So for all x ∈ I+(a) there exists b ∈ ∂I+(A) so that x ∈ I+(b). This implies that
I+(a) ⊂ I+(A) and hence a ∈ I+(A). Since a ∈ ∂I+(∂I+(A)) we know that a ∈ ∂I+(A). Thus
∂I+(∂I+(A)) = ∂I+(A) as required.

Note that in Corollary 2.9 the set P is not necessarily equal to I−(S). A core part of this paper is the
construction of an achronal surface, S, so that the unique future and past sets given by Proposition
2.8 are F = I+(S) and P = I−(S). This allows us to assume that every point in M is either in S or
is connected to S via a timelike curve, a fact that we will exploit to define the needed functions.

2.1 Overview of Franco’s result

We briefly reprise the key arguments used by Franco in [6] to obtain his main result, stated here as
Theorem 2.14, and point out that these arguments are broadly similar to those used by Moretti [12,
Theorem 2.2].

The version of these results we present represents only a small generalisation, but it seems worthwhile
to repeat the arguments, as they show clearly where several constraints come from.

Lemma 2.11. Let (M, g) be a Lorentzian manifold, x, y ∈ M and γ ∈ Ωx,y. If f is monotonic on
every timelike curve then |f(y)− f(x)| ≥ l(γ) ess inf

γ

√
−g(∇f,∇f).

Proof. By Lemma A.5 the vector field ∇f exists a.e., see Definition A.6. Lemma A.7 implies that
∇f is causal. Assume that ∇f is past-directed. Let γ : [0, 1]→M ∈ Ωx,y.

We calculate, using Lemmas A.3 and A.5 and Definition A.6, as well as Equation (2) that

f(y)− f(x) ≥
∫ 1

0

d

dt
f(γ(t))dt =

∫ 1

0
df(γ′)dt =

∫ 1

0
g(∇f, γ′)dt =

∫ 1

0
|g(∇f, γ′)|dt,

since γ is future-directed and ∇f is past-directed. By [13, Proposition 5.30] if γ′ and ∇f are both
time-like the reverse Cauchy inequality holds,

|g(∇f, γ′)| ≥
√
−g(∇f,∇f)

√
−g(γ′, γ′).

If ∇f or γ′ is null then it is clear that this inequality continues to hold. Hence

f(y)− f(x) ≥
∫ 1

0
|g(∇f, γ′)|dt ≥

∫ 1

0

√
−g(∇f,∇f)

√
−g(γ′, γ′)dt ≥ l(γ) ess inf

γ

√
−g(∇f,∇f).

In the case that f is past-directed, ∇f is future-directed. Thus −f has a past-directed gradient,
whence

f(x)− f(y) ≥ l(γ) ess inf
γ

√
−g(∇f,∇f) and so |f(y)− f(x)| ≥ l(γ) ess inf

γ

√
−g(∇f,∇f),
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as required.

If γ is causal, but neither timelike nor null, we can divide γ into null and timelike segments. Since γ
is piecewise C1 the intermediate value theorem shows that each timelike segment is an open interval.
The result now follows by applying the arguments given above to each segment.

Corollary 2.12. With the assumptions of Lemma 2.11 and assuming that ess infM
√
−g(∇f,∇f) >

0 and d(x, y) <∞ we have

|f(y)− f(x)| ≥ d(x, y) ess inf
M

√
−g(∇f,∇f).

Proof. Since ess infγ
√
−g(∇f,∇f) ≥ ess infM

√
−g(∇f,∇f) we have, from Lemma 2.11,

|f(y)− f(x)| ≥ l(γ) ess inf
M

√
−g(∇f,∇f).

Taking the supremum over curves in Ωx,y gives |f(y)− f(x)| ≥ d(x, y) ess infM
√
−g(∇f,∇f).

In order to obtain his functional description of the Lorentzian distance, Franco proves the following,
[6, Lemma 5].

Lemma 2.13. Let (M, g) be globally hyperbolic, x, y ∈ M and ε > 0. Then there exists a future-
directed time function f so that ess infM

√
−g(∇f,∇f) ≥ 1 and |f(y)− f(x)− d(x, y)| ≤ ε.

Global hyperbolicity is essential for Franco’s construction of this time function. In particular he
exploits the existence of Cauchy surfaces as well as the necessary finiteness and continuity of the
Lorentzian distance. With this in hand, Franco is able to prove his main result.

Theorem 2.14. [6, Theorem 1] Let (M, g) be a globally hyperbolic manifold then

d(x, y) = inf{max{f(y)− f(x), 0} : f ∈ C(M,R), ess sup g(∇f,∇f) ≤ −1, ∇f is past-directed}.

Since Moretti uses different differentiability conditions, his analogue of this result, [12, Theorem 2.2],
is superficially different but has essentially the same conclusion and proof.

The results above imply the following about those situations where the Lorentzian distance becomes
infinite.

Proposition 2.15. Let (M, g) be a Lorentzian manifold, x, y ∈ M and suppose that f : M → R
is monotonic on every timelike curve. Suppose further that there exist {γi : i ∈ N} ⊂ Ωx,y so that
l(γi)→∞, as i→∞, i.e. d(x, y) =∞. Then limi→∞ ess infγi

√
−g(∇f,∇f) = 0.

Proof. This follows from Lemma 2.11, since for all i we have |f(y)−f(x)| ≥ l(γi) ess inf
γi

√
−g(∇f,∇f).

Corollary 2.16. Let (M, g) be a Lorentzian manifold. If there exists a function that is monotonic
on every time-like curve so that ess infM

√
−g(∇f,∇f) > 0 then M has finite Lorentzian distance.

Proof. This is implied by the contrapositive of Proposition 2.15.
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The behaviour described in Proposition 2.15 can occur in otherwise innocuous situations, and has to
be taken into account for our construction. The following example of a causally simple non-globally
hyperbolic spacetime with x, y ∈M so that d(x, y) =∞ is taken from [11, Remark 3.66], and shows
how our main construction, presented in subsection 3.3 below, fails when the Lorentzian distance is
not finite. Similar examples with finite Lorentzian distance motivate the constructions of the next
section.

Example 2.17. Let M = {(x, y) ∈ R2 : 2|y| > x and x > −1} with metric ds2 = 1
x2+y2

(
dx2 − dy2

)
.

This is a non-globally hyperbolic, causally simple spacetime, [11, Figure 10]. As a consequence
there exist analytic time functions on M . A specific example is h(x, y) = y whose gradient is
∇h = −(y2 + x2)∂y.

By definition, for all (x, y) ∈M the surface ∂I+((x, y)) is an achronal surface, which further satisfies
M = I+(∂I+((x, y))) ∪ ∂I+((x, y)) ∪ I−(∂I+((x, y))). Hence for any (x, y) ∈ M and letting S =
∂I+((x, y)), we can try to construct a function f : M → R by the definition

f((u, v)) =


d(S, (u, v)) if (u, v) ∈ I+(S)

0 if (u, v) ∈ S
−d((u, v), S) if (u, v) ∈ I−(S)

.

Depending on the choice of (x, y) we have three cases. To present these cases we consider M as a
submanifold of R2 and in the following statements closures are taken in R2. The three cases are:

1. (0, 0) ∈ S,

2. (0, 0) 6∈ S and (0, 0) ∈ I−(S),

3. (0, 0) 6∈ S and (0, 0) ∈ I+(S).

For the sake of this example we assume that the last case holds. Note that arguments similar to
those given below will hold in the other two cases. We denote the set {(u, v) ∈ M : |u| < v} by
I+((0, 0)). This is an abuse of notation since (0, 0) 6∈M .

We now show that for all (u, v) ∈ I+((0, 0)), f(u, v) = ∞. Let w > 0 and let γw : [0, 1] → R be the
curve given by γw(τ) = (0, w(1− τ)) . This is a past-directed timelike curve from (0, w) to (0, 0), and

g(γ′w, γ
′
w) =

1

(1− τ)2

A short calculation shows that L(γw) =∞ for all w > 0. Since w was arbitrary we can choose w so
that (0, w) ∈ I−((u, v)). Since (0, 0) ∈ I+(S) and (0, 0) 6∈ S we know that for all τ ∈ [0, 1),

(0, w(1− τ)) ∈ I+(S).

Thus, from Lemma 2.3,

f(u, v) = d(S, (u, v)) ≥ d (S, (0, w)) + d ((0, w) , (u, v))

= sup
τ
{d (S, (0, w(1− τ))) + d ((0, w(1− τ)) , (0, w))}+ d ((0, w), (u, v))

=∞
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as claimed.

That is, despite the existence of smooth finite valued time functions, the construction we give in
Proposition 3.13, for this surface, produces a function which takes infinite values. We claim that this
is the case for all choices of S = ∂I+((x, y)) (in the case (0, 0) 6∈ S and (0, 0) ∈ I−(S) the function
f will take the value −∞).

Let U ⊂ M be the set of points so that f |U ⊂ R. Then Lemma A.5, Definition A.6 and Proposi-
tion 2.18 imply that ess infU

√
−g(∇f,∇f) ≥ 1. This is in contrast to (x, y) 7→ h(x, y) = y where

ess infM
√
−g(∇h,∇h) = 0. Hence we have paid for a lower bound on the gradient of f by letting f

diverge to ±∞ on M .

In order to complete our discussion of generalised time functions, we present an alternative charac-
terisation which will play an important role later.

Proposition 2.18. Let (M, g) be a Lorentzian manifold and f : M → R a function differentiable
a.e. The condition

for all x ∈M, for all y ∈ I+(x), f(y)− f(x) ≥ d(x, y) (3)

holds if and only if ess infM
√
−g(∇f,∇f) ≥ 1 and f is future-directed.

Proof. We begin by showing that condition (3) implies that∇f is past-directed and timelike wherever
it exists. This allows us to build a coordinate system using ∇f which is then used to prove the bound
on the gradient. We will make extensive use of the fact that for all timelike curves γ : [0, 1] → M ,
the function f ◦ γ is differentiable a.e. in [0, 1], as shown in the Appendix.

So we can fix x ∈ M where (∇f)(x) exists. Then we take a geodesic neighbourhood U of x, and
y ∈ I+(x) ∩ U . We let γ be the unique geodesic from x to y so that d(x, y) =

∫ 1
0

√
−g(γ′, γ′)(s)ds.

Indeed, for 0 < t ≤ 1, d(x, γ(t)) =
∫ t

0

√
−g(γ′, γ′)(s)ds.

Now if f satisfies condition (3), then

f(γ(t))− f(x) ≥ d(x, γ(t)) =

∫ t

0

√
−g(γ′, γ′)(s)ds.

Dividing through by t and using the mean value theorem for integrals shows that

f(γ(t))− f(x)

t
≥ 1

t

∫ t

0

√
−g(γ′, γ′)(s)ds =

√
−g(γ′, γ′)(t0),

where 0 < t0 < t. Hence as t→ 0 we find

g(∇f, γ′)(γ(0)) =
d(f ◦ γ)

dt
(0) ≥

√
−g(γ′, γ′)(γ(0)). (4)

By considering all such y ∈ I+(x) ∩ U , we see that Equation (4) holds for all timelike vectors in
TxM . In particular, letting T be the unit vector field defining the time orientation of M , we find
that g(∇f, T ) ≥ 1 and hence ∇f is past-directed.

If Z ∈ TxM is a timelike vector, and future directed, we can write

Z = αT + βV, V ⊥ T, g(V, V ) = 1, α > 0, −α2 + β2 = −m2.
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Similarly
(∇f)(x) = µT + νW, W ⊥ T, g(W,W ) = 1, µ ≤ −1

where the value of µ follows from setting γ′(0) equal to T (x) in Equation (4). We can, and do,
assume that β, ν > 0. We set c = g(V,W ) and compute that

g((∇f)(x), Z) = −µα+ νβc ≥
√
α2 − β2 = m

where the inequality is from Equation (4). Now choose V = −W so that c = −1. This yields

|µ|α ≥ m+ νβ.

Rearranging and using the binomial series yields

|µ| ≥ m

α
+ ν

√
1− m2

α2

=
m

α
+ ν

(
1− m2

2α2
− 1

2× 4

(
m2

α2

)2

+ · · ·

)

= ν +
m

α
− m2ν

2α2
− ν

2× 4

m4

α4
+ · · · .

This makes sense as an infinite series, since m2/α2 < 1 when β 6= 0, and for m sufficiently small it
is straightforward to see that we have |µ| > ν. In short, (∇f)(x) is timelike.

We now know that condition (3) implies that (∇f)(x) is past-directed and timelike. Hence we may
take normal coordinates φ : U ⊂ Rn → V ⊂ M about x so that g(∂i, ∂j)(x) = δij , i 6= 0, and
g(∂0, ∂j)(x) = −δ0j where ∂0(x) = α∇f(x), α 6= 0. This ensures that ∂if |x = 0 if i 6= 0.

Condition (3) tells us that

lim
h→0+

f ◦ φ(h, 0, . . . , 0)− f ◦ φ(0, 0, . . . , 0)

h
≥ lim

h→0+

d (x, φ(h, 0, . . . , 0))

h
(5)

and

lim
h→0−

f ◦ φ(0, 0, . . . , 0)− f ◦ φ(h, 0, . . . , 0)

−h
≥ lim

h→0−

d (φ(h, 0, . . . , 0), x)

−h
. (6)

By construction, for h small enough, we have

φ (h, 0, . . . , 0) = expx (h∂0) = γh∂0(1) = γ∂0(h),

where γv : [0, a) → M , a ∈ R ∪ {∞} is the unique geodesic satisfying γv(0) = x and γ′v(0) = v with
affine parameter. Since γ∂0 is a geodesic and g(γ∂0 , γ∂0)(x) = −1, we see that for all 0 ≤ τ ≤ h,
g(γ∂0 , γ∂0)(τ) = −1. Then for h > 0 we calculate that

L
(
γ∂0 |[0,h]

)
=

∫ h

0

√
−g(γ∂0 , γ∂0)(τ)dτ =

∫ h

0
dτ = h.

By definition, d(x, φ(h, 0, . . . , 0)) = supγ∈Ωx,φ(h,0,...,0)
L(γ) and as γ∂0 |[0,h] ∈ Ωx,φ(h,0,...,0) we see that

d(x, φ(h, 0, . . . , 0)) ≥ h. The same calculation when h < 0 gives d(φ(h, 0, . . . , 0), x) ≥ −h. Plugging
these inequalities into Equations (5) and (6) we see that ∂0f |x ≥ 1. We may now calculate that√

−g(∇f,∇f)(x) =
√
−gij∂if∂jf(x) = |∂0f |(x) ≥ 1.
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As x was an arbitrary point where the gradient exists, we find that

ess inf
M

√
−g(∇f,∇f) ≥ 1.

For the converse statement, suppose that ess infM
√
−g(∇f,∇f) ≥ 1. Let x, y ∈ M and γ be a

timelike curve from x to y. From Lemma 2.11 we know that

|f(y)− f(x)| = f(y)− f(x) ≥ ess inf
γ

√
−g(∇f,∇f)L(γ) ≥ L(γ).

Since y ∈ I+(x) we know that d(x, y) is the supremum of L(γ) over all timelike curves from x to y.
Hence by taking the supremum over all timelike curves from x to y of the inequality above we get

f(y)− f(x) ≥ d(x, y).

Therefore condition (3) is satisfied by f .

3 Constructions and definitions for the proof of the main theorems

This section contains the technical details for the proofs of our main theorems. We have divided the
work into three portions each of which culminates in a key result. Briefly those results are:

1. Lemma 3.7: If the Lorentzian distance is finite then there exists a special achronal subset
(which we call a hatting);

2. Lemma 3.11: If there exists a future set with non-empty boundary then there exists an achronal
surface S so that M = I+(S) ∪ S ∪ I−(S);

3. Proposition 3.13: If the Lorentzian distance is finite then there exists a generalised time function
satisfying condition (3).

3.1 Finite Lorentzian distance implies the existence of a hatting

Definition 3.1. Let M be a manifold. A sequence (xi)i∈N ⊂M such that there exists x ∈M such
that d(xi, x)→∞ (d(x, xi)→∞) as i→∞ is called future (past) divergent. Given a future (past)
divergent sequence, (xi), let F(xi) = I+({x ∈ M : limi→∞ d(xi, x) = ∞}) (P(xi) = I−({x ∈ M :
limi→∞ d(x, xi) =∞})).

Lemma 3.2. Let (M, g) be a Lorentzian manifold and (xi) a future divergent sequence. If (yi) is a
subsequence of (xi) then (yi) is future divergent and F(xi) ⊂ F(yi).

Proof. Let x ∈ F(xi). By definition limi→∞ d(xi, x) = ∞. If limi→∞ d(yi, x) 6= ∞ then we also have
limi→∞ d(xi, x) 6=∞. Therefore limi→∞ d(yi, x) =∞. This implies that (yi) is future divergent and
that F(xi) ⊂ F(yi).

Lemma 3.3. Let (M, g) be a Lorentzian manifold with finite Lorentzian distance and S an achronal
set. If there exists x ∈ I+(S) so that d(S, x) =∞ then there exists a future divergent sequence in S.
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Proof. Since d(S, x) = ∞ there exists a sequence (xi) ⊂ S so that limi→∞ d(xi, x) = ∞. The
sequence (xi) is trivially a future divergent sequence in S.

Definition 3.4. A hatting is an achronal subset H ⊂ M so that for every future (past) divergent
sequence, (xi)i∈N in M , there exists N ∈ N so that for all j ≥ N , xj ∈ I−(H) (xj ∈ I+(H)).

Lemma 3.5. Let (M, g) be a Lorentzian manifold with finite Lorentzian distance. If S ⊂M is finite
then for all future divergent sequences (xi) there exists N ∈ N so that for all j ≥ N , xj 6∈ I+(S).

Proof. For a contradiction we will assume that no such N exists. By definition and as S is finite
I+(S) =

⋃
s∈S I

+(s). As no such N exists and as the union is over a finite number of elements
a pigeon hole argument shows for all divergent sequences, (xi), there exists a subsequence, (yi), of
(xi) so that (yi) ⊂ I+(s) for some s ∈ S. Lemma 3.2 implies that (yi) is divergent. Let y ∈ F(yi).
By construction, for each i, s ∈ I−(yi) and yi ∈ I−(y). Thus limi→∞ d(yi, y) = ∞ implies that
d(s, y) =∞. This is a contradiction, hence the required N ∈ N exists.

Lemma 3.6. Let (M, g) be a Lorentzian manifold. Let S ⊂ M and let (xi) be a future divergent
sequence. If F(xi) ∩ S 6= ∅ then there exists N ∈ N so that for all j ≥ N , xj ∈ I−(S).

Proof. Let s ∈ F(xi) ∩ S. Since F(xi) is open and non-empty, there exists x ∈ F(xi) ∩ I−(s). Hence
x ∈ I−(S). As x ∈ F(xi) we know that limi→∞ d(xi, x) = ∞. This implies that there exists N ∈ N
so that for all j ≥ N , xi ∈ I−(x). Since I−(x) ⊂ I−(S) we have the result.

Lemma 3.7. Let (M, g) be a Lorentzian manifold. If the Lorentzian distance is finite then there
exists a hatting for M .

Proof. Let A be the union of all F(xi) for all future divergent sequences. By construction A is an open
manifold. Therefore there exists a countable dense subset F of A. Similarly, let P be a countable
dense subset of the union of all P(xi) where (xi) is a past divergent sequence. Since F and P are
countable, we choose an ordering so that F = {f0, f1, . . . , fi, . . .}, P = {p0, p1, . . . , pi, . . .}.
We build our hatting by iteration over N.
Base case: Let i = 0 and define S0 = P0 = F0 = {p0}. Note that P0 and F0 are finite, I−(S0) ⊂
I−(P0) and I+(S0) ⊂ I+(F0). Since the Lorentzian distance is finite the sets S0, P0 and F0 are
achronal.
Inductive case: Assume that Si−1, Pi−1 and Fi−1 exist and are such that Si−1 is achronal, Pi−1, Fi−1

are finite, I−(Si−1) ⊂ I−(Pi−1) and I+(Si−1) ⊂ I+(Fi−1).

Assume that i = 2k + 1 for some k ∈ N, k ≥ 0. If there does not exist fk ∈ F then let Si = Si−1,
Pi = Pi−1, Fi = Fi−1 and continue the induction. Otherwise, we have three subcases:

1. If {fk} ∪ Si−1 is achronal let Si = {fk} ∪ Si−1, Pi = {fk} ∪ Pi−1 and Fi = {fk} ∪ Si−1. It is
clear that the inductive hypothesis remains true.

2. If fk ∈ I−(Si−1) then, by construction, fk ∈ F hence there exists (xi) a future divergent
sequence so that fk ∈ F(xi). Since I−(Si−1) is a past set, F(xi) is a future set and as fk ∈
I−(Si−1) ∩ F(xi) there exists f̂k ∈ I+(fk) ∩ ∂I−(Si−1). Let Si = {f̂k} ∪ Si−1. By construction

Si is achronal. Let Pi = Pi−1. Since f̂k ∈ ∂I−(Si), I
−(Si) ⊂ I−(Pi). Let Fi = {fk} ∪ Fi−1. By

construction I+(Si) ⊂ I+(Fi). Hence the inductive hypotheses are true.
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3. Otherwise fk ∈ I+(Si−1). Let (xi) be a future divergent sequence so that fk ∈ F(xi). Since
Fi−1 is finite and as the Lorentzian distance is assumed to be finite, Lemma 3.5 implies that
there exists N ∈ N so that for all j ≥ N , xj 6∈ I+(Fi−1). Since I+(Si−1) ⊂ I+(Fi−1) this

implies that for all j ≥ N there exists y
(xi)
j ∈ I−(fk) ∩ I+(xj) ∩ ∂I+(Si−1). Let Y (fk) be the

union of all y
(xi)
j for all (xi), a future divergent sequence, so that fk ∈ F(xi).

By construction Y (fk) ⊂ ∂I+(Si−1) so Si = Y (fk) ∪ Si−1 is achronal. Let Fi = Fi−1. Since
Y (fk) ⊂ ∂I+(Si−1), I+(Fi) ⊃ I+(Si). Let Pi = {fk} ∪ Pi−1. Since Y (fk) ⊂ I−(fk), I

−(Si) ⊂
I−(Pi). It is clear that the inductive hypothesis are satisfied.

Assume that i = 2k for some k ≥ 1. This is the time reversed version of the three subcases above.
For clarity we write them out in full. If there does not exist pk ∈ P then let Si = Si−1, Pi = Pi−1,
Fi = Fi−1 and continue the induction. Otherwise, we have three subcases:

1. If {pk} ∪ Si−1 is achronal then let Si = {pk} ∪ Si−1, Pi = {pk} ∪ Pi−1 and Fi = {pk} ∪ Fi−1. It
is clear that the inductive hypothesis are satisfied.

2. If pk ∈ I+(Si−1) then, by construction, there exists (xi) a past divergent sequence so that
pk ∈ P(xi). Since I+(Si−1) is a future set and P(xi) is a past set and as pk ∈ I+(Si−1) ∩ P(xi)

there exists p̂k ∈ I−(pk)∩∂I+(Si−1). Let Si = {p̂k}∪Si−1. Let Fi = Fi−1 and Pi = {p̂k}∪Pi−1.
Since p̂k ∈ ∂I+(Si−1), I+(Si) ⊂ I+(Fi) and it is clear that I−(Si) ⊂ I−(Pi). Hence the
inductive hypotheses are satisfied.

3. Otherwise pk ∈ I−(Si−1). Let (xi) be a past divergent sequence so that pk ∈ P(xi). Since Pi−1

is finite and as the Lorentzian distance is assumed to be finite, the time reverse of Lemma 3.5
implies there exists N ∈ N so that for all j ≥ N , xj 6∈ I−(Pi−1). Since I−(Si−1) ⊂ I−(Pi−1)

this implies that for all j ≥ N there exists y
(xi)
j ∈ I+(pk) ∩ I−(xj) ∩ ∂I−(Si−1). Let Y (pk) be

the set of all y
(xi)
j for all (xi), a past divergent sequence, so that pk ∈ P(xi).

By construction Y (pk) ⊂ ∂I−(Si−1) so Si = Y (pk) ∪ Si−1 is achronal. Let Pi = Pi−1. As
Y (pk) ⊂ ∂I−(Si−1) it is clear that I−(Si) ⊂ I−(Pi). Let Fi = {pk}∪Fi−1. Since Y (pk) ⊂ I+(pk)
we have that I+(Si) ⊂ I+(Fi). Hence the inductive hypotheses are satisfied.

Since Si ⊂ Si+1 and each Si is achronal the set H =
⋃
i Si is achronal.

We now prove that for each (xi), a future divergent sequence, there exists N ∈ N so that for all
` ≥ N , x` ∈ I−(H). By construction there exists fk ∈ F ∩ F(xi). We have three cases (j = 2k + 1):

1. If {fk} ∪ Sj is achronal then f ∈ Sj+1 ⊂ H. Lemma 3.6 now gives the required N .

2. If fk ∈ I−(Sj) then, by construction there exists f̂k ∈ I+(fk) ∩ Sj+1 ⊂ H. Lemma 3.6 now
gives the required N .

3. Otherwise fk ∈ I+(Sj). By construction there exists N ∈ N so that for all j ≥ N there is

y
(xi)
j ∈ Sj+1 ∩ I+(xj). That is for all ` ≥ N , x` ∈ I−(H).

The time reverse of this argument shows that for all past divergent sequences, (xi), there exists N
so that for all ` ≥ N , x` ∈ I+(H). Hence H is a hatting.
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Every generalised time function satisfying condition (3) gives rise to a hatting.

Proposition 3.8. Let (M, g) be a Lorentzian manifold. If f : M → R is a generalised time function
that satisfies condition (3) then for all r ∈ R, in the range of f , f−1(r) is a hatting for M .

Proof. Let (xi)i∈N be a future divergent sequence in M . If (xi) ⊂ I+(f−1(r)) then for all y ∈ F(xi)

d(f−1(r), y) = ∞. This implies, by Lemma 2.3, that f(y) = ∞ which is a contradiction. Therefore
there exists N ∈ N so that for all i ≥ N , xi ∈ I−(f−1(r)). A similar argument applied to past
divergent sequences shows that f−1(r) is a hatting.

3.2 The construction of a special achronal surface

This subsection shows how to construct an achronal surface, S, so that M = I+(S) ∪ S ∪ I−(S).

Lemma 3.9. Let (M, g) be a Lorentzian manifold. Let S be an achronal surface so that S = ∂I+(S)
and let x, y ∈ M be such that y ∈ I+(x) and U = I−(y) ∩ I+(x). If I+(S) ∩ U 6= ∅ then U =
(I+(S) ∩ U) ∪ (S ∩ U) ∪ (I−(S) ∩ U).

Proof. It is clear that (I+(S) ∩ U) ∪ (S ∩ U) ∪ (I−(S) ∩ U) ⊂ U . If x ∈ I+(S) then the achronality
of S implies that I+(x) ⊂ I+(S). Hence, U ⊂ I+(S) and we have the result. Thus, we assume that
x 6∈ I+(S).

Let w ∈ U . By construction there exists a timelike curve γ from x to y through w. As I+(S)∩U 6= ∅
and U ⊂ I−(y) we know that y ∈ I+(S). By assumption x 6∈ I+(S), hence Corollary 2.9 implies
that γ ∩ S = {s} for a unique s ∈ S. Since γ is timelike, this implies that w lies in I+(s), I−(s), or
w = s. Hence w ∈ I+(S), w ∈ S or w ∈ I−(S), and U ⊂ (I+(S) ∩ U) ∪ (S ∩ U) ∪ (I−(S) ∩ U) as
required.

As with many results in Lorentzian geometry a ‘time reversed’ version of this result also holds.

Lemma 3.10. Let (M, g) be a Lorentzian manifold. Let S be an achronal surface so that S =
∂I−(S) and let x, y ∈ M so that y ∈ I+(x) and U = I−(y) ∩ I+(x). If I−(S) ∩ U 6= ∅ then
U = (I+(S) ∩ U) ∪ (S ∩ U) ∪ (I−(S) ∩ U).

Lemma 3.11. Let (M, g) be a Lorentzian manifold. If there exists a future set, F , so that ∂F 6= ∅
then there exists an achronal set S so that ∂F ⊂ S and M = I+(S) ∪ S ∪ I−(S).

Proof. Let S0 = ∂F . By assumption S0 6= ∅. By Lemma 2.10, ∂I+(S0) = ∂I+(∂F ) = ∂I+(∂I+(F )) =
∂I+(F ) = ∂F , since, by definition I+(F ) = F .

Assuming that Si is given we construct Si+1 as follows.

Si+1 =

{
∂I−(Si) i+ 1 odd
∂I+(Si) i+ 1 even.

(7)

Assuming i + 1 is even then, by construction and Lemma 2.10, ∂I+(Si+1) = ∂I+(∂I+(Si)) =
∂I+(Si) = Si+1. Hence Corollary 2.9 can be applied to Si+1. In the case that i + 1 is odd the
same argument shows that Si+1 = ∂I−(Si+1) and the time reverse of Corollary 2.9 can be applied.

14



Let S =
⋃
i Si. Thus ∂F = S0 ⊂ S as required. We now prove that, for all i ∈ N, Si ⊂ Si+1. Let

y ∈ Si. There are two cases to consider.

Case one: Assume that i + 1 is odd. Since y ∈ Si, y ∈ I−(Si). The achronality of Si implies that
y 6∈ I−(Si) and therefore y ∈ ∂I−(Si) = Si+1.

Case two: Assume that i+ 1 is even. Since y ∈ Si, y ∈ I+(Si). The achronality of Si implies that
y 6∈ I+(Si) and therefore y ∈ ∂I+(Si) = Si+1.

Thus Si ⊂ Si+1 as required.

We now show that for all x ∈ M there exists i ∈ N so that x ∈ I+(Si) ∪ Si ∪ I−(Si). Since M is
path connected there exists a curve γ : [0, 1] → M from γ(0) ∈ I+(S0) to γ(1) = x. For each y ∈ γ
choose zy ∈ I+(y) and wy ∈ I−(y).

The set {I−(zy) ∩ I+(wy) : y ∈ γ} is an open cover of γ. As γ is compact there exists a finite open
subcover, C = {I−(zi) ∩ I+(wi) : i = 0, . . . ,m}.
By relabelling, if necessary, we take U0 = I−(z0)∩ I+(w0) ∈ C so that γ(0) ∈ U0. Lemma 3.9 implies
that U0 = (I+(S0) ∩U0) ∪ (S0 ∩U0) ∪ (I−(S0) ∩U0). Let γ0 be the connected component of γ in U0

containing γ(0). Define t1 = sup{t ∈ [0, 1] : γ0(t) ∈ U0}. Again by relabelling, if necessary, we take
U1 = I−(z1) ∩ I+(w1) ∈ C so that γ(t1) ∈ U1.

We will show that either U1 = (I+(S0) ∩ U1) ∪ (S0 ∩ U1) ∪ (I−(S0) ∩ U1) or U1 = (I+(S1) ∩ U1) ∪
(S1 ∩ U1) ∪ (I−(S1) ∩ U1).

By definition of t1, and as U1 is open, there exists ε > 0 so that γ(t1 − ε) ∈ U1 ∩ U0. Thus there
exists x1 ∈ U0 ∩ U1. From above we know that x1 ∈ (I+(S0) ∩ U0) ∪ (S0 ∩ U0) ∪ (I−(S0) ∩ U0). We
have three cases to consider.

Case one: If x1 ∈ I+(S0) then Lemma 3.9 implies that U1 = (I+(S0)∩U0)∪(S0∩U0)∪(I−(S0)∩U0).

Case two: If x1 ∈ S0 then as U0 ∩U1 is open there exists x′1 ∈ U0 ∩U1 ∩ I+(x1). Since x′1 ∈ I+(x1)
and x1 ∈ S0 we know that x′1 ∈ I+(S0). Lemma 3.9 implies that U1 = (I+(S0) ∩ U1) ∪ (S0 ∩ U1) ∪
(I−(S0) ∩ U1).

Case three: Suppose that x1 ∈ I−(S0). Then as I−(S1) = I−(∂I−(S0)), x1 ∈ I−(S1) so that
I−(S1) ∩ U1 6= ∅. Lemma 3.10 implies that U1 = (I+(S1) ∩ U1) ∪ (S1 ∩ U1) ∪ (I−(S1) ∩ U1).

This inductive process can be repeated. The result is that, for some i = 0, . . . ,m with x = γ(1) ∈
Ui ∈ C we know that, for some 0 ≤ j ≤ i, Ui = (I+(Sj) ∩ Ui) ∪ (Sj ∩ Ui) ∪ (I−(Sj) ∩ Ui). Hence
x ∈ I+(Sj) ∪ Sj ∪ I−(Sj) as claimed.

We now show that M = I+(S)∪S∪I−(S). For all x ∈M there exists j ∈ N so that x ∈ I+(Sj)∪Sj∪
I−(Sj). By definition of S, I+(S) =

⋃
i I

+(Si) and I−(S) =
⋃
i I
−(Si). Thus x ∈ I+(S)∪S ∪ I−(S).

Since I+(S) ∪ S ∪ I−(S) ⊂M we have the required equality.

We now show that S is an achronal surface by showing that S = ∂I+(S). Let x ∈ ∂I+(S). From
above there exists j ∈ N so that x ∈ I+(Sj)∪Sj ∪ I−(Sj). If x ∈ I+(Sj) then, from the construction
of S, we know that x ∈ I+(S). This is a contradiction as I+(S) is open. Similarly if x ∈ I−(Sj) we
are led to a contradiction. Therefore x ∈ Sj ⊂ S, and so ∂I+(S) ⊂ S.

Let x ∈ S. Since I+(x) ⊂ I+(S), we know that x ∈ I+(S). If x ∈ ∂I+(S), we are done, since then
S ⊂ ∂I+(S) by the arbitrariness of x.

So suppose that x 6∈ ∂I+(S). Then x ∈ I+(S), by the achronality of ∂I+(S). From the definition of
S this implies that there exists i ∈ N so that x ∈ I+(Si). As x ∈ S there exists j ∈ N so that x ∈ Sj .
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Suppose that i ≥ j. Since x ∈ Sj then x ∈ Si. Thus we have that x ∈ Si ∩ I+(Si). This is a
contradiction as Si is an achronal surface. So assume that j > i. Since Si ⊂ Sj we know that
I+(Si) ⊂ I+(Sj). Thus, again, we get the contradiction x ∈ Sj ∩ I+(Sj).

Therefore, we have that x ∈ ∂I+(S) and hence that S = ∂I+(S), as required.

3.3 Combining surfaces and hattings to get generalised time functions

In this section we show how to use the hatting and the surface construction in the previous sections
to construct a surface S so that d(·, S) and d(S, ·) are finite valued and M = I+(S) ∪ S ∪ I−(S).
This allows us to construct a generalised time function that satisfies condition (3).

Lemma 3.12. Let (M, g) be a Lorentzian manifold. If there exists a hatting, H, then there exists
an achronal set S such that, H ⊂ S, M = I+(S) ∪ S ∪ I−(S) and for all x ∈ M , d(S, x) < ∞ and
d(x, S) <∞.

Proof. Since ∅ 6= H ⊂ ∂I+(H), Lemma 3.11 can be used to generate an achronal surface, S, so that
H ⊂ S. If there exists x ∈ I+(S) so that d(S, x) =∞ then Lemma 3.3 implies that there exists (xi),
a future divergent sequence, lying in S. Since H is a hatting there exists N ∈ N so that for all j ≥ N ,
xj ∈ I−(H) ⊂ I−(S). This contradicts the achronality of S. Hence for all x ∈ I+(S), d(S, x) < ∞.
The time reverse of this argument proves that for all x ∈ I−(S), d(x, S) <∞ as required.

Proposition 3.13. Let (M, g) be a Lorentzian manifold. If there exists a hatting then there exists
an achronal surface S such that M = I+(S) ∪ S ∪ I−(S). Moreover the function f : M → R defined
by

f(x) =


d(S, x) if x ∈ I+(S)
0 if x ∈ S
−d(x, S) if x ∈ I−(S)

.

is a generalised time function which satisfies condition (3).

Proof. The existence of S so that M = I+(S) ∪ S ∪ I−(S) is given by Lemma 3.12.

Let x ∈ M then as M = I+(S) ∪ S ∪ I−(S) and as these sets are pairwise disjoint we know that x
belongs to one of I+(S), S or I−(S). Hence f is well defined. The finiteness of f follows from Lemma
3.12. It is clear, by definition of d, that f is strictly monotonically increasing on every timelike curve.

It remains to show that f satisfies condition (3). Let x ∈ M , y ∈ I+(x) and for a contradiction we
assume that f(y)− f(x) < d(x, y). We have five cases to consider.

Case one, f(x) > 0 By assumption f(y) − f(x) = d(S, y) − d(S, x) < d(x, y). Hence d(S, y) <
d(S, x) + d(x, y) which contradicts Lemma 2.3.

Case two, f(x) = 0 By assuption f(y) − f(x) = d(S, y) < d(x, y). This contradicts the definition
of d.

Case three, f(x) < 0, f(y) > 0 By assumption x ∈ I−(S) and y ∈ I+(S). Since S is an achronal
surface so that M = I+(S) ∪ S ∪ I−(S) we know that S = ∂I+(S) = ∂I−(S), Proposition
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2.8 now implies that for any γ : [a, b] → M , γ ∈ Ωx,y, there exists a unique t ∈ [a, b] so that
γ ∩ S = {γ(t)}. Therefore

f(y)− f(x) = d(S, y) + d(x, S) ≥ L(γ|[a,t]) + L(γ|[t,b]) = L(γ).

Taking the supremum over Ωx,y we see that f(y) − f(x) = d(S, y) + d(x, S) ≥ d(x, y). This
contradicts our assumption.

Case four, f(x) < 0, f(y) = 0 By assumption f(y)−f(x) = d(x, S) < d(x, y). This contradicts the
definition of d.

Case five, f(y) < 0 By assumption f(y) − f(x) = −d(y, S) + d(x, S) < d(x, y). Hence d(x, S) <
d(x, y) + d(y, S) which contradicts Lemma 2.3.

Since every case ends in a contradiction we see that f satisfies condition (3).

Example 3.14. Here is an example of a stably causal manifold with finite but discontinuous Lor-
entzian distance function. Simply take two dimensional Minkowski space, and remove the segment
{(x, y) : y = 0, −1 ≤ x ≤ 1}.

We now refine Proposition 3.13 under the assumption that the Lorentzian distance is continuous.

Corollary 3.15. If, in addition to the assumptions of Proposition 3.13 the Lorentzian distance is
continuous then the function defined in Proposition 3.13 is continuous.

Proof. The aim is to show that the function f we have constructed is both lower and upper semi-
continuous, [10, page 101]. For lower semi-continuity, let S be our achronal surface, and observe
that by the lower semi-continuity of d, which holds on all Lorentzian manifolds, for each s ∈ S the
function p 7→ d(s, p) is lower semi-continuous. Hence p 7→ sups∈S d(s, p) is lower semi-continuous.
The time symmetry of f completes the argument.

Since for each s ∈ S, d(s, ·) is upper semi-continuous, for each ε > 0 there exists a neighbourhood
U ⊂M , p ∈ U , so that for any s ∈ S and q ∈ U ,

d(s, p) ≥ d(s, q)− ε.

Taking the supremum over all s ∈ S yields

f(p) ≥ f(q),

and so if qi → p we see that lim sup f(qi) ≤ f(p), and hence f is upper semi-continuous.

The last corollary and the equivalence between stably causality and the existence of a continuous time
function suggests the following conjecture: If (M, g) has finite and continuous Lorentzian distance
then (M, g) is stably causal.

Our techniques, based on functions necessarily constant on at least some causal curves, seem not to
be able to address this question, despite obtaining a continuous generalised time function when the
Lorentzian distance is finite and continuous.
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4 Proof of the main results

Finiteness of the Lorentzian distance. Let (M, g) be a Lorentzian manifold. The Lorentzian
distance is finite if and only if there exists a generalised time function f : M → R, strictly mono-
tonically increasing on timelike curves, whose gradient exists almost everywhere and is such that
ess sup g(∇f,∇f) ≤ −1.

Proof. Suppose that such a generalised time function exists. Then Corollary 2.16 proves that the
Lorentzian distance is finite.

Conversely suppose that the Lorentzian distance is finite. Then Lemma 3.7 along with Propo-
sitions 3.13 and 2.18, imply that there exists a generalised time function f : M → R so that
ess sup g(∇f,∇f) ≤ −1.

The Lorentzian distance formula. Let (M, g) have finite Lorentzian distance. Then for all
p, q ∈M

d(p, q) = inf {max{f(q)− f(p), 0} : f : M → R, f future directed, ess sup g(∇f,∇f) ≤ −1} .

Proof. We assume that either {p, q} is achronal or q ∈ I+(p).

Since the Lorentzian distance is finite, Lemma 3.7 implies that there exists a hatting for M . Thus
Lemma 3.12 implies that there exists an achronal surface, S1, so that d(S1, ·) and d(·, S1) are finite val-
ued. Let S2 = ∂ (I+(S1) \ I−(q)). Let x ∈ I+(S2). By construction d(S2, x) ≤ max{d(S1, x), d(q, x)}.
Hence d(S2, ·) is finite valued. A similar argument shows that d(·, S2) is finite valued. Let S =
∂ (I−(S2) \ I+(p)). The same arguments as above show that d(S, ·) is finite and d(·, S) is finite.

Take f : M → R to be as defined in Proposition 3.13 using the surface S. If {p, q} is achronal
then p, q ∈ S so that f(q) = 0 and f(p) = 0. In this case d(p, q) = 0 = f(q) − f(p). Now
suppose that q ∈ I+(p). Let γ be a timelike curve from q to x ∈ S. By construction x 6∈ S2.
Since γ is timelike x 6∈ ∂I−(q). Hence x ∈ ∂I+(p) and therefore d(p, x) = 0. We thus have that
d(p, q) ≥ d(p, x) + d(x, q) = d(x, q) with equality for x = p. Noting that p ∈ S, by taking the
supremum over all x ∈ S we get d(p, q) = d(S, q) = f(q). Again as p ∈ S we have that f(p) = 0 and
hence f(q)− f(p) = d(p, q).

Lastly Proposition 2.18 implies that as f(q)− f(p) ≥ d(p, q) then ess inf
√
−g(∇f,∇f) ≥ 1.

Thus we have shown that

d(p, q) = inf {max{f(q)− f(p), 0} : f : M → R, f future directed, ess sup g(∇f,∇f) ≤ −1} .

as required.

Remark. In fact we have shown that the infimum is achieved.

A The differentiability of functions that are monotonic on timelike
curves.

We begin by addressing the question of continuity.
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Proposition A.1. Let f : M → R be monotonically increasing on all timelike curves and let x ∈M .
Suppose that there exists a timelike curve γ : [−1, 1]→M with γ(0) = x such that f ◦γ is continuous
at 0. Then f is continuous at x.

Proof. Let (yi)i∈N ⊂ M be a sequence of points so that yi → x. Then, for each i ∈ N there exists
ki ∈ N so that for all j > ki

yj ∈ I−
(
γ

(
1

i

))
∩ I+(

(
γ

(
−1

i

))
.

Since f is monotonically increasing on all timelike curves this implies that, for all j > ki,

f

(
γ

(
1

i

))
≥ f(yj) ≥ f(

(
γ

(
−1

i

))
.

As f ◦ γ is continuous at 0,

f

(
γ

(
1

i

))
→ f ◦ γ(0)

and

f

(
γ

(
−1

i

))
→ f ◦ (γ(0)).

This implies that f(yi)→ f(γ(0)) = f(x), as required.

Corollary A.2. Let f : M → R be monotonically increasing on all timelike curves. Then f is
continuous a.e.

Proof. This follows directly from Proposition A.1 and as the push forward of our measure on M is
a product measure on the image of a chart φ : U ⊂M → V ⊂ Rn+1.

We now show that functions that are monotonic on timelike curves are differentiable a.e.

Lemma A.3. Let γ : I → M be a timelike curve and f : M → R be monotonic on any timelike
curve. Then γ′(f) : I → R exists a.e.

Proof. By definition

γ′(f)|γ(t) =
d

dτ
f ◦ γ|t.

By assumption f ◦γ is a monotonic function. Hence, standard results, e.g. [7, Theorem 9.3.1], imply
that γ′(f) exists a.e. on γ(I).

Lemma A.4. Let U be a coordinate neighbourhood of M . Let f : M → R be monotonic on any
timelike curve and let v ∈ TU a vector field on U . Then v(f) exists a.e. on U .

Proof. Let ∂0, . . . , ∂n be the coordinate vector fields on U . By using the Gram-Schmidt process we
can produce an orthonormal frame field, w0, . . . , wn ∈ TU over U so that for all j = 1, . . . , n and
i = 0, . . . , n we have that g(w0, wj) = −δ0j and g(wi, wj) = δij . Choose 1 > ε > 0 and let e0 = w0

and, for all i = 1, . . . , n let ei = (1−ε)wi+w0. Then for all i = 1, . . . , n and j = 0, . . . , n we have that
g(e0, ej) = −1 and g(ei, ej) = (1− ε)2δij − 1. In particular this implies that each vector e0, . . . , en is
timelike.
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Choose x ∈ U . Then for each j = 0, . . . , n there exists an integral curve of the vector field ej through
x. Since each ej is causal this integral curve is causal and therefore ej(f) exists a.e. on every integral
curve of ej . As these integral curves foliate U , we know that for each j = 0, . . . , n, ej(f) exists a.e.
on U .

Since e0, . . . , en are a frame over U we can express v as v = vjej . Thus for x ∈ U we have that
v(f) = vjej(f), if ej(f) exists for all j = 1, . . . , n. Hence v(f) exists a.e. on U .

This allows us to define the differential of f .

Lemma A.5. Let f : M → R be monotonic on any timelike curve. Then there exists a unique, a.e.
defined, linear operator df : TM → R so that df(v) = v(f).

Proof. We will define df locally and then show that the definitions on each coordinate patch satisfy
the necessary transformation properties in order to conclude global existence.

Choose a coordinate neighbourhood U . Choose a frame e0, . . . , en so that for all i = 1, . . . , n and
j = 0, . . . , n we have that g(e0, ej) = −1 and g(ei, ej) = (1− ε)2δij − 1 with 1 > ε > 0 (see the proof
of Proposition A.4 for the existence of such frames). For all j = 0, . . . , n let dej be the differential
form defined by, for all k = 0, . . . , n, dej(ek) = δjk.

Define df : TU → R by df = ej(f)dej . Since for all j = 0, . . . , n the vector field ej(f) exists a.e. on
U we know that df is defined a.e. on U . The linearity of df follows from the linearity of each dej , for
j = 0, . . . , n.

Let V be a second coordinate neighbourhood so that V ∩ U 6= ∅. Let e′0, . . . , e
′
n be a frame on V so

that for all i = 1, . . . , n and j = 1, . . . , n we have that g(e′0, e
′
j) = −1 and g(e′i, e

′
j) = (1− ε)2δij − 1.

We can write ej = T ije
′
i on V ∩ U . This implies that ej(f) = T ije

′
i(f) and that dej =

(
T−1

)j
i
de′i.

Hence, for i, j, k, l = 0, . . . , n,

df = ej(f)dej = δjkej(f)dek = δjkT
i
je
′
i(f)

(
T−1

)k
l
de′l = δjkT

i
j

(
T−1

)k
l
e′i(f)de′l

= T ik
(
T−1

)k
l
e′i(f)de′l = δile

′
i(f)de′l = e′l(f)de′l.

Which is the expression for df in the frame on V . Hence df is globally defined.

It remains to show that df(v) = v(f) and that df is unique. Let v ∈ TU , then we can express v as
v = vkek. Thus df(v) = ej(f)dej(vkek) = vjej(f) = v(f).

Suppose that there exists ω : TM → R a linear operator so that ω(v) = v(f). Then ω(ej) = ej(f)
and we have ω = ej(f)dej . This implies that ω = df as required.

We can now define the gradient.

Definition A.6. Let f : M → R be monotonic on any timelike curve. We call df , as given in
the proposition above, the differential of f . We call the a.e. defined vector field ∇f such that
df(v) = g(∇f, v), for all v ∈ TM , the gradient of f .

The gradient of a function that is monotonically increasing on all timelike curves is necessarily causal.

Lemma A.7. If f : M → R is monotonically increasing on any future-directed timelike curve, then
∇f is past-directed and causal wherever it exists.
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Proof. Let x ∈ M be such that ∇f exists at x. Suppose that ∇f is spacelike. Then there exists
v ∈ TxM a future-directed timelike vector so that g(∇f, v) = 0. Choose a ∈ R so that a < 0 and

a2 < − g(v,v)
g(∇f,∇f) and let w = a∇f + v. Then

g(w,w) = a2g(∇f,∇f) + g(v, v) < 0

so that w is timelike. Let γ : (−1, 1)→M be a future-directed timelike curve so that x = γ(0) and
γ′(0) = w. By definition

d

dt
f ◦ γ|t=0 = g(∇f, w) = ag(∇f,∇f) < 0.

This contradicts the assumption that f is monotonically increasing along any future directed timelike
curve. Thus ∇f is causal. A similar argument to that above can be used to show that ∇f is past-
directed.

References

[1] J. K. Beem, P. Ehrlich, and K. Easley. Global Lorentzian Geometry (Pure and Applied Mathe-
matics). CRC Press, 2 edition, 1996.

[2] A. N. Bernal and M. Sánchez. On smooth Cauchy hypersurfaces and Gerochs splitting theorem.
Communications in Mathematical Physics, 243:461–470, 2003.

[3] A. N. Bernal and M. Sánchez. Smoothness of time functions and the metric splitting of globally
hyperbolic spacetimes. Communications in Mathematical Physics, 257(1):43–50, 2005.

[4] A. N. Bernal and M. Sánchez. Further results on the smoothability of Cauchy hypersurfaces
and Cauchy time functions. Letters in Mathematical Physics, 77:183–197, 2006.

[5] A. Connes. Compact metric spaces, Fredholm modules, and hyperfiniteness. Ergodic Theory
and Dynamical Systems, 9(02):207–220, 1989.

[6] N. Franco. Global eikonal condition for Lorentzian distance function in noncommutative geom-
etry. SIGMA, 6:064, 2010.

[7] N. B. Haaser and J. A. Sullivan. Real Analysis. Dover Publications, 1991.

[8] S. W. Hawking. The existence of cosmic time functions. Proceedings of the Royal Society of
London. Series A, Mathematical and Physical Sciences, 308(1494):433–435, 1969.

[9] S. W. Hawking and G. F. R. Ellis. The Large Scale Structure of Space-Time (Cambridge Mono-
graphs on Mathematical Physics). Cambridge University Press, 1975.

[10] J. Kelly. General Topology. Ishi Press International, 2008.

[11] E. Minguzzi and M. Sanchez. The causal hierarchy of spacetimes. In Recent developments in
pseudo-Riemannian geometry. European Mathematical Society, 2008.

[12] V. Moretti. Aspects of noncommutative Lorentzian geometry for globally hyperbolic spacetimes.
Reviews in Mathematical Physics, 15:1171–1217, 2003.

21



[13] B. O’Neill. Semi-Riemannian Geometry With Applications to Relativity, 103, Volume 103 (Pure
and Applied Mathematics). Academic Press, 1983.

[14] G. N. Parfionov and R. R. Zapatrin. Connes duality in pseudo-Riemannian geometry, Journal
of Mathematical Physics, 41:7122–7128, 2000.

[15] R. Penrose. Techniques of Differential Topology in Relativity (CBMS-NSF Regional Conference
Series in Applied Mathematics). Society for Industrial Mathematics, 1st edition, 1987.

[16] H. L. Royden. Real analysis, 2nd Edition. The Macmillan Co., New York, 1968.

[17] H. Seifert. Smoothing and extending cosmic time functions. General Relativity and Gravitation,
8(10):815–831, 1977.

22


