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Abstract

We consider the general properties of bounded approximate units in non-self-adjoint
operator algebras. Such algebras arise naturally from the differential structure of spectral
triples and unbounded Kasparov modules. Our results allow us to present a unified ap-
proach to characterising completeness of spectral metric spaces, existence of connections
on modules, self-adjointness and regularity of induced operators on tensor product C∗-
modules and the lifting of Kasparov products to the unbounded category. In particular, we
prove novel existence results for quasi-central approximate units in non-self-adjoint opera-
tor algebras, allowing us to strengthen Kasparov’s technical theorem and extend it to this
realm. Finally, we show that given any two composable KK-classes, we can find unbounded
representatives whose product can be constructed to yield an unbounded representative of
the Kasparov product.
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Introduction

In this paper we analyse the completeness of metric spaces associated to (nonunital) spectral
triples, the existence of differentiable structures and connections on modules over algebras
associated to spectral triples, and we prove that Kasparov products can be lifted to the un-
bounded setting in a very strong sense. The precise conditions under which such liftings
exist have become important due to recent applications of the unbounded Kasparov product,
[12, 13, 32, 41].

These seemingly disparate topics are in fact related by the systematic use of approximate
units for differentiable algebras, introduced below. Technical advances in approximate units
have often heralded conceptual advances in operator algebras and noncommutative geometry.
Pertinent examples include quasicentrality [1], Higson’s proof of Kasparov’s technical theorem,
[26], and the early approaches to summability for nonunital spectral triples, [24, 46].

In this paper we refine the notion of approximate unit further by looking at differentiable
algebras of spectral triples (or unbounded Kasparov modules). Given a separable C∗-algebra A
with spectral triple (A,H,D), we define a differentiable algebra to be a separable ∗-subalgebra
A with

A ⊂ AD =

{
a ∈ A : [D, a] is defined on DomD, ‖a‖D :=

∥∥∥∥( a 0
[D, a] a

)∥∥∥∥
∞
<∞

}
,

which is closed in the norm ‖ · ‖D and dense in the C∗-algebra A. Here ‖ · ‖∞ is the usual
norm of operators on H ⊕ H. While we can always choose an approximate unit (un) for A
consisting of elements of the prescribed dense subalgebra A, the requirement that (un) be an
approximate unit for A is much stronger, and yields finer information.

For spectral metric spaces associated to spectral triples we obtain a characterisation of metric
completeness in terms of the existence of an approximate unit (un) for the C∗-algebra A whose
Lipschitz norm is uniformly bounded in the sense that supn ‖[D, un]‖∞ < ∞. This extends
previous results of Latrémolière [39] to unbounded metrics. By addressing completeness in a
way compatible with [40], we complement Latrémolière’s more refined picture of unbounded
spectral metric spaces.

In addition, we obtain stronger forms of metric completeness, characterised by the requirement
that the ‘derivatives’ [D, un] of the approximate unit converge to zero in norm. This property
corresponds to ‘topological infinity’ being at infinite distance, and reflects the behaviour of
geodesically complete manifolds. We present examples illustrating this analogy in Section 2.

Beyond metric properties, we use completeness and approximate units to describe a refinement
of unbounded Kasparov modules and correspondences for which the Kasparov product can be
explicitly constructed. Our main results then show that any pair of composable KK-classes
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have representatives which can be lifted to such modules. These results rely in an essential way
on the two notions of completeness we introduce in Sections 1 and 2, and generalise all previous
such constructions by incorporating projective modules defined by unbounded projections. We
now describe these results in more detail.

We begin Section 1 by establishing the basic concepts and notation that we will use throughout
the paper, in particular (non-self-adjoint) operator algebras and their approximate units. Then
we prove a range of results about bounded approximate units in operator algebras, which
greatly extend known results about contractive approximate units. A key result is Theorem 1.7
which says

Let A be an operator algebra with bounded approximate unit (uλ), and π : A → B(H) a cb-
representation. Then π(uλ) converges strongly, and hence weakly, to an idempotent q ∈ B(H)
with the following properties:
1) for all a ∈ A, qπ(a) = π(a)q = π(a);
2) qH = [π(A)H];
3) (1− q)H = Nil π(A);
4) ‖q‖ ≤ ‖π‖ supλ ‖uλ‖.
The close relationships between the notions of approximate unit, unbounded multiplier and
strictly positive element for differentiable algebras which one would expect from the correspond-
ing C∗-theory only hold when we have the strong form of completeness, namely [D, un]→ 0 in
norm. Such approximate units may be normalised by replacing them by ũn := un

‖un‖D to obtain

an approximate unit that is contractive, i.e. ‖ũn‖D ≤ 1. The result on which the rest of the
paper relies is Theorem 1.25 which says

Let D : DomD ⊂ EB → EB be self-adjoint and regular and A ⊂ Lip(D) a differentiable algebra
such that [AEB] = EB. Then the following are equivalent:
1) there exists an increasing commutative approximate unit (un) ⊂ A with ‖[D, un]‖∞ → 0;
2) there exists a positive self-adjoint complete multiplier c for A;
3) there is a strictly positive element h ∈ A with Im (D± i)−1h = Imh(D± i)−1, and constant
C > 0 with ±i[D, h] ≤ Ch2.

Our characterisations of completeness are also essential ingredients in constructing useful mod-
ules over differentiable algebras. By considering the behaviour of approximate units for the
finite rank operators on such modules, we are led to two classes of modules: projective modules,
and complete projective modules. Geometric examples coming from fibre bundles necessitate
the use of projections whose derivative is unbounded in the sense that [D, p] is unbounded,
[13, 23]. This is a substantial extension of the situation considered in [32, 42].

These complete projective modules are characterised by the existence of certain types of ap-
proximate units for their compact endomorphisms, and it is in this setting that we can system-
atically relate frames, splittings of the Cuntz-Quillen sequence, and existence of connections.
This is discussed in Section 3. In particular we gain tools for studying self-adjointness of
operators arising in the context of Kasparov products, and Theorem 3.18 proves

Let EB be a complete projective module for the unbounded Kasparov module (B, FC ,D). Then
the densely defined symmetric operator 1⊗∇ D on E⊗̃BFC is self-adjoint and regular.

The proof of the self-adjointness of the operator 1⊗∇D relies on the local-global principle, due
to Pierrot and Kaad-Lesch, [31, 45], and on the completeness of the module EB. The resulting
argument is in the spirit of self-adjointness proofs for Dirac operators on complete manifolds.
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To prove our results about representing Kasparov classes as composable unbounded Kasparov
modules, we extend the notion of quasi-central approximate units to differentiable algebras.

We obtain a novel, strong form of quasicentrality in the general context of non-self-adjoint
operator algebras in Theorem 4.15. Our results concerning existence of such approximate
units are new even for C∗-algebras. This study culminates in a refinement of Kasparov’s
technical theorem for differentiable algebras in Theorem 4.18. Both the statement and the
proof are in the same spirit as Higson’s version, [26].

With this tool in hand, we show that given an arbitrary pair of composable Kasparov classes,
we can find unbounded Kasparov modules which represent these classes and whose product can
be constructed in the unbounded setting. This is done by associating to a bounded Kasparov
module a correspondence in a slightly broader sense than was used in [13, 32, 42]. Earlier forms
of this lifting construction were first considered in [4] to handle external products, and later
in [37], in the context of internal products. We prove successively stronger lifting results in
Theorem 4.7, Proposition 4.20, Theorem 4.23 and Proposition 4.29, culminating in Theorem
4.30 which says

Let A,B,C be separable C∗-algebras, x ∈ KK(A,B) and y ∈ KK(B,C). There exists an
unbounded Kasparov module (B, EC , T ) representing y and a correspondence (A,EB, S,∇) for
(B, EC , T ) representing x. Consequently (A, EB⊗̃BEC , S⊗1+1⊗∇T ) represents the Kasparov
product x⊗B y.

This result can also be interpreted as an alternative proof of the existence of the Kasparov
product. By proving the existence of unbounded representatives of a very special form, the
product can be constructed via an explicit algebraic formula. To lift Kasparov modules to
unbounded representatives, we prove the existence of, equivalently, either a frame, an approx-
imate unit or a strictly positive element possessing certain properties. Given such a frame,
connections and so products become explicitly computable.

The unbounded Kasparov modules we construct are ‘complete’ in the strong metric sense, so
every KK-class has such a representative. On the other hand, not every unbounded repre-
sentative of a Kasparov class is ‘complete’. For instance Kaad’s example of the half-line, [30],
or Baum, Douglas and Taylor’s examples, [5], from manifolds with boundary will not satisfy
our completeness requirements. If we take the associated KK-class of the Dirac operator on
a manifold with boundary, and then lift a bounded representative to a complete unbounded
module, we will have seriously altered the geometry.
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hosting BM on several occasions in 2012-2014. Lastly, it is a pleasure to thank the anonymous
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1 Approximate units and unbounded multipliers for operator algebras

This section begins by recalling some of the basic elements of operator algebras we require.
Then we address the definitions of, and relationships between, approximate units, strictly
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positive elements and unbounded multipliers. For C∗-algebras these notions are closely related
due to the connection between the norm and the spectrum. Here we must work somewhat
harder, but the outcome is a systematic way of capturing the notion of metric completeness,
and this plays a significant rôle throughout the rest of the paper.

1.1 Operator algebras and differentiable algebras

By an operator algebra we will mean a concrete operator algebra, that is, a closed subalgebra
A ⊂ B of some C∗-algebra B. By representing B isometrically on a Hilbert space H, we can
always assume that B = B(H). An operator ∗-algebra [32, 42] is an operator algebra A ⊂ B(H)
with a completely bounded involution ∗ : A→ A. This involution will in general not coincide
with the involution of the ambient C∗-algebra B(H), unless A itself is actually a C∗-algebra.

There are two C∗-algebras canonically associated to a concrete operator ∗-algebra A ⊂ B.
The first is the enveloping C∗-algebra C∗(A), defined to be the smallest C∗-subalgebra of B
containing A. In fact this C∗-algebra depends only on the inclusion A ⊂ B, i.e. on the
structure of A as a concrete operator algebra. The second C∗-algebra is the C∗-closure A,
constructed from viewing A as a Banach ∗-algebra, and completing in the C∗-norm coming
from the square root of the spectral radius of a∗a. The two C∗-algebras are almost always
different, as A is always dense in A, but is usually not dense in C∗(A).

The main examples of operator algebras that we consider arise in the following setting. Given
an unbounded (even) (A,B) Kasparov module (A,EB,D), we denote the algebra of adjointable
operators on the C∗-module EB by End∗B(E). The algebras A and B are (possibly trivially)
Z2-graded, as is the module E, and all commutators are Z2-graded. The grading operator on
E will be denoted by γ or γE when needed, and we observe that if B is non-trivially graded,
γE is not an adjointable operator, and γE(eb) = γE(e)γB(b), where γB is the grading on B. In
addition we have the identities

[D, π(a)] = Dπ(a)− π(γA(a))D, [D, π(a)]∗ = −[D, π(γA(a∗))], π(γA(a)) = γEπ(a)γE .

See [6] for more information. When no confusion can occur, we will just write γ in all cases.

We realise the full Lipschitz algebra

AD = {a ∈ A : aDomD ⊂ DomD, [D, a] ∈ End∗B(E)}

as an operator ∗-algebra via

πD : AD 3 a 7→ πD(a) :=

(
π(a) 0

[D, π(a)] π(γ(a))

)
∈ End∗B(E ⊕ E). (1.1)

Here π : A → End∗B(E) is the representation implicit in the Kasparov module (A,EB,D)
and it will often be suppressed in the notation (as in the Introduction). We also recall that
[D, π(a)] ∈ End∗B(E) is short hand for the densely defined commutator having an adjointable
extension to all of EB.

Throughout the paper we will denote U =
(

0 −1
1 0

)
. The involution is completely isometric in

this case because

πD(a∗) = U∗
(

π(γ(a)) 0
[D, π(γ(a))] π(a)

)∗
U = U∗πD(γ(a))∗U,
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cf. [42, cf. Proposition 4.1.3].

We will call πD the standard Lipschitz representation of AD, and always consider AD to be
topologised by the operator norm ‖πD(a)‖∞ in this representation. If A is not represented
faithfully on EB, the standard Lipschitz representation should be modified to

a 7→ a⊕ πD(a) ∈ A⊕ End∗B(E ⊕ E).

We will always suppress this modification as it is inconsequential for our computations (in fact
it only obscures them).

A more general setting where this operator algebra structure can be discussed is symmet-
ric spectral triples or symmetric Kasparov modules, [28, Section 3]. Here we have a triple
(A,EB,D) with D a (closed) symmetric regular operator such that a(1+D∗D)−1/2 is compact
for all a ∈ A. We also require that the subalgebra A of a ∈ A for which a ·DomD∗ ⊂ DomD

and [D∗, a], defined on DomD∗, has an adjointable extension to all of EB is dense in A.

Remark 1.1. In this case [D∗, a]∗ = −[D∗, γ(a∗)], both initially defined on DomD∗. The
equality on DomD∗ proceeds as in [22, cf. Proposition 2.1], but to see that the equality
holds on all of EB relies on the stronger assumptions needed for unbounded Kasparov modules
(as opposed to spectral triples). Specifically, the quadratic forms associated to the operators
[D∗, a]∗ and −[D∗, γ(a∗)] coincide on DomD∗, and the fact that [D∗, a] has an adjointable (and
so bounded) extension to EB ensures that the continuous extensions to EB coincide.

We can again use the representation

πD : AD 3 a 7→ πD(a) :=

(
a 0

[D∗, a] γ(a)

)
∈ End∗B(E ⊕ E) (1.2)

to give AD the structure of an operator space. More generally still, associated to a closed
symmetric regular operator D on a C∗-module EB is the operator algebra

Lip(D) := {T ∈ End∗B(E) : T DomD∗ ⊂ DomD, [D∗, T ] ∈ End∗B(E)}, (1.3)

the Lipschitz algebra of D, which is an operator algebra in the representation πD (cf. [42, Def.
4.1.1]). Here, as above, [D∗, T ] initially defined on DomD∗ is required to have an adjointable
extension to all of EB. By [42, Sec. 4.2], Lip(D) is spectral invariant in its C∗-closure,
and hence stable under the holomorphic functional calculus. The same holds for any closed
subalgebra of Lip(D).

Definition 1.2. Let D : DomD→ EB be a closed symmetric regular operator. A differentiable
algebra is a separable operator ∗-subalgebra A ⊂ Lip(D) which is closed in the operator space
topology given by πD. By projecting onto the first component of πD(A), the C∗-closure of a
differentiable algebra A coincides with the closure of A viewed as a subalgebra of End∗B(E),
and is thus a C∗-algebra.

Remark 1.3. We will present examples at the end of Section 2 showing that for an unbounded
Kasparov module (A,EB,D), in general one needs to choose algebras smaller than AD in order
to apply the methods that we develop in the remainder of the paper. Therefore we employ the
notation (A, EB,D) for unbounded Kasparov modules, where A ⊂ AD is a closed subalgebra
in the Lipschitz topology whose C∗-closure is A.
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Operator spaces and modules play a central rôle in this paper and we now introduce some
concepts of operator space theory that we will need. All operator spaces we encounter are
concrete operator spaces, that is, given explicitly as closed subspaces of B(H) for some Hilbert
space H. For a comprehensive treatment of operator algebras and modules, see [7].

The main feature of an operator space X is the existence of canonical matrix norms, that is,
a norm ‖ · ‖n on Mn(X) for each n ∈ N. For a concrete operator space X ⊂ B(H) these norms
are obtained from the natural representation of Mn(X) on B(Hn).

A linear map φ : X → Y between operator spaces X and Y is completely bounded if

‖φ‖cb := sup
n
{sup ‖φ(xij)‖Mn(Y ) : ‖(xij)‖Mn(X) ≤ 1} <∞,

and we refer to ‖φ‖cb as the cb-norm of φ. The map φ is completely contractive if ‖φ‖cb ≤ 1.

If we are given an operator algebra A ⊂ B(H) and an operator space X ⊂ B(H), we say
that X is a concrete left operator A-module if A ·X ⊂ X. Here · denotes the usual operator
multiplication in B(H). Right modules are defined similarly.

The Haagerup tensor product of operator spaces X and Y is defined to be the completion of
the algebraic tensor product X ⊗ Y over the complex numbers, in the Haagerup norm

‖z‖2h := inf
{∥∥∑xix

∗
i

∥∥∥∥∑ y∗i yi
∥∥ : z =

∑
xi ⊗ yi

}
, (1.4)

and the completion is denoted X⊗̃Y . In case X is a left and Y is a right operator A-module,
the Haagerup module tensor product X⊗̃AY is the quotient of X⊗̃Y by the closed linear span
of the expressions x⊗ ay − xa⊗ y. The norm on X⊗̃AY is the quotient norm.

The main feature of the Haagerup tensor product is that it makes operator multiplication
X⊗̃A→ X continuous for operator modules. An equivalent way of defining operator modules
is by requiring the multiplication to be contractive on the Haagerup tensor product, cf. [16,
Cor. 3.3]. See also [7, Thm. 3.3.1] and [10].

By an inner product operator module [31, 42] we mean a right operator module E over an
operator ∗-algebra B, that comes equipped with a sesquilinear pairing

E× E→ B, (e1, e2) 7→ 〈e1, e2〉,

satisfying the usual inner product axioms,

〈e1,e2b〉 = 〈e1, e2〉b, 〈e1, e2〉∗ = 〈e2, e1〉, 〈e, e〉 ≥ 0 in B, 〈e, e〉 = 0⇔ e = 0,

and the weak Cauchy-Schwarz inequality ‖〈e1, e2〉‖B ≤ C‖e1‖E‖e2‖E on the level of matrix
norms, for some C > 0. Notice that the norm ‖ · ‖E is part of the data and we do not require
E to be complete in the norm ‖e‖2inn := ‖〈e, e〉‖B, which in general will be different from
‖ · ‖E. For example, consider the operator ∗-algebra AD in the representation (1.1), viewed as
an inner product module over itself via 〈a, b〉 := a∗b. Thus norm of a ∈ E = A is given by
‖a‖2E = ‖a‖2D = ‖πD(a)∗πD(a)‖ 6= ‖πD(a∗a)‖ = ‖πD(〈a, a〉)‖ = ‖a‖2inn.

1.2 Bounded approximate units

In this section we gather some useful facts about bounded approximate units in the general
setting of operator algebras. We write ‖ · ‖ for the norm on an operator algebra, and this can
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include the norm on operators on a C∗-module or Hilbert space. When we need to stress the
distinction, we will write ‖·‖∞ for the usual norm on operators on a Hilbert space or C∗-module.
For the example of a (symmetric) spectral triple (A,H,D) we have ‖a‖ = ‖πD(a)‖∞.

Definition 1.4. Let A be an operator algebra. A bounded approximate unit for A is a net
(uλ)λ∈Λ ∈ A such that:
1) supλ ‖uλ‖ <∞;
2) for all a ∈ A, limλ→∞ ‖uλa− a‖ = limλ→∞ ‖auλ − a‖ = 0.

The bounded approximate unit is commutative if uλuµ = uλuµ for all λ, µ ∈ Λ and sequential
in case Λ = N.

By a cb-representation of an operator algebra A we mean a completely bounded algebra ho-
momorphism π : A → B(H), where H is a Hilbert space. A representation π is essential
(also called nondegenerate in the literature) if π(A)H is dense in H. Our first aim is to show
that in any cb-representation of an operator algebra A, a bounded approximate unit converges
strongly to an idempotent.

Let π : A → B(H) be a cb-representation. For W ⊂ H, denote by W⊥ its orthogonal
complement, by [W ] the closed linear span of W , and set

π(A)H := {π(a)h : a ∈ A, h ∈ H}.

The Hilbert space H splits as a direct sum of closed orthogonal subspaces in two ways:

H = [π(A)H]⊕ [π(A)H]⊥ = [π(A)∗H]⊕ [π(A)∗H]⊥.

Another important subspace of H associated to π is

Nil π(A) := {h ∈ H : π(a)h = 0 for all a ∈ A}.

Lemma 1.5. Let A be an operator algebra and π : A → B(H) a cb-representation. Then
Nil π(A) = [π(A)∗H]⊥.

Proof. For h ∈ Nil π(A) and v ∈ H, a ∈ A we have 〈h, π(a)∗v〉 = 〈π(a)h, v〉 = 0, so Nil π(A) ⊂
[π(A)∗H]⊥. Now let h ∈ [π(A)∗H]⊥, v ∈ H and a ∈ A. Then 〈π(a)h, v〉 = 〈h, π(a)∗v〉 = 0, so
π(a)h = 0 and h ∈ Nil π(A).

Lemma 1.6. Let A be an operator algebra with bounded approximate unit (uλ) and also let
π : A→ B(H) be a cb-representation. Then:
1) π(uλ)h→ h for all h ∈ [π(A)H];
2) Nil π(A) ∩ [π(A)H] = {0} = Nil π(A)∗ ∩ [π(A)∗H].

Proof. To prove 1), let h = π(a)v and observe that π(uλ)h → h since (uλ) is an approximate
unit. So the convergence property is satisfied by all h in a dense subset of [π(A)H]. Uniform
boundedness of (uλ) now gives the result for all h ∈ [π(A)H].
For 2), let h be a vector in the intersection Nil π(A) ∩ [π(A)H] so that π(uλ)h→ h as above,
since h ∈ [π(A)H]. On the other hand, since h ∈ Nil π(A), we have π(a)h = 0 for all a ∈ A,
so in particular π(uλ)h = 0 for all λ, so h = 0. Similarly Nil π(A)∗ ∩ [π(A)∗H] = {0}.
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The following theorem generalises the observations in the appendix to [42]. The result has
been known for contractive approximate units for a long time: see for example [7, Lemma
2.1.9] and its proof.

Theorem 1.7. Let A be an operator algebra with bounded approximate unit (uλ), and π : A→
B(H) a cb-representation. Then the net (π(uλ)) converges strongly, and hence weakly, to an
idempotent q ∈ B(H) with the following properties:
1) for all a ∈ A, qπ(a) = π(a)q = π(a);
2) qH = [π(A)H];
3) (1− q)H = Nil π(A);
4) ‖q‖ ≤ ‖π‖ supλ ‖uλ‖.

Proof. Denote by p the projection onto [π(A)H] and by p∗ the projection onto [π(A)∗H]. The
bounded and self-adjoint operator

x 7→ (p+ (1− p∗))x,

is injective, for if (p+ (1− p∗))x = 0 then px = −(1− p∗)x so

px ∈ [π(A)H] ∩ [π(A)∗H]⊥ = [π(A)H] ∩Nil π(A) = {0}.

Therefore px = (1− p∗)x = 0 and x = (1− p)x = p∗x, so

x ∈ [π(A)H]⊥ ∩ [π(A)∗H] = Nil π(A)∗ ∩ [π(A)∗H] = {0}.

Since p+ (1− p∗) is self-adjoint,

[Im(p+ (1− p∗))] = ker(p+ (1− p∗))⊥ = H,

and therefore Im(p+ (1− p∗)) is dense in H. In particular, the subspace [π(A)H] + Nil π(A)
is dense in H. Now let ξ ∈ H and ε > 0. Choose x ∈ [π(A)H] and y ∈ Nil π(A) such
that ‖ξ − x − y‖ < ε

4C , with C := sup ‖π(uλ)‖. Now choose λ < µ large enough such that
‖π(uλ − uµ)x‖ < ε

2 . Then

‖π(uλ − uµ)ξ‖ ≤ ‖π(uλ − uµ)(x+ y)‖+ ‖π(uλ − uµ)(ξ − x− y)‖

≤ ‖π(uλ − uµ)x‖+ ‖π(uλ − uµ)‖‖(ξ − x− y)‖ ≤ ε

2
+
ε

2
= ε,

which shows that (π(uλ)) is a strong Cauchy net. Since the strong operator topology is complete
on bounded sets, the sequence has a limit q. By definition of q

qπ(a) = π(a) = π(a)q, (1.5)

which proves 1). From this it follows that

q2ξ = lim
λ
π(uλ)qξ = lim

λ
π(uλ)ξ = qξ,

so q is idempotent and in particular has closed range. It is immediate from the definiton of q
and Equation (1.5) that

π(A)H ⊂ Im q ⊂ [π(A)H],
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and so Im q = [π(A)H], proving 2). For 3), observe that

π(a)(1− q) = (1− q)π(a) = 0,

so we have Im(1− q) ⊂ Nil π(A). If h ∈ Nil π(A), then qh = 0, so h = (1 − q)h ∈ Im(1− q).
Finally, 4) follows from

‖q‖ = sup
‖h‖≤1

‖qh‖ ≤ sup
‖h‖≤1

‖ lim
λ
π(uλ)h‖ ≤ ‖π‖ sup

λ
‖uλ‖

Corollary 1.8. The Hilbert space H splits as a non-orthogonal direct sum H ∼= [π(A)H] ⊕
[π(A)∗H]⊥.

Such splittings for C∗-modules need to be handled with more care, and we only treat the case
of symmetric Kasparov modules with some additional convergence hypotheses. Recall that the
strict topology on End∗B(E) is defined by the seminorms ‖T‖e := max{‖Te‖, ‖T ∗e‖}, and thus
models pointwise convergence on EB.

Proposition 1.9. Let (A, EB,D) be a symmetric Kasparov module for which [π(A)EB] is a
complemented submodule of EB and p ∈ End∗B(EB) the corresponding projection. Let (un) be
an even sequential bounded approximate unit for the differentiable algebra A. Then:
1) p is the strict limit of (un);
2) p[D∗, un]p→ 0 strictly;
3) if (Dune) converges for all e ∈ DomD∗ then p ∈ Lip(D∗) and [D∗, p] is the strict limit of
the sequence ([D∗, un]).

Proof. Let p be the projection onto [π(A)EB], which exists because this submodule is com-
plemented. For e ∈ [π(A)EB] we have une → e, since una → a in the C∗-norm. Moreover
pa = ap = a for all a ∈ A, and thus (1− p)a = a(1− p) = 0. Therefore

lim
n
une = lim

n
unpe+ un(1− p)e = lim

n
unpe = pe,

and un → p strictly, proving 1). Since (un) is a bounded approximate unit for A, the sequence
of operators [D∗, un] is uniformly bounded. For a ∈ A and e ∈ DomD∗ we have

[D∗, un]ae = [D∗, una]e− un[D∗, a]e.

Since ae = pae = ape, multiplying on the left by p yields

p[D∗, un]pae = p[D∗, una]pe− pun[D∗, a]pe.

Both terms on the right hand side converge to p[D∗, a]pe, and so the right hand side converges
to zero. Hence the left hand side also converges to zero. As vectors of the form ae are
dense in pEB, we see that p[D∗, un]p converges pointwise to zero. Since we have a symmetric
Kasparov module and un is even, it holds that (p[D∗, un]p)∗ = −p[D∗, u∗n]p, and so (u∗n) is
also a bounded approximate unit for A. Repeating the previous arguments for u∗n shows that
p[D, u∗n]p converges pointwise to zero, and so we see that p[D∗, un]p converges strictly to 0,
which proves 2).

To prove 3) we first show that p maps DomD∗ into DomD. As (A, EB,D) is a symmetric
Kasparov module, each un maps the domain of D∗ into the domain of D. Since, by assumption,

πD(un)

(
e

D∗e

)
=

(
une
Dune

)
,
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is convergent and by 1) the projection p is the strict limit of the un, we find that

lim
n→∞

un

(
e

D∗e

)
=

(
pe
x

)
.

Now the graph of D is closed so it follows that pe ∈ DomD and

x = lim
n→∞

Dune = Dpe. (1.6)

Now observe that, since pDomD∗ ⊂ DomD we can write for e ∈ DomD∗

[D∗, un]e = [D∗, un]pe+ [D∗, un](1− p)e
= Dunpe− unDpe+ Dun(1− p)e− unD∗(1− p)e
= Dune− unDpe− unD∗(1− p)e
→ Dpe− pDpe− pD∗(1− p)e by Equation (1.6)

= [D∗, p]e,

which tells us that [D∗, un] converges to [D∗, p] on DomD∗. Since the sequence [D∗, un] is
bounded, it converges strictly on all of EB, and the operator [D∗, p] is thus bounded on
DomD∗. This proves 3).

Remark 1.10. It would be desirable to remove the convergence hypothesis in 3). At present it
seems unlikely to be possible without further assumptions.

In fact our seeming flexibility in allowing symmetric operators is redundant in the presence of
a bounded approximate unit.

Corollary 1.11. Let (A, EB,D) be a symmetric Kasparov module with A · EB dense in EB.
If A has a sequential bounded approximate unit then D is self-adjoint.

Proof. Suppose we have an approximate identity (un) with [D∗, un] uniformly bounded in n.
Then by Lemma 1.9, [D∗, un]→ 0 strictly, since p = 1. Thus for e ∈ DomD∗ we find

D∗une = [D∗, un]e+ unD
∗e→ D∗e.

As we also have une→ e, and une ∈ DomD, we see that e is in the graph norm completion of
DomD. As e ∈ DomD∗ was arbitrary, DomD∗ ⊂ DomD and so D is self-adjoint.

For the differential algebras appearing in unbounded (symmetric) Kasparov modules, we can
always assume that approximate units are self-adjoint and even and we do so from here on.

1.3 Bounded and unbounded multipliers of differentiable algebras

It is a well-known fact that for a Banach algebra A with a bounded approximate unit, the
multiplier algebra M(A) is isomorphic to the strict closure of A, and contains A as an essential
ideal [44, Ch 5]. Similarly, a representation A → B(H) of a C∗-algebra A on a Hilbert space
H extends to a representation of the multiplier algebra M(A) on that same Hilbert space. We
discuss these notions here for operator algebras with bounded approximate unit.

For an operator algebra A, M(A) inherits matrix norms by viewing elements of M(A) as
operators on A. The next lemma shows that the presence of a bounded approximate unit
ensures that this norm, when restricted to A, is cb-equivalent to the original norm on A,
ensuring that the inclusion is a cb-equivalence.
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Lemma 1.12 (cf. Chapter 5 of [44]). Let A be an operator algebra with bounded approximate
unit. Then the norm on Mn(A) is equivalent to the norm

‖a‖op,n := sup
‖b‖n≤1

‖ab‖n, ‖a‖op,n ≤ ‖a‖n ≤ C‖a‖op,n, (1.7)

with C a constant independent of n.

Proof. Obviously, it holds that ‖a‖op ≤ ‖a‖. If uλ is a bounded approximate unit, then
1
C ‖uλ‖ ≤ 1 for some fixed constant C and all λ. For any ε > 0 there exists λ such that
‖b− buλ‖ < ε and thus

1

C
(‖b‖ − ε) < 1

C
(‖b‖ − ‖b− buλ‖) ≤

1

C
‖buλ‖ ≤ ‖b‖op,

which proves the assertion. The argument for the matrix norms ‖ · ‖n is verbatim the same
using the bounded approximate unit (uλ · Idn).

Definition 1.13. Let A be an operator algebra with bounded approximate unit. We define
the multiplier algebra M(A) to be the strict closure of A. That is

M(A) :=
{
T : A→ A : ∃ a net (bλ) ⊂ A such that ∀a ∈ A lim ‖bλa−Ta‖ = lim ‖abλ−aT‖ = 0

}
,

with norm ‖T‖ := ‖T‖op cf. Lemma 1.12.

It is worth noting that the strict topology on End∗B(E) as defined before Proposition 1.9
coincides with the strict topology in the sense of Definition 1.13 defined by the ideal K(EB).

Lemma 1.14. Let A be an operator algebra with bounded approximate unit (uλ) and π :
A → B(H) be an essential cb-representation. Then π extends uniquely to a cb-representation
π : M(A)→ B(H) such that π(1) = 1.

Proof. By assumption H = [π(A)H], so for all h ∈ H we have π(uλ)h → h by Lemma 1.6.
Since M(A) is the strict closure of A, for all b ∈ M(A) it holds that supλ ‖buλ‖ < ∞ and for
all a ∈ A, (buλa) is a Cauchy net in A. Therefore

π(b)π(a)h := lim
λ
π(buλa)h,

is a Cauchy net for all a ∈ A and h ∈ H. Thus π(buλ)h converges for h ∈ π(A)H. Since this
subspace is dense in H and the net (π(buλ)) is uniformly bounded, the net is strongly Cauchy
on H. This proves that the assigment h 7→ limλ π(buλ)h defines a bounded operator on H.
For a ∈ A and b ∈M(A), it is immediate from the definition that π(ab) = π(a)π(b). Then for
a, b ∈M(A) we have

π(a)π(b)h = π(a)
(

lim
λ
π(buλ)h

)
= lim

λ
π(abuλ)h = π(ab)h,

proving that the extension of π is a homomorphism. Since for all a ∈ A and b ∈M(A) we have
buλa → ba in A, it is immediate that any other cb-extension of π must coincide with the one
given, proving uniqueness.
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Lemma 1.15. Let A be an operator algebra with bounded approximate unit (uλ) ⊂ A and
π : A→ B(H) an essential cb-isomorphic representation. Then:
1) the strict closure M(A) of π(A) is cb-isomorphic to the idealiser of π(A) ⊂ B(H);
2) every element T ∈M(A) is the strict limit of a bounded net in A;
3) if J ⊂ A is a closed ideal, then J is a closed ideal in M(A).

Proof. By Lemma 1.14, π extends to a representation of M(A). Let T be an element of
π(M(A)), so that there is a net (bλ) ⊂ A with the property that for all a ∈ A

‖bλa− Ta‖, ‖abλ − aT‖ → 0.

Since A is norm closed and π is cb-isomorphic, it follows that π(Ta), π(aT ) ∈ π(A) for all
a ∈ A, so π(T ) idealises π(A). Now let T ∈ B(H) be such that Tπ(a), π(a)T ∈ π(A) for all
a ∈ A. Consider the net Tπ(uλ) ∈ π(A). For a ∈ A we have

‖Tπ(uλa)− Tπ(a)‖ ≤ ‖T‖‖π(uλa− a)‖ → 0, ‖π(a)Tπ(uλ)− π(a)T‖ → 0,

so since π is cb-isomorphic and essential, T is the image of an element in M(A). For the second
statement, observe that T is the strict limit of the bounded net (Tuλ), as in Lemma 1.12. For
the third assertion, let T ∈M(π(A)) and j ∈ J. Since Tj ∈ A, the net (uλTj) converges to Tj
in norm. But uλT ∈ A so this net actually lies in J. Since J is closed, Tj ∈ J, and similarly
for jT .

Theorem 1.16. Any cb-representation π : A → B(H) of an operator algebra with bounded
approximate unit extends uniquely to a representation π : M(A) → B(H) of the multiplier
algebra M(A), such that π(1) is an idempotent satisfying π(1)H = [π(A)H] and (1−π(1))H =
Nil π(A).

Proof. The Hilbert space H is cb-isomorphic to the nonorthogonal direct sum qH⊕ (1− q)H,
with q as in Proposition 1.7. The representation π is essential on qH and 0 on (1− q)H. Thus,
Lemma 1.14 gives a representation M(A) → B(qH), which extends to 0 on (1 − q)H, thus
giving the desired representation π : M(A)→ B(H). By construction π(1) = q.

We now consider multiplier algebras for closed subalgebras of Lip(D), and in particular for
differentiable algebras of spectral triples.

Proposition 1.17. Let D : DomD → EB be a self-adjoint regular operator and A ⊂ Lip(D)
a closed subalgebra with bounded approximate unit and assume [AEB] = EB. The multiplier
algebra M(A) is cb-isomorphic to the algebra{

T ∈M(A) : T DomD ⊂ DomD, TA, AT ⊂ A, [D, T ] ∈ End∗B(EB)
}
, (1.8)

topologised by the representation given in Equation (1.2). The inclusion M(A) → M(A) is
spectral invariant.

Proof. The algebra defined in (1.8) is clearly a subalgebra of M(A) contained in the idealiser
of πD(A) inside EndB(E ⊕ E). The other inclusion can be seen by writing(

T11 T12

T21 T22

)(
a 0

[D, a] a

)
=

(
T11a+ T12[D, a] T12a
T21a+ T22[D, a] T22a

)
,
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and observing that for this to be an element of A for all a ∈ A, T12a = 0 for all a ∈ A and
hence T12 = 0 since A is essential. It then follows that T11a = T22a for all a ∈ A which implies
T11 = T22, again because A is essential. Writing T11 = T , one again derives from essentiality of
A that T must preserve the domain of D. Finally we get the equation [D, Ta] = T21a+T [D, a],
which implies that T21 = [D, T ] which is therefore bounded. Thus the algebra (1.8) contains
the idealiser of πD(A), and is therefore equal to it.

Since [AEB] = EB, we have πD(1) = 1, using Lemma 1.14, and the representation πD is
essential. An argument similar to that given in the proof of Lemma 1.14 shows that the strict
closure M(A) maps into End∗B(E⊕E), whereas the argument given in Lemma 1.15 shows that
the idealiser of πD(A) in End∗B(E ⊕ E) coincides with the image of this strict closure. The
norm on the strict closure is given by Equation (1.7), and the equivalence of norms given there
proves that M(A) is cb-isomorphic to the idealiser (1.8). Spectral invariance of the inclusion
M(A) ⊂ M(A) now follows from spectral invariance of the inclusion Lip(D) ⊂ End∗B(EB), cf.
[42, Thm B.3].

In [43] it was shown that any operator algebra A admits a canonical unitisation. In this
paper, our main examples are closed subalgebras A ⊂ Lip(D), where D is a self-adjoint regular
operator on a C∗-module EB with essential A representation. In this setting we can construct
unitisations concretely.

Definition 1.18. Let D : DomD→ EB be a self-adjoint regular operator and A ⊂ Lip(D) a
differentiable algebra with bounded approximate unit and C∗-closure A. If [AEB] = EB, the
unitisation A+ ⊂M(A) ⊂ Lip(D) is the algebra generated by A and πD(1) = 1.

Remark 1.19. The requirement that [AEB] = EB is not a severe restriction. By [34, Lemma
2.8] every class in KK(A,B) can be represented by a bounded Kasparov module (A,EB, F )
with [AEB] = EB. Combining this with Kucerovsky’s lifting results [37, Lemma 1.4, Lemma
2.2], every class in KK(A,B) can be represented by an unbounded module (A,EB,D) with
[AEB] = EB. Thus, the only serious hypothesis in Definition 1.18 is that A have a bounded
approximate unit. Unless otherwise stated,

from now on we assume that all unbounded Kasparov modules are essential.

Unbounded multipliers of C∗-algebras were introduced by Baaj ([3]) and Woronowicz ([51]).
In the differentiable setting, the definition of unbounded multiplier requires a bit more care,
because of the absence of the strong relation between norm and spectrum.

Definition 1.20. Let A be a differentiable algebra. A linear map c : Dom c ⊂ A→ A, defined
on the dense right ideal Dom c ⊂ A is a multiplier if c(ab) = (ca)b for all a ∈ Dom c and b ∈ A.
The operator c is a symmetric unbounded multiplier if:
1) c is closed;
2) for all a, b ∈ Dom c we have (ca)∗b = a∗(cb);
and c is self-adjoint if
3) c± i are surjective and (c± i)−1 ∈M(A).
The multiplier c is positive if for all a ∈ Dom c we have (ca)∗a ≥ 0 in A, the C∗-closure of A.

The spectral invariance of the inclusion M(A)→M(A) (cf. Proposition 1.17) ensures that some
of the usual properties of positive and self-adjoint multipliers remain valid in the differentiable
context. As a first consequence of the inclusion M(A)→M(A), the resolvents (c±i)−1 ∈M(A)
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define elements in the C∗-multiplier algebra M(A). Hence c defines a self-adjoint multiplier on
the C∗-algebra A in the usual sense, with Dom c = Im (c± i)−1 ⊂ A.

Lemma 1.21. Let c : Dom c→ A be a self-adjoint multiplier. For all λ ∈ C \R, the operators
(c± λ) : Dom c→ A are bijective and (c± λ)−1 ∈M(A). Moreover if c is positive then for all
λ ∈ C \ [0,∞), the operators c− λ : Dom c→ A are bijective and (c− λ)−1 ∈M(A).

Proof. The operators c±λ are bijective in the C∗-closure A, and thus (c±λ)(c± i)−1 ∈M(A)
are invertible. Spectral invariance then tells us that g = (c± λ)(c± i)−1 is invertible in M(A),
whence c± λ : Dom c→ A is bijective. The inverse satisfies the equation

g−1 = (c± i)(c± λ)−1 = 1∓ (λ− i)(c± λ)−1,

in M(A), and since both 1, g−1 ∈ M(A), it follows that (c ± λ)−1 ∈ M(A). The positive case
is proved similarly.

If there is an orthogonal decomposition EB = [π(A)EB]⊕ [π(A)EB]⊥ (which is always the case
for Hilbert spaces) we can extend the self-adjoint multiplier to a self-adjoint operator on EB
by defining c([π(A)EB]⊥) = 0. We denote this extension to EB by c as well. It is the affiliated
operator from [3, 51]. In case A has a bounded approximate unit, condition 3) of Definition
1.20 can be weakened to the requirement that c ± i have dense range and (c ± i)−1 are norm
bounded, as we now show.

Lemma 1.22. Let A be a differentiable algebra with bounded approximate unit. Then any
multiplier c : Dom c→ A satisfying (ca)∗b = a∗cb for all a, b ∈ Dom c is closable.

Proof. Since A has a bounded approximate unit, the norm on A is equivalent to the norm
‖a‖op := sup‖a‖≤1 ‖ab‖ by Lemma 1.12 . Let (an) be a sequence in Dom c with an → 0 and
can → b. Since ‖(can)‖ = ‖(can)∗‖ and c is symmetric, for arbitrary a ∈ Dom c, we get

b∗a = lim
n→∞

(can)∗a = lim
n→∞

a∗n(ca) = 0.

From this it follows that ‖b∗‖op = 0, and therefore ‖b∗‖ = 0 so ‖b‖ = 0.

Corollary 1.23. Let A be a differentiable algebra with bounded approximate unit and let c be
a symmetric multiplier such that (c± i)−1 are densely defined and bounded. Then the closure
of c is a self-adjoint unbounded multiplier with Dom c = Im (c± i)−1.

In the context of separable C∗-algebras, the notion of unbounded multiplier, approximate unit,
and strictly positive element are closely related. For a differentiable algebra A, an element
h ∈ A is strictly positive if it has positive spectrum and hA is dense in A (for the topology
coming from πD). Note that this implies that h is strictly positive in the C∗-algebra A.

A more refined notion of unbounded multiplier for differentiable algebras which is compatible
with strict positivity is given in the next definition. The core idea is abstracted from [27,
Definition 10.2.8], which gives a commutator approach to properness of the metric. Examples
illustrating the connection are presented in Section 2.
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Definition 1.24. Let (A, EB,D) be an unbounded Kasparov module, and c a self-adjoint
multiplier of A. Then c is a complete multiplier if:
1) (c± i)−1 ∈ A;
2) Im (D± i)−1(c± i)−1 = Im (c± i)−1(D± i)−1 ⊂ EB;
3) [D, c] is bounded on the set Im (D± i)−1(c± i)−1.

It should be noted that the condition in 2) is natural when dealing with commutators of
unbounded operators. The sets mentioned are the natural domain for the operators Dc and
cD, as c maps Im (c± i)−1(D± i)−1 into DomD and similarly for D.

The following theorem provides the relationships between unbounded complete multipliers,
approximate units, and strictly positive elements for differentiable algebras, and gives us our
strong notion of completeness. This strong completeness is analogous to that of a geodesically
complete Riemannian manifold, and is much stronger than completeness of a general complete
metric space. We exemplify these statements in Section 2.

Theorem 1.25. Let D : DomD ⊂ EB → EB be self-adjoint and regular and A ⊂ Lip(D) a
differentiable algebra such that [AEB] = EB. Then the following are equivalent:
1) there exists an increasing commutative approximate unit (un) ⊂ A with ‖[D, un]‖∞ → 0;
2) there exists a positive self-adjoint complete multiplier c for A;
3) there is a strictly positive element h ∈ A with Im (D± i)−1h = Imh(D± i)−1, and constant
C > 0 with ±i[D, h] ≤ Ch2.

Proof. We show that 1)⇔ 2) and 2)⇔ 3).

We assume 1), so that there is an increasing commutative approximate unit (un) ⊂ A with
[D, un] → 0 in norm. Suppose without loss of generality that there exists 0 < ε < 1 such
that ‖[D, un]‖∞ < ε2n. Moreover, let {ai}i∈N be a subset of A whose linear span is dense, and
assume without loss of generality that for 1 ≤ i ≤ n we have ‖(un+1 − un)ai‖ < ε2n. Write
dn := un+1 − un ≥ 0 and define

c =

∞∑
n=1

ε−ndn,

which is a sum of positive elements of A. Then c is densely defined, since for fixed ai and
i < k < ` we have

‖
∑̀
n=k

ε−ndnai‖ ≤
∑̀
n=k

ε−n‖(un+1 − un)ai‖ ≤
∑̀
n=k

εn,

which goes to zero as k → ∞ and therefore cai ∈ A. Moreover, c is obviously symmetric,
so by Corollary 1.23 it suffices to show that the resolvents (c ± i)−1 are densely defined and
bounded. Consider the truncations ck :=

∑k
n=1 ε

−ndn ∈ A. By Proposition 1.17, M(A) is
spectral invariant in M(A), so as the operators ck ± i ∈ M(A) are invertible in M(A), the
resolvents (ck ± i)−1 are elements of M(A). Subsequently estimate

‖[D, ck]‖∞ =
∥∥ k∑
n=1

ε−n([D, un+1]− [D, un])
∥∥
∞ ≤

k∑
n=1

ε−n(‖[D, un+1]‖∞ + ‖[D, un]‖∞)

≤ 2

k∑
n=1

εn,
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from which we deduce that supk ‖[D, ck]‖∞ <∞. Therefore

sup
k
‖[D, (ck ± i)−1]‖∞ = sup

k
‖(ck ± i)−1[D, ck](ck ± i)−1‖∞ ≤ sup

k
‖[D, ck]‖∞ <∞,

so (ck ± i)−1 is a bounded sequence in M(A). Moreover, for the elements ai we have

((c` ± i)−1 − (cm ± i)−1)ai = (c` ± i)−1(cm ± i)−1
m∑
n=`

ε−ndnai,

so the sequence is strictly Cauchy, with limit (c ± i)−1 ∈ M(A), whence these operators are
densely defined and bounded. Hence the closure of c is a positive, self-adjoint unbounded
multiplier on A.

Now we show that properties 1)-3) of Definition 1.24 hold true for c, starting with points 2) and
3). For 2), we need to show that the domain equality Im (c±i)−1(D±i)−1 = Im (D±i)−1(c±i)−1

is true. Observe that for each y ∈ EB, the vector (c± i)−1(D± i)−1y is a limit

lim
k→∞

(ck ± i)−1(D± i)−1y.

Writing

(ck ± i)−1(D± i)−1 = (D± i)−1(ck ± i)−1 + (D± i)−1(ck ± i)−1[D, ck](ck ± i)−1(D± i)−1,

and recalling that the sequence [D, ck](ck ± i)−1(D ± i)−1 is uniformly bounded in operator
norm, it follows that

lim
k→∞

(ck ± i)−1[D, ck](ck ± i)−1(D± i)−1y = (c± i)−1[D, c](c± i)−1(D± i)−1y ∈ Im (c± i)−1.

Thus Im (c± i)−1(D± i)−1 ⊂ Im (D± i)−1(c± i)−1. The other inclusion is proved in the same
way by writing

(D± i)−1(ck ± i)−1 = (ck ± i)−1(D± i)−1 + (ck ± i)−1(D± i)−1[D, ck](ck ± i)−1(D± i)−1.

To prove that point 3) of Definition 1.24 holds, observe that the commutator [D, c], defined on
Im (c± i)−1(D± i)−1, is bounded because it is the strong limit of the operators [D, ck] on this
subset, and supk ‖[D, ck]‖∞ is bounded.

Lastly, for 1), we need to show that (c± i)−1 ∈ A. Since these are elements of M(A), we have
a(c ± i)−1, (c ± i)−1a ∈ A for a ∈ A and (c ± i)−1 ∈ Lip(D) by Proposition 1.17. We claim
that it suffices to show that (c± i)−1 ∈ A. For then un(c± i)−1 → (c± i)−1 in C∗-norm and
and since [D, c] is bounded and [D, un]→ 0 we find

[D, un(c± i)−1] = un[D, (c± i)−1] + [D, un](c± i)−1

= −un(c± i)−1[D, c](c± i)−1 + [D, un](c± i)−1 → [D, (c± i)−1].

Hence πD(un(c± i)−1)→ πD((c± i)−1) and since un(c± i)−1 ∈ A, it follows that (c± i)−1 ∈ A.

To prove that (c ± i)−1 ∈ A, we restrict to the commutative C∗-subalgebra B ⊂ A generated
by the un, so that by Gelfand theory there is a locally compact Hausdorff space X with
B = C∗({un}) ∼= C0(X) via the Gelfand transform. Every closed unbounded multiplier is
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determined by its Gelfand transform [50, Thm 2.1,2.3]. Under this identification, we wish to
show that (c± i)−1 ∈ C0(X) ⊂ A. To this end, fix t ∈ (0, 1) and consider the sets

Xn := {x ∈ X : un(x) ≥ t}.

The Xn form an increasing sequence of compact sets such that X = ∪Xn. We claim that∑
ε−ndn(x) ≥ (1− t)ε−k, for x ∈ X \Xk,

which implies that (c± i)−1 ∈ C0(X). For such x ∈ X \Xk, and any m ≥ k it holds that

∞∑
n=0

ε−ndn(x) ≥
∞∑
n=k

ε−ndn(x) =
m∑
n=k

ε−ndn(x) +
∑
n>m

ε−ndn(x)

≥
m∑
n=k

ε−kdn(x) +
∑
n>m

ε−ndn(x)

= ε−k(um+1 − uk)(x) +
∑
n>m

ε−ndn(x)

≥ ε−k(um+1(x)− t) +
∑
n>m

ε−ndn(x),

and since um+1(x)→ 1 and
∑

n>m ε
−ndn(x)→ 0, the estimate follows. This proves 1) ⇒ 2).

Conversely, let c be an unbounded positive complete multiplier for A. Let fn : R→ R be given
by fn(x) = e−x/n. For y ∈ DomD

[D, fn(c)]y =

∫ 1

0

d

ds

(
e−c(1−s)/nDe−cs/ny

)
ds = − 1

n

∫ 1

0
e−c(1−s)/n[D, c]e−cs/ny ds,

and since both sides are bounded, this equality extends to all of EB. Moreover

‖[D, fn(c)]‖∞ ≤
1

n
‖[D, c]‖∞,

so that [D, fn(c)] → 0 in norm as n → ∞. Finally we need to see that the fn(c) define an
approximate unit. The density of (c± i)−1A in A says that the inclusion of the commutative
subalgebra C generated by (c± i)−1 in A is essential. Since (fn(c)) is obviously an approximate
unit for C, we are done.

To see that 2) and 3) are equivalent, let c be an unbounded multiplier on A and set h :=
(1 + c)−1, which is positive with dense range in A. On the other hand, if h ∈ A is positive
with dense range, then c := h−1 is densely defined on Domh−1 = Imh. The domain condition
follows from the fact that (h−1 ± i)−1 = h(1± ih)−1, and 1± ih ∈M(A) is invertible, so that
(1± ih)−1 maps DomD = Im (D± i)−1 bijectively onto itself. Then

Imh(1± ih)−1(D± i)−1 = Imh(D± i)−1 = Im (D± i)−1h = Im (D± i)−1h(1± ih)−1.

From the further assumption that i[D, h] ≤ Ch2, it follows that for e ∈ Imh(D± i)−1h

〈i[D, h−1]e, e〉 = −〈h−1i[D, h]h−1e, e〉 = 〈i[D, h]h−1e, h−1e〉 ≤ C〈he, h−1e〉 = C〈e, e〉.

Taking a sequence hyn → y ∈ EB, boundedness on the whole of Imh(D± i)−1 follows.

From now on, in addition to being self-adjoint and even, in view of Theorem 1.25 we assume
all approximate units for differentiable algebras to be commutative.
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2 Metric completeness via approximate units

We recall that if (A,H,D) is a unital spectral triple, then the formula

d(φ, ψ) := sup{|φ(a)− ψ(a)| : ‖[D, a]‖ ≤ 1}, φ, ψ ∈ S(A) (2.1)

defines a metric on the state space S(A) of A provided that the set

B := {[a] ∈ A/C1 : ‖[D, a]‖ ≤ 1} (2.2)

is bounded. In the non-unital case we do not need to consider the quotient Banach space A/C1
in Equation (2.2), just A, and again the same conditions guarantee that we obtain a bounded
metric. It is known that in the unital case the resulting metric topology agrees with the weak∗

topology provided that B is pre-compact, [39, 47]. We refer to the formula in Equation (2.1)
as Connes’ formula.

One would like to define unbounded metrics so that they restrict to bounded metrics on each
weak∗ compact subset of S(A), but it turns out that this is too strong. Latrémolière identifies
a class of tame compact subsets for which this is possible, [40, Definition 2.28], and shows by
example that not all compact subset of S(A) are tame. As well as the difficulty in discussing
the weak∗-topology, examples show that there is also the need to consider extended metrics,
so that points can be at infinite distance.

Our initial results concerning completeness of metric spaces rely on a weaker notion of ap-
proximate unit than we needed earlier, though we will see below how these various notions are
related. For now, given a (symmetric) spectral triple (A,H,D), we say that (un) ⊂ A ⊂ A is
an adequate approximate unit if (un) is a sequential approximate unit for A (in its C∗-norm
topology) and sup ‖[D∗, un]‖∞ < ∞. This is a weaker notion than a bounded approximate
unit for A.

Proposition 2.1. Let (X, d) be a metric space, A = Lip0(X) be the algebra of Lipschitz
functions vanishing at infinity and A = C0(X). Let (A,H,D) be a symmetric spectral triple
such that for all a ∈ Lip0(X)

C1‖a‖Lip,d ≤ ‖[D∗, a]‖∞ ≤ C2‖a‖Lip,d

where 0 < C1 ≤ C2 <∞ are constants and ‖a‖Lip,d is the Lipschitz seminorm of a ∈ Lip0(X).
If A has an adequate approximate unit, then (X, d) is metrically complete.

Remark 2.2. 1) The condition of the theorem implies that Connes’ formula, Equation (2.1),
defines a metric dC which is bi-Lipschitz equivalent to d.
2) The algebra Lip0(X) is typically not separable in the Lipschitz norm, [49], but our results
also apply to closed separable subalgebras of Lip0(X), such as our differentiable algebras, cf.
Definition 1.2. More examples are presented below.

Proof. We give the proof in the self-adjoint case, as the symmetric case is the same. We will
prove that if (X, d) is not complete then for any sequential approximate unit (uk) ⊂ Lip0(X) for
C0(X), the sequence ‖[D, uk]‖∞ is unbounded, and so (uk) can not be an adequate approximate
unit. Since the metric d is bi-Lipschitz equivalent to Connes’ metric, for any y, z ∈ X we have

|uk(y)− uk(z)| ≤ C‖[D, uk]‖∞ d(y, z)
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for a constant C > 0. Now let x be in the metric completion X of X, and x 6∈ X. Let
1/2 > ε > 0, fix y ∈ B1/n(x) ∩ X and let k be large enough so that uk(y) > 1 − ε. This is
possible since uk is an approximate unit. Now let z ∈ B1/n(x) ∩ X be such that uk(z) < ε,
possible since uk vanishes at infinity. Then for this choice of k and y, z ∈ B1/n(x) ∩X

1− 2ε < |uk(y)− uk(z)| ≤ C‖[D, uk]‖∞ d(y, z) <
2C

n
‖[D, uk]‖∞.

Hence we see that for any n there is a k = k(n) such that

n(1− 2ε)

2C
< ‖[D, uk]‖∞.

Since this is true for any approximate unit (uk) ⊂ Lip0(X), we are done.

Corollary 2.3. Let (M, g) be a Riemannian spinc manifold, A = C0(M), A = Lip0(M),
and (A,L2(M,S),D) the Dirac spectral triple of the spinc structure. If A has an adequate
approximate unit then the Riemannian manifold (M, g) is geodesically complete, and D is
self-adjoint.

Proof. The point here is that (M, g) need not, a priori, be complete, in particular it may be
the interior of a manifold with boundary. First we recall that by [17], the norm ‖[D∗, f ]‖∞ is
equal to the Lipschitz norm of f (with respect to the geodesic distance) for all f ∈ Lip0(M).
Thus we can apply Proposition 2.1 to obtain the first statement. In particular if such an
approximate unit exists, (M, g) is metrically complete, and so geodesically complete by the
Hopf-Rinow theorem.

The self-adjointness of the Dirac operator now follows as in [27, Prop 10.2.10].

In this last result we managed to deduce self-adjointness of a (potentially) symmetric operator
using just an adequate approximate unit, whereas Corollary 1.11 requires the existence of an
honest bounded approximate unit for the Lipschitz topology. This is essentially due to the
special form of the geodesic metric on a Riemannian manifold. The Hopf-Rinow theorem says
that completeness implies that ‘topological infinity’ is at infinite distance.

The issues are perhaps best seen as follows. For any metric space (X, d), we obtain a new
metric space of bounded diameter by taking the new metric d̃ = d/(1+d). Then one can check
that (X, d) is complete if and only if (X, d̃) is complete. The identity map on X is typically
not a bi-Lipschitz map between these metric spaces, and the property of having an adequate
approximate unit whose Lipschitz constants go to zero is not preserved by this operation.

We collect a few examples from the world of metric spaces about approximate units for Lipschitz
algebras and differentiable algebras. The first result is rather negative.

Lemma 2.4. Let (X, d) be a finite-diameter, noncompact, complete metric space. Then there
is no adequate approximate unit in Lip0(X) whose Lipschitz constants go to zero.

Proof. Let (un) be an approximate unit in Lip0(X). Since (un) is a norm approximate unit,
for any x ∈ X and 1/2 > δ > 0 we can find N such that uN (x) > 1 − δ. Since uN vanishes
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at infinity we can find y ∈ X such that uN (y) < δ. Then uN (x) − uN (y) > 1 − 2δ, and as
d(x, y) ≤ diam(X) we find that

uN (x)− uN (y)

d(x, y)
>

1− 2δ

d(x, y)
≥ 1− 2δ

diam(X)
.

Hence the Lipschitz norm of the uN ’s is bounded below.

Hence finite diameter complete spaces do not have spectral triples which both recover the
metric and satisfy the conditions of Theorem 1.25. Also observe that we did not ask for
an approximate unit (un) for Lip0(X) in the Lipschitz topology with ‖un‖Lip,d → 0. These
typically do not exist.

Lemma 2.5. Let (un) ⊂ C∞c (R) be a differentiable approximate unit for the supremum norm
topology on C0(R) such that the Lipschitz constants go to zero as n → ∞ (these exist). Then
(un) is not an approximate unit for the Lipschitz topology on Lip0(R).

Proof. Let f(x) = sin(x3)/(1 + x2) ∈ Lip0(R). The mean value theorem says that given
x, y ∈ R there is some w between x and y such that

|(f − unf)(x)− (f − unf)(y)| = |(f−unf)′(w)|d(x, y) = |(1−un(w))f ′(w)−u′n(w)f(w)|d(x, y).

Since the Lipschitz constants of the un converge to zero, and u′n → 0 uniformly, we see that
u′nf → 0 uniformly. As the derivative of f is f ′(x) = 3x2 cos(x3)/(1+x2)−2x sin(x3)/(1+x2)2,
and un vanishes at infinity for each n, we see that |(1 − un(w))f ′(w)| does not go to zero
uniformly.

Remark 2.6. The function f(x) = sin(x3)/(1 + x2) also appears in [14, p 43], to demonstrate
that derivatives must be controlled to handle summability in the nonunital setting.

Despite this lack of success, even with our strongest completeness condition, there are positive
results, and these demonstrate the need to take smaller algebras than Lip0(X). Recall, [20],
the pointwise Lipschitz constant of a function f at a non-isolated point x ∈ X defined by

Lip(f)(x) := lim sup
y→x, y 6=x

|f(x)− f(y)|
d(x, y)

.

If x is isolated we set Lip(f)(x) = 0. Then we set

L00(X) = {f ∈ Lip(X) : f and Lip(f) vanish at infinity}.

The function Lip(f) need not be continuous, but we can still ask for it to be small outside
a compact set. The space L00(X) is not always a Banach space in its natural norm ‖f‖∞ +
‖Lip(f)‖∞, but we can take its completion, which is a subspace of C0(X). We denote this
Banach space by Lip00(X).

Lemma 2.7. Let (X, d) be a metric space and (un) ⊂ Lip00(X) an adequate approximate unit
such that ‖un‖Lip → 0 as n→∞. Then (un) is an approximate identity for Lip00(X).
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Proof. We just need to show that for f ∈ Lip00(X) we have ‖f − unf‖Lip → 0. That is, we
need to show that

sup
x 6=y

∣∣∣∣(f − unf)(x)− (f − unf)(y)

d(x, y)

∣∣∣∣→ 0 as n→∞,

which is to say, we need to show that

sup
x 6=y

∣∣∣∣(un(x)− un(y))f(x)− (f(y)− f(x))(un(y)− 1)

d(x, y)

∣∣∣∣
≤ ‖un‖Lip ‖f‖∞ + sup

y∈X
|Lip(f)(y)(un(y)− 1)| → 0 as n→∞,

the second term going to zero since Lip(f) vanishes at infinity.

The last two lemmas show why we need to be able to restrict to closed subalgebras of Lip(D)
which may be smaller than Lip(D) ∩ A, but which are still norm dense in A. For general
metric spaces it is not clear that one can always find suitable algebras which have adequate
approximate units. When the metric is suitably infinite and the metric space nice enough, we
can find approximate units for Lip00(X). This result resembles the equivalences of Theorem
1.25, and captures the idea that topological infinity is at infinite distance.

Proposition 2.8. Let (X, d) be a metric space and x0 ∈ X such that the function x 7→ d(x0, x)
is proper. Then we obtain an approximate unit for Lip00(X) whose Lipschitz constants go to
zero. Hence (X, d) is complete.

Proof. Fix x0 ∈ X as in the statement, and let

KN = {x ∈ X : d(x, x0) ≤ N}.

Then the KN form an increasing sequence of compact sets whose union is X. Define functions
on X by

uN (x) =


1 x ∈ KN

N
N−1

(
1− d(x0,x)

N2

)
x ∈ KN2 \KN

0 x 6∈ KN2

.

Checking the various cases shows that each uN ∈ Lip00(X) is a bounded Lipschitz function
whose Lipschitz constant is bounded by 1/N(N−1), and so ‖uN‖Lip → 0 as N →∞. Moreover
it is clear that (uN ) is a sup norm approximate unit for C0(X), and so by Proposition 2.1 and
Lemma 2.7 we are done.

For Rn, and more generally geodesically complete manifolds M , we can always construct an
approximate unit as in Proposition 2.8. As a consequence, we can construct a bounded approx-
imate unit for Lip00(M), and then Corollary 1.11 tells us directly that Dirac-type operators
on M are self-adjoint.

Given a spectral metric space, we can still deduce the completeness of the state space S(A)
from the existence of an adequate approximate unit, as was first shown by Latrémolière [39]
for the case of bounded metrics. As the context is somewhat different, we give the argument.
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Proposition 2.9. Let (A,H,D) be a symmetric spectral triple for which Connes’ formula

d(σ, τ) := sup{|σ(a)− τ(a)| : ‖[D∗, a]‖∞ ≤ 1},

defines an extended metric on the state space S(A) (so d may take the value ∞). If A has an
adequate approximate unit then (S(A), d) is complete.

Proof. Let (un) be an adequate approximate unit. Let σk be a sequence of states that is
Cauchy for the Connes metric, i.e. for k < `

sup{|σk(a)− σ`(a)| : ‖[D∗, a]‖∞ ≤ 1} → 0,

as k → ∞. Then σ(a) := limk σk(a), for a ∈ A, is a well defined map A → C. It is positive
since for positive a, σ(a) is a limit of positive numbers. It remains to show that σ has norm
1. To this end, let a ∈ A be in the unit ball for the C∗-norm. Then |σk(a)| ≤ 1, so |σ(a)| ≤ 1,
showing that ‖σ‖ ≤ 1, and thus σ extends to all of A. Now since un is an approximate unit,
we have σk(un) → 1 for fixed k and n → ∞. Since [D∗, un] is bounded, we may assume that
‖[D∗, un]‖∞ ≤ C for all n and some positive constant C. This means that for k < `

sup
n
|σk(un)− σ`(un)| → 0,

as k →∞. Hence there exist ε > 0 and k sufficiently large such that for all n

|σ(un)− σk(un)| < ε/2.

Now choose n large enough such that ‖σk(un)− 1‖ < ε/2. Then

|σ(un)− 1| ≤ |σ(un)− σk(un)|+ |σk(un)− 1| ≤ ε.

This shows that σ(un)→ 1, and in particular that ‖σ‖ = 1 and σ ∈ S(A).

In particular, the presence of an adequate approximate unit ensures that the metric topology
limit of states is a state, and so such a sequence is a tight set, [40, Definition 2.2]. It is likely
that our approach to completeness can further complement Latrémolière’s approach to locally
compact quantum metric spaces.

Finally, let us consider what can be said about closed subalgebras of Lip(D) for a general
(symmetric) spectral triple (A,H,D).

Proposition 2.10. Let (A,H,D) be a symmetric spectral triple. Suppose that A has an
adequate approximate unit (un) ⊂ A such that [D∗, un] → 0 in operator norm. Then (un) is
an approximate unit for A if and only if (un) is an operator norm topology approximate unit
for the C∗-algebra generated by A and the commutators [D∗, a], a ∈ A.

Proof. This just boils down to asking when [D∗, aun − a] → 0 in operator norm. Using the
Leibniz rule,

[D∗, aun − a] = a[D∗, un] + [D∗, a](un − 1),

we obtain the result immediately.
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3 Approximate units and connections on operator modules

Having demonstrated the usefulness of approximate identities in differentiable algebras, we
now refine our concepts to address the existence of connections on modules and the unbounded
Kasparov product. Using connections to identify explicit representatives of Kasparov products
has been used in several contexts, [13, 32, 41, 42], but doing this in a naive algebraic way leads
to problems, as shown in [30, 48].

3.1 Projective modules

For an operator algebra B with bounded approximate unit vλ, the right B-module HB := H⊗̃B
is called the standard rigged module, [8]. For notational convenience we write Ẑ := Z \ {0}.
The module HB can be concretely defined using an isometric representation π : B→ B(H) as
the space of column vectors{

(bi)i∈Ẑ : bi ∈ B,
∑
i∈Ẑ

π(bi)
∗π(bi) <∞

}
,

where the sum converges in norm. From now on we fix a Z2-graded C∗-algebra B and an
essential unbounded (B,C) Kasparov module (B, FC ,D) with γ the Z2-grading operator1. We
fix the representation

πD(b) :=

(
b 0

[D, b] γ(b)

)
∈ End∗C(F ⊕ F ), b ∈ B,

and we assume B to have a bounded approximate unit. The graded operator B+-module
HB+ is the graded Haagerup tensor product of the graded Hilbert space `2(Ẑ) and the graded
algebra B+. Thus the module HB+ is naturally Z2-graded via

Γ(bi)i∈Ẑ := (sign(i)γ(bi))i∈Ẑ, (3.1)

and defining the self-adjoint unitary

ε : HB+ → HB+ , ε(bi)i∈Ẑ = (sign(i)bi)i∈Ẑ,

the grading operator (3.1) on HB+ decomposes as Γ := εdiag(γB+) = diag(γB+)ε. This allows
us to write the representation presenting HB+ as a concrete operator B+-module as

(bi)i∈Ẑ 7→
(

bi 0
sign(i)[D, bi]B+ sign(i)γB+(bi)

)
i∈Ẑ

=

(
1 0
0 ε

)(
bi 0

[D, bi]B+ γB+(bi)

)
i∈Ẑ

.

We will always consider HB+ where B+ is the unitisation of the differentiable algebra B (cf.
Definition 1.18).

The compact operators K(HB+) on HB+ are defined to be the Haagerup tensor product K⊗̃B+,
as defined in Equation (1.4). The algebra K(HB+) has a bounded approximate unit

χn =
∑

1≤|i|≤n

|ei〉〈ei|,

1We recall that if C is non-trivially Z2-graded then γ is not adjointable as an operator on FC
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where ei is the standard basis of HB+ . In [32, 42] it was shown that the standard B-valued inner
product on the module HB+ actually takes values in B+. Then one defines the adjointable
operators End∗B+(HB+) as the algebra of completely bounded maps T : HB+ → HB+ that
admit an adjoint with respect to the standard inner product, so that

〈Te, f〉 = 〈e, T ∗f〉. (3.2)

In [32] the class of submodules of HB+ defined by projection operators in End∗B+(HB+) are
called operator ∗-modules, and were classified by Kaad in [29] for the case of commutative
B. The class of stably rigged modules discussed in [42] is essentially the same. In [13], this
class is enlarged by incorporating countable direct sums of projections in End∗B+(HB+). The
present paper further broadens the class of modules that can be used to construct the Kasparov
product, refining the approximate unit techniques of [42].

In [13] the notion of unbounded projection operator was introduced, in order to deal with the
differential structure on the C∗-module arising from the Hopf fibration. In this section we
develop the theory of such modules beyond the case of direct sums of bounded projections.
This will be put to use to demonstrate existence of connections on projective operator modules.

Definition 3.1 (cf. [13]). Let B be an operator ∗-algebra. A projective operator module is an
inner product operator module E over B that is isometrically unitarily isomorphic to pDom p
for some possibly unbounded even projection in HB+ , such that the canonical basis vectors
{ei}i∈Ẑ are contained in Dom p. Here E is regarded as a B+-module in the usual way.

Note that a projective operator module E over B admits a canonical C∗-completion, coming
from the inner product. Equivalently, this completion can be obtained as the Haagerup tensor
product E⊗̃BB over the completely contractive inclusion B→ B [13, Corollary 2.18]. We now
characterise when a given C∗-module E over B admits a projective B-submodule. The algebra
of finite rank operators on E is denoted FinB(E). By a (homogenous) frame for E we mean
a sequence (xi)i∈Ẑ with the property that

γE(xi) =

{
xi if i > 0
−xi if i < 0

, and that χn =
∑

1≤|i|≤n

|xi〉〈xi| ∈ FinB(E) (3.3)

is an approximate unit for FinB(E) with ‖χn‖End∗B(E) ≤ 1 (that is (χn) is contractive). We
refer to χn as the frame approximate unit for (xi). All frames will be homogenous unless stated
otherwise, so that γE(xi) = sign(i)xi.

Proposition 3.2. Let B be a differentiable algebra and EB a graded C∗-module over the C∗-
closure B. Then EB is the completion of a projective operator B-module EB ⊂ EB if and only
if there is a frame (xi)i∈Ẑ such that each of the column vectors vj = (〈xi, xj〉)i∈Ẑ has finite
norm in HB+. We call such a frame (xi), and the associated approximate unit χn, column
finite.

Proof. ⇒ When EB is projective we may assume that EB ⊂ HB+ and {ei} is the canonical
basis of HB+ , then setting xi = pei we observe that

lim
k→∞

〈
pei,

∑
1≤|j|≤k

pek〈pek, pej〉
〉

= lim
k→∞

〈
pei,

∑
1≤|j|≤k

ek〈ek, pej〉
〉
,
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is norm convergent since pei and pej are in HB+ . So χn :=
∑

1≤|i|≤n |pei〉〈pei| is a column
finite approximate unit for FinB(E).
⇐ We show that the matrix p = (〈xi, xj〉)ij is an even projection in HB+ with domain

Dom p :=
{

(bi)i∈Ẑ ∈ HB+ : ∀i ∈ Ẑ lim
k→∞

( ∑
1≤|j|≤k

〈xi, xj〉bj
)
∈ B

}
.

It is clear that p is densely defined, as the canonical basis vectors ei ∈ HB+ lie in the domain
of p by column finiteness. Moreover p is closed. To see this, first denote by qi the projection
onto the submodule spanned by the basis vector ei. By column finiteness, qip ∈ End∗B+(HB+).
Now if HB+ 3 zn → z and pzn → h, then qipzn → qih and qipzn → qipz. Thus qipz = qih for
all i and pz = h ∈ HB+ so p is closed on its domain.

Next we show that the symmetric operator p is self-adjoint. Let z ∈ Dom p∗, i.e. there is
x ∈ HB+ such that for all w ∈ Dom p we have 〈pw, z〉 = 〈w, x〉. Since the basis vectors ei are
in the domain, we can compute

lim
n

∑
1≤|i|≤n

qipz = lim
n

∑
1≤|i|≤n

ei〈ei, qipz〉 = lim
n

∑
1≤|i|≤n

ei〈pei, z〉 = lim
n

∑
1≤|i|≤n

ei〈ei, x〉 = x.

This means that pz = x, so z ∈ Dom p and p is self-adjoint. Now define

EB := {e ∈ EB : (〈xi, e〉)i∈Ẑ ∈ Dom p}, (3.4)

and observe that xi ∈ EB by definition, so EB is dense in EB. The module EB is closed in HB+

because a convergent net eλ ∈ EB in particular converges in EB and therefore the limit must
be of the form (〈xi, e〉)i∈Ẑ.

Note that a column finite approximate unit is row finite as well, because of the relation between
the internal and external adjoint: (πD(〈xi, xj〉))∗ = UπD(〈xj , xi〉)U∗.

3.2 Connections and splittings

We refine the notion of a connection on a projective module defined in [13] by employing
approximate units. The main improvement over [13] is a new operator space topology on a
projective module EB, which is precisely the (weak) topology making the natural Grassmann
connection continuous. Completing in this topology yields a possibly larger module E∇. We
will prove that for bounded projections, the modules EB and E∇ are cb-isomorphic.

Recall from [13] the definition of the universal 1-forms Ω1(B,B) associated to a unital differ-
entiable algebra B, defined to be the kernel of the graded multiplication map

m : B⊗̃B→ B, b1 ⊗ b2 7→ γ(b1)b2.

In the nonunital case we use Ω1(B+,B+), so that the universal derivation

d : B 7→ Ω1(B+,B+), b 7→ 1⊗ b− γ(b)⊗ 1, (3.5)

is well defined. We will look at splittings of the universal exact sequence

0→ E⊗̃B+Ω1(B+,B+)→ E⊗̃CB
+ m−→ E → 0,
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that are compatible with the projective submodule EB ⊂ EB. Here m : E⊗̃CB
+ → E,

m(e⊗̃b) = γ(e)b is the graded multiplication map. We adapt the algebraic notion of splitting
to our setting.

Definition 3.3. A completely bounded, graded, B+-module map s : EB → E⊗̃CB
+ is a

splitting if m ◦ s coincides with the inclusion map EB → EB.

We can now prove the analogue of the Cuntz-Quillen characterisation of algebraic projectivity
[19, Proposition 8.1, Corollary 8.2] in the present analytic setting.

Proposition 3.4. Let (xi)i∈Ẑ be a column finite frame as in Equation (3.3), defining a pro-
jective B-submodule EB ⊂ EB. The map

s : EB → E⊗̃CB
+, e 7→

∑
i∈Ẑ

γ(xi)⊗ 〈xi, e〉, (3.6)

defines a contractive B+-linear splitting of the universal exact sequence.

Proof. First we show that for e ∈ EB, s(e) actually defines an element of E⊗̃CB
+. To this end

let ε > 0 and choose n,m such that∥∥∥ ∑
n≤|i|≤m

πD(〈xi, e〉)∗πD(〈xi, e〉)
∥∥∥ < ε,

which is possible because e ∈ EB. Now estimate∥∥∥ ∑
n≤|i|≤m

γ(xi)⊗ 〈xi, e〉
∥∥∥2

h
≤
∥∥∥ ∑
n≤|i|≤m

|xi〉〈xi|
∥∥∥
K(E)

∥∥∥ ∑
n≤|i|≤m

πD(〈xi, e〉)∗πD(〈xi, e〉)
∥∥∥
B+

≤
∥∥∥ ∑
n≤|i|≤m

πD(〈xi, e〉)∗πD(〈xi, e〉)
∥∥∥
B+

< ε,

which shows that the partial sums of the series defining s form a Cauchy sequence in the
Haagerup norm, cf. Equation (1.4). To show continuity of s we again estimate with the
Haagerup norm to see that

‖s(e)‖2h ≤ lim
k→∞

∥∥∥ ∑
1≤|i|≤k

|xi〉〈xi|
∥∥∥
K(E)

∥∥∥ ∑
1≤|i|≤k

πD(〈xi, e〉)∗πD(〈xi, e〉)
∥∥∥
B
≤ ‖e‖2E

and we are done.

Recall that a connection on a (graded, projective) operator module EB is a completely bounded
linear operator ∇ : EB → E⊗̃B+Ω1(B+,B+) satisfying the Leibniz rule

∇(eb) = ∇(e)b+ γ(e)⊗̃db,

where d is defined in Equation (3.5). Associated to a splitting s : EB → E⊗̃CB
+ is a universal

connection

∇s : EB → E⊗̃B+Ω1(B+,B+), e 7→ s(e)− γ(e)⊗ 1,
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which in the case of a column finite frame as in (3.3) takes the form

∇s(e) = s(e)− γ(e)⊗ 1 =
∑

γ(xi)⊗ 〈xi, e〉 − γ(e)⊗ 1 =
∑

γ(xi)⊗ 〈xi, e〉 − γ(xi〈xi, e〉)⊗ 1

=
∑

γ(xi)(1⊗ 〈xi, e〉 − γ(〈xi, e〉)⊗ 1) =
∑

γ(xi)⊗ d〈xi, e〉.

On the other hand, the frame (3.3) induces a stabilisation map

v : EB → HB+ e 7→ (〈xi, e〉)i∈Ẑ,

with adjoint

v∗ : HB+ → EB (bi)i∈Ẑ 7→
∑
i∈Ẑ

xibi,

and v∗v = IdE. The associated projection p = vv∗, is given by the matrix p = (〈xi, xj〉).
Recalling that the grading operator (3.1) on HB+ decomposes as Γ := εdiag(γB+), the module
HB+ admits a canonical connection εd : (bi) 7→ ε(dbi). The isometry v induces a connection
v∗εdv : E → E⊗̃B+Ω1(B+,B+), which we call the Grassmann connection. These considera-
tions prove the following lemma.

Lemma 3.5. Let (xi)i∈Ẑ be a (homogenous) frame and v : E → HB+ the associated isometry.
Then v is even, that is, v(γ(e)) = Γ(v(e)). If (xi)i∈Ẑ is column finite the connection ∇s : EB →
E⊗̃B+Ω1(B+,B+) associated to the splitting (3.6) equals v∗εdv.

In order to deal with unbounded projections we need to extend the techniques developed in [13]
and introduce a slightly different operator space structure. To this end we need to pass from
the universal derivation d to the represented derivation δD : b 7→ [D, b] coming from the defining
Kasparov module (B, FC ,D) for B. Recall, Remark 1.19, that we assume [BFC ] = FC and
define the unitisation B+ according to Definition 1.18. The closed linear span of represented
1-forms is the operator space

Ω1
D :=

{∑
i

π(bi)[D, π(b′i)] : bi, b′i ∈ B
}
⊂ End∗C(F ),

which is a (B,B)-bimodule. Using the universality of the derivation d, there is a completely
bounded (B,B)-bimodule map

jD : Ω1(B+,B+)→ Ω1
D,

uniquely determined by db 7→ [D, π(b)] since π(1) = 1, cf. [13, Prop 2.22]. In this way we
obtain a connection

∇D : EB
∇s−−→ E⊗̃BΩ1(B+,B+)

1⊗jD−−−→ E⊗̃BΩ1
D,

sometimes referred to as a represented connection. In the case of a free module, the tensor
product HB+⊗̃B+Ω1

D can be identified with the space HΩ1
D

:= H⊗̃Ω1
D of square summable

sequences of forms (ωj), where
∑

j ω
∗
jωj converges in End∗C(F ). Let (xi) be a column finite

frame for EB, and consider the space

E∇ :=
{
e ∈ EB : lim

n→∞

( ∑
1≤|k|≤n

〈xi, γ(xk)〉[D, 〈xk, e〉]
)
i∈Ẑ
∈ HΩ1

D

}
. (3.7)
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This space E∇ may be strictly larger than EB, and is an operator module in the representation

π∇(e) :=

(
v(e) 0

vv∗ε[D, v(e)] v(γ(e))

)
∈
⊕
i∈Ẑ

End∗C(F ⊕ F ), ‖e‖E∇ := ‖π∇(e)‖ (3.8)

where we have used slightly abusive notation for the entrywise graded commutator with D in
the indicated column vector. We will write γ for diag(γB+) and Dε for the self-adjoint regular
operator εdiag(D) on HB+⊗̃B+F . There is an equality of domains Dom diag(D) = DomDε,
and the closed graded derivations

[diag(D), T ]γ := diag(D)T − γTγdiag(D), [Dε, T ]Γ := DεT − ΓTΓDε, (3.9)

are related via [Dε, T ]Γ = [diag(D), εT ]γ = ε[diag(D), T ]γ . Therefore these derivations have
the same domain inside End∗C(HB+⊗̃B+F ). With regards to gradings on the module E∇ defined
in (3.7), observe that there is an identity( ∑

1≤|k|≤n

〈xi, γ(xk)〉[D, 〈xk, e〉]
)∗

=
∑

1≤|k|≤n

−[D, γ〈e, xk〉]〈γ(xk), xi)〉

=
∑

1≤|k|≤n

γ
(

[D, 〈e, xk〉]〈xk, γ(xi)〉
)
,

and thus for e ∈ E∇, the series of row vectors ∑
1≤|k|≤n

[D, 〈e, xk〉]〈xk, γ(xi)〉

t

i∈Ẑ

(3.10)

is convergent.

Lemma 3.6. Let p : Dom p → HB+ be a projection such that EB = pDom p is a projective
operator module, and consider the operator module E∇ defined in Equation (3.7).
1) There is a completely contractive dense inclusion ι : EB → E∇.
2) If p ∈ End∗B+(HB+) then ι is a cb-isomorphism.

Proof. The estimate∥∥∥∥( v(e) 0
vv∗ε[D, v(e)] γ(v(e))

)∥∥∥∥ =

∥∥∥∥(p 0
0 p

)(
v(e) 0

ε[D, v(e)] v(γ(e))

)∥∥∥∥ ≤ ∥∥∥∥( v(e) 0
ε[D, v(e)] γ(v(e))

)∥∥∥∥ ,
proves 1). For 2), observe first that Γp = pΓ, so pε = pγεγ = pΓγ = Γpγ = εγpγ = εγ(p) and

[Dε, p]Γv(e) = [diag(D), εp]γv(e) = [D, εv(e)]− εγpγ[D, v(e)] = [D, εv(e)]− pε[D, v(e)].

Thus we can write(
v(e) 0

vv∗ε[D, v(e)] γ(v(e))

)
=

(
1 0

−[Dε, p]Γ 1

)(
v(e) 0

ε[D, v(e)] v(γ(e))

)
,

and as [Dε, p]Γ is bounded, the matrix

(
1 0

−[Dε, p]Γ 1

)
is invertible. The assertion follows.
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Proposition 3.7. The module E∇ has the following properties.
1) The inner product EB × EB → B extends to an inner product E∇ × E∇ → B.
2) For each e ∈ E∇ the operator e∗ : E∇ → B defined by f 7→ 〈e, f〉 is completely bounded and
adjointable, with adjoint b 7→ eb, and satisfies the estimate ‖e∗‖cb ≤ 2‖e‖E∇.

Proof. For 1) we must show that for e, f ∈ E∇ the inner product 〈e, f〉 ∈ B. Let (xi)i∈Ẑ be a
defining column finite frame for EB. By definition the series of column vectors∑

j∈Ẑ

(〈xi, γ(xj)〉[D, 〈xj , e〉])i∈Ẑ,

is norm convergent for e ∈ E∇ by (3.7). Consider the partial sums[
D,

∑
1≤|j|≤n

〈e, xj〉〈xj , f〉
]

=
∑

1≤|j|≤n

γ(〈e, xj〉)[D, 〈xj , f〉] + [D, 〈e, xj〉]〈xj , f〉.

The two terms on the right hand side are convergent sums, since (using the pairing of row and
column vectors)∥∥ ∑

1≤|j|≤n

γ(〈e, xj〉)[D, 〈xj , f〉]
∥∥ =

∥∥ ∑
1≤|j|≤n

∑
i∈Ẑ

〈γ(e), xi〉〈xi, γ(xj)〉[D, 〈xj , f〉]
∥∥

=
∥∥ ∑

1≤|j|≤n

(〈xi, γ(e)〉)∗
i∈Ẑ · (〈xi, γ(xj)〉[D, 〈xj , f〉])i∈Ẑ

∥∥
≤ ‖e‖E

∥∥ ∑
1≤|j|≤n

(〈xi, γ(xj)〉[D, 〈xj , f〉])i∈Ẑ
∥∥,

and similarly for the other term. Since
∑

i∈Ẑ〈e, xi〉〈xi, f〉 converges to 〈e, f〉 and [D, ·] is a
closed derivation, it follows that 〈e, f〉 ∈ B. Therefore we can write(

〈e, f〉 0
[D, 〈e, f〉] γ〈e, f〉

)
=
∑
i∈Ẑ

(
〈e, xi〉 0

0 〈γ(e), xi〉

)(
〈xi, f〉 0∑

j∈Ẑ〈xi, γ(xj)〉[D, 〈xi, f〉] 〈xi, γ(f)〉

)

+

(
0 0∑

j∈Ẑ[D, 〈e, xj〉]〈xj , γ(xi)〉 0

)(
〈γ(xi), f〉 0

0 〈xi, f〉

)
.

These series are convergent in view of (3.7) and (3.10) and the equalities also hold when f is
a matrix of elements of E∇ yielding the estimate

‖e∗(f)‖B ≤ (‖e‖E‖‖f‖E∇ + ‖e‖E∇‖f‖E) ≤ 2‖e‖E∇‖f‖E∇ ,

whence ‖e∗‖cb ≤ 2‖e‖E∇ .

3.3 Complete projective modules

We now define several algebras of operators on the modules EB and E∇. Recall that EB ⊂ E∇

is a proper submodule in general by Lemma 3.6. As for C∗-modules, we denote the space of
finite rank operators by FinB(E). We give FinB(E) the operator algebra structure determined
by regarding FinB(E) as an algebra of operators on E∇:

π∇(K) :=

(
vKv∗ 0

p[Dε, vKv
∗]p vKv∗

)
, (3.11)

30



where D comes from the defining Kasparov module (B, FC ,D) for B and p comes from a
defining column finite frame (xi)i∈Ẑ. For e, f ∈ EB, consider the column, respectively row,
vectors

v|e〉 = v(e) = (〈xi, e〉)i∈Ẑ, 〈f |v∗ = v(f)∗ = (〈f, xi〉)ti∈Ẑ, (3.12)

which are elements of HB+ and Ht
B+ respectively. Thus the rank one operator |e〉〈f | is such

that [Dε, v(|e〉〈f |)v∗] is a bounded matrix. Therefore the representation (3.11) is well-defined
on FinB(E). We emphasise that we do not consider finite rank operators associated to vectors
coming from E∇ here. The ideal of compact operators K(E∇) is defined to be the closure of
FinB(E) in the operator space norm ‖π∇(·)‖∞. We now address the issue of approximate units
for K(E∇).

Lemma 3.8. Let (B, FC ,D) be the defining Kasparov module for B, and EB a projective
operator module. For a column finite frame approximate unit χn associated to the defining
frame (xi)i∈Ẑ, any K ∈ FinB(E) satisfies

vKv∗DomDε ⊂ DomDε,

and [Dε, vKv
∗] extends to a bounded adjointable operator in End∗C(HB⊗̃BF ). Moreover

lim
n→∞

vχnv
∗[Dε, vKv

∗] = vv∗[Dε, vKv
∗],

lim
n→∞

[Dε, vKv
∗]vχnv

∗ = [Dε, vKv
∗]vv∗, (3.13)

in operator norm.

Proof. It suffices to prove this for rank one operators K = |e〉〈f |. In that case, Equation (3.12)
shows that vKv∗ is given by the infinite matrix

(〈xi, e〉〈f, xj〉)ij ∈ K⊗̃B,

and thus is in the domain of the derivation [Dε, ·]. The norm limits (3.13) are given by

lim
n→∞

vχnv
∗[Dε,vKv

∗] = lim
n→∞

 ∑
1≤|k|≤n

〈xi, γ(xk)〉[D, 〈xk, e〉〈f, xj〉]


ij

= lim
n→∞

 ∑
1≤|k|≤n

〈xi, γ(xk)〉γ〈xk, e〉[D, 〈f, xj〉] + 〈xi, γ(xk)〉[D, 〈xk, e〉]〈f, xj〉


ij

=
(
〈xi, γ(e)〉[D, 〈f, xj〉]

)
ij

+ lim
n→∞

 ∑
1≤|k|≤n

〈xi, γ(xk)〉[D, 〈xk, e〉]〈f, xj〉


ij

,

where the first term is a well-defined infinite matrix because f ∈ E and the second term is a
norm convergent limit because e ∈ E ⊂ E∇. The other limit is handled verbatim.

Given a frame approximate unit (χn) for K(EB), denote by C (χn) the convex hull of (χn).
This is the algebraic convex hull, and not the closed convex hull.
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Definition 3.9. Let (B, FC ,D) be the defining Kasparov module for B, and EB a projective
operator module with column finite frame approximate unit χn. The module EB is a complete
projective operator module if there is an approximate unit (un) ⊂ C (χn) for K(EB) such that
the sequence of operators p[Dε, vunv

∗]p : HB+⊗̃B+F → HB+⊗̃B+F converges to 0 strictly.

This definition should be viewed in the light of property 2) of Proposition 1.9 as well as
Corollary 1.11.

Proposition 3.10. Let EB be a complete projective module over B. Then K(E∇) has a bounded
approximate unit consisting of elements of FinB(E).

Proof. Let χn =
∑

1≤|i|≤n |xi〉〈xi| be the defining column finite frame approximate unit. Con-
sider an approximate unit (un) ∈ C (χn) as in Definition 3.9. It follows from the uniform
boundedness principle that supn ‖π∇(un)‖ <∞: this follows because for each x ∈ HB+⊗̃B+F
the sequence p[D, vunv

∗]px converges, so that

sup
n
‖p[Dε, vunv

∗]px‖ <∞, and therefore sup
n
‖p[Dε, vunv

∗]p‖ <∞.

For K ∈ FinB(E) it then follows that

p[Dε, vunKv
∗]p = p[Dε, vunv

∗]vKv∗ + vunv
∗[Dε, vKv

∗]p→ p[Dε, vKv
∗]p,

by Lemma 3.8. Now since FinB(E) ⊂ K(E∇) is dense and π∇(un) is uniformly bounded, it
follows that π∇(unK)→ π∇(K) and π∇(Kun)→ π∇(K) for all K ∈ K(E∇).

Remark 3.11. Proposition 3.10 can be made into an if and only if statement when we restrict to
bounded approximate units contained in C (χn). Uniform boundedness of such an approximate
unit uk gives a uniformly bounded sequence p[Dε, vukv

∗]p, which converges pointwise on the
algebraic tensor product HB+ ⊗DomDε, and hence everywhere.

We now present some sufficient conditions for a projective operator module to be complete.

Proposition 3.12. For a projective operator module EB = pDom p with defining column
finite frame (xi) and corresponding approximate unit (χn), each of the following conditions
imply completeness of the module EB:
1) there is an approximate unit (un) ∈ C (χn) for K(EB) such that the operators p[Dε, un]p
converge to 0 in norm on the C∗-module HB+⊗̃B+FC ;
2) the projection p is a countable direct sum of finite even projections pk ∈M2mk(B+);
3) the projection p is an element of End∗B+(HB+);

Proof. Because norm convergence implies strict convergence, 1) implies that the sequence
p[Dε, un]p converges strictly on HB+ , hence the module EB is complete in the sense of Definition
3.9. Thus, to prove 2), it is enough to show that 2)⇒ 1).

2) ⇒ 1) For a countable family of finite projections pi with [Dε, pi] bounded, for each i we
have pi[Dε, pi]pi = 0 and

pk =
∑

1≤|i|≤mk

|peki 〉〈peki |.

By identifying the direct sum
⊕∞

k=0(B+)2mk with HB+ and setting p = ⊕∞i pi, we can define
an approximate unit un = ⊕ni=1pi. The explicit form of pi given above shows that un is a
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subsequence of the approximate unit associated to the frame (peik), and so in the convex hull.
Then p[D, un]p =

∑n
i=1 p[D, pi]p =

∑n
i=1 pi[D, pi]pi = 0.

To show that 3) implies completeness, observe that p ∈ End∗B+(HB+) if and only if p ⊗ IdF
preserves the domain of Dε and [Dε, p⊗ IdF ] is a bounded operator. Let qn, i ∈ Ẑ denote the
projection onto the submodule generated by the basis vectors ei, 1 ≤ |i| ≤ n, let xi = pei, and
χn =

∑n
i=1 |xi〉〈xi|.

Now on the image of p, a short calculation shows that χny = χnpy = pqnpy. Then

p[Dε, χn]p = p[Dε, pqn]p = p[Dε, p]qnp.

The projections qn converge strongly to the identity on HB+ , and [Dε, p] is bounded. Therefore
it follows that for any x ∈ HB+ , p[Dε, χn]px = p[Dε, p]qnpx→ p[Dε, p]px = 0, and so Definition
3.9 is satisfied.

3.4 Self-adjointness and regularity

We now come to the study of self-adjointness and regularity of induced operators 1 ⊗∇ D on
tensor product modules. The setting for this construction is as follows. Let (B, FC ,D) be
the unbounded Kasparov module defining B, which we recall, Remark 1.19, is essential so
that [BFC ] = FC . Given a projective module EB ⊂ E∇ with grading γ one obtains an odd
symmetric operator

1⊗∇ D : E⊗B DomD→ E⊗̃BF, (3.14)

via the usual formula 1⊗∇D(e⊗f) := γ(e)⊗Df +∇D(e)f . We extend 1⊗∇D to its minimal
closure.

In [13] it was shown that this operator is self-adjoint and regular in the case where p is a
direct sum of bounded projection operators. In [30] it was shown that there exist unbounded
projections for which the resulting operator is not self-adjoint. The counterexample uses the
half-line, a noncomplete metric space. In this section we show that for complete projective
modules the induced operator is self-adjoint and regular, by an argument similar to that for
the Dirac operator on a complete manifold.

Write ∂ := v(1⊗∇ D)v∗ with domain and definition

Dom ∂ = vDom(1⊗∇ D)⊕ (1− p)HB+⊗̃B+FC , ∂(vy + (1− p)z) = v∗(1⊗∇ D)y. (3.15)

We have G(∂) ⊂ (HB+⊗̃B+FC)⊕2, and the graph of the adjoint operator ∂∗ is given by

G(∂∗) := UG(∂)⊥, where we recall that U =

(
0 −1
1 0

)
.

Lemma 3.13. The operator 1 ⊗∇ D is self-adjoint and regular on Dom(1 ⊗∇ D) if and only
if the operator ∂ is self-adjoint and regular on Dom ∂.

Proof. Recall that a closed, densely-defined symmetric operator T : DomT → E is self-adjoint
and regular if and only if the operators T ± i : DomT → E have dense range, cf. [38, Lemma
9.7, 9.8] and [31, Proposition 4.1].

Suppose that 1⊗∇D± i have dense range. Then, for x = vy+ (1−p)z with y ∈ Dom(1⊗∇D)
we have

(∂ ± i)x = v(1⊗∇ D± i)y + i(1− p)z, (1⊗∇ D± i)y = v∗(∂ ± i)x.
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Since Im v and Im (1− p) are orthogonal, it follows that ∂ ± i has dense range in HB+⊗̃B+FC
if and only if (1⊗∇ D)± i has dense range in E⊗̃BFC .

We now prove that ∂ is self-adjoint and regular. Since the representation of B on FC is assumed
to be essential, we have the identification

HB+⊗̃B+FC
∼−→
⊕
i∈Ẑ

FC , (3.16)

and the self-adjoint regular operator Dε coincides with the operator 1 ⊗d D on HB+⊗̃B+FC
and εd the trivial connection.

Lemma 3.14. Let (B, FC ,D) be the defining unbounded Kasparov module for B, with [BFC ] =
FC , and let EB ⊂ E∇ be a complete projective module over B with grading γ and defining frame
(xi)i∈Ẑ. For an elementary tensor e⊗f ∈ E⊗B+ DomD, (1⊗∇D)(e⊗f) is given by the formula

γ(e)⊗Df +∇(e)f =
∑
i∈Ẑ

xi ⊗ 〈xi, γ(e)〉Df + γ(xi)⊗ [D, 〈xi, e〉]f

=
∑
i∈Ẑ

xi ⊗ 〈xi, γ(e)〉Df +
∑
i,j∈Ẑ

xi ⊗ 〈xi, γ(xj)〉[D, 〈xj , e〉]f (3.17)

=
∑
i∈Ẑ

xi ⊗D〈γ(xi), e〉f =
∑
i∈Ẑ

γ(xi)⊗D〈xi, e〉f. (3.18)

More symbolically, 1⊗∇D = v∗∂v = v∗Dεv on E⊗B DomD and ∂ = pDεp on vE⊗B+ DomD.
The map

g : E∇⊗̃BG(D)→ G(1⊗∇ D), e⊗
(
f
Df

)
7→
(

e⊗ f
(1⊗∇ D)(e⊗ f)

)
, (3.19)

is a completely contractive operator with dense range.

Proof. First we show that the sum (3.17) is convergent, so that the map (3.19) is well-defined.
The first term on the right hand side of (3.17) converges trivially. For the second term we
prove slightly more, estimating for finite sums

∑
k ek ⊗ fk ∈ E∇ ⊗B DomD∥∥∥∑

i,j,k

xi ⊗ 〈xi, γ(xj)〉[D, 〈xj , ek〉]fk
∥∥∥2

h

≤
∥∥∥∑
i∈Ẑ

|xi〉〈xi|
∥∥∥
K(E)

∥∥∥( ∑
j,k∈Ẑ

〈xi, γ(xj)〉[D, 〈xi, ek〉]fk〉
)
i∈Ẑ

∥∥∥2

≤ ‖
∑
k

π∇(ek)π∇(ek)
∗‖ ‖

∑
k

〈fk, fk〉‖

≤ ‖
∑
k

π∇(ek)π∇(ek)
∗‖
∥∥∥∥∑〈(

fk
Dfk

)
,

(
fk
Dfk

)〉∥∥∥∥ ,
(3.20)

proving that both (3.17) and (3.18) are well-defined. The estimate (3.20) also provides half of
the estimates needed to prove continuity of the map g. The other half is proving continuity of
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e⊗ f 7→ γ(e)⊗Df . So, again, consider a finite sum
∑

k ek ⊗ fk ∈ E∇⊗B DomD. We have the
estimate ∥∥∥∥∥∑

k

γ(ek)⊗Dfk

∥∥∥∥∥
2

≤
∥∥∥∑ |γ(ek)〉〈γ(ek)|

∥∥∥
K(E)

∥∥∥∑〈Dfk,Dfk〉∥∥∥
≤ ‖

∑
k

π∇(ek)π∇(ek)
∗‖
∥∥∥∥∑〈(

fk
Dfk

)
,

(
fk
Dfk

)〉∥∥∥∥ ,
by using the fact that the C∗-module tensor product E ⊗B F is isometrically isomorphic to
the Haagerup tensor product E⊗̃BF cf. [9, Thm. 4.3].

Combining the two norm estimates above and taking the infimum over all representations in
the tensor product shows that the map g satisfies∥∥∥∥∥g(∑

k

ek ⊗
(
fk
Dfk

))∥∥∥∥∥ ≤ 2

∥∥∥∥∥∑
k

π∇(ek)⊗
(
fk
Dfk

)∥∥∥∥∥
h

,

and we are done.

Lemma 3.15. Let EB be a projective operator module with column finite frame (xi) and R ∈
C (χn). Then
1) the operator vRv∗ maps DomDε into Dom ∂;
2) the operator vRv∗ maps Dom ∂∗ into DomDε;
3) if EB is complete, then vRv∗ maps Dom ∂∗ into DomDε ∩Dom ∂ ⊂ Dom ∂.

Proof. It suffices to show that the frame approximate unit χn of (xi) has the properties 1), 2)
and 3), for then any finite convex combination R of χn’s also has these properties. For 1),
consider the adjointable operators

πpD(χk) :=

(
vχkv

∗ 0
p[Dε, vχkv

∗] vχkv
∗

)
: (HB⊗̃BF )⊕2 → (vE⊗̃BF )⊕2.

For x = h⊗ f ∈ HB ⊗B DomD ⊂ DomDε, we have that

vχkv
∗(x) =

∑
1≤|i|≤k

vxi ⊗ 〈xi, v∗(h)〉f =
∑

1≤|i|≤k

vxi ⊗ 〈vxi, h〉f, (3.21)

and since v(xi), h ∈ HB+ , we have 〈vxi, h〉 ∈ B and thus 〈vxi, h〉f ∈ DomD. Hence the finite
sum (3.21) is an element of vE⊗B DomD ⊂ Dom ∂. By Lemma 3.14 we get that

πpD(χk)

(
x

Dεx

)
=

(
vχkv

∗x
p(Dε)vχkv

∗x

)
=

(
vχkv

∗x
∂vχkv

∗x

)
.

It follows from (3.16) that HB ⊗B DomD is a core for Dε, for it contains the algebraic direct
sum ⊕i∈Ẑ DomD. Thus the bounded operators πpD(χk) map a dense subspace of G(Dε) into
G(∂), and therefore they map all of G(Dε) into G(∂). This proves 1).
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For 2), consider the adjoint πpD(χk)
∗, which by 1) maps G(∂)⊥ into G(Dε)

⊥. The equalities
G(∂)⊥ = UG(∂∗) and G(Dε)

⊥ = UG(Dε) allow us to compute, for x ∈ Dom ∂∗

πpD(χk)
∗
(
−∂∗x
x

)
=

(
vχkv

∗ −[Dε, vχkv
∗]p

0 vχkv
∗

)(
−∂∗x
x

)
=

(
−vχ∗k∂∗x− [Dε, vχkv

∗]x
vχkv

∗x

)
∈ UG(Dε).

Hence vχkv
∗x ∈ DomDε whenever x ∈ Dom ∂∗ which proves 2).

For 3) it suffices to show that vχnv
∗ maps Dom ∂∗ into Dom ∂ and then use 2). Let x ∈ Dom ∂∗

and, since EB is complete, let uk ∈ C (χn) be the approximate unit from Definition 3.9. By
2) vχnv

∗x ∈ DomDε and by 1) vukv
∗vχnv

∗x ∈ Dom ∂. We have limk vunv
∗vχnv

∗x = vχnv
∗x

in norm in HB+⊗̃B+FC . Now the operator p[Dε, vukv
∗]p is defined on the dense subspace

vE ⊗B+ DomD, and bounded there. Hence it extends to a bounded operator on the whole
module HB+⊗̃B+FC . The relation

(∂vukv
∗ − vukv∗Dε)p = p[Dε, vukv

∗]p, (3.22)

which is valid on the subspace Dom ∂ ∩ DomDε ∩ pHB+⊗̃B+FC , along with the boundedness
of p[Dε, vukv

∗]p, imply that the left hand side of Equation (3.22) is bounded. Combining all
these facts with the strict convergence p[Dε, vukv

∗]p→ 0, we find that

lim
k
∂vukv

∗vχnv
∗x = lim

k
vukv

∗Dεvχnv
∗x+ ∂vukv

∗vχnv
∗ − vukv∗Dεvχnv

∗x

= lim
k
vukv

∗pDεpvχnv
∗x+ p[Dε, vukv

∗]pvχnv
∗x

which since vukv
∗ → p strictly, shows that the sequence converges. Since ∂ is closed, vχnv

∗x ∈
Dom ∂.

The paper [31] introduces a local-global principle for regular operators on C∗-modules, though
this had been independently developed by Pierrot in [45]. The main technical tool developed
is the following. Let EB be a C∗-module and σ : B → C a state and Hσ = L2(B, σ) the
associated GNS representation. The localisation Eσ is the Hilbert space completion of EB
in the inner product 〈e, f〉σ := σ(〈e, f〉), and there is a dense inclusion ισ : EB → Eσ and a
∗-representation πσ : End∗B(EB)→ B(Eσ). Equivalently, Eσ = E⊗B L2(B, σ), where L2(B, σ)
denotes the GNS representation space of B defined by the state σ. A closed, densely defined
symmetric operator T on E induces a closed densely defined symmetric operator T σ in Eσ, by
defining it on the dense subspace ισ(DomT ) ⊂ Eσ and taking the closure. It then holds that
ισ(DomT ∗) ⊂ Dom(T σ)∗, cf. [31, Lemma 2.5].

Theorem 3.16 (Theorem 4.2, [31], Théorème 1.18 [45]). Let T be a closed densely defined
symmetric operator in the C∗-module EB. Then T is self-adjoint and regular if and only if all
localisations T σ are self-adjoint.

For an unbounded Kasparov module (B, FC ,D) and a state σ : C → C we obtain a contractive
map B→ Lip(Dσ). This follows because by definition ισ(DomD) is a core for Dσ and for all
b ∈ B and f ∈ DomD we have πσ(b)ισ(f) = ισ(bf) ∈ ισ(DomD). Thus πσ(b) preserves the
core ισ(D) for Dσ. The commutator satisfies

‖[Dσ, πσ(b)]ισ(f)‖2 = ‖ισ([D, b]f)‖2 = σ(〈[D, b]f, [D, b]f〉) ≤ ‖[D, b]‖2σ(〈f, f〉)
= ‖[D, b]‖2‖ισ(f)‖2,

(3.23)
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and is thus bounded on this core. Thus [Dσ, πσ(b)] = πσ([D, b]) and we can write πDσ(b) =
πσ(πD(b)) and hence the map πD(b) 7→ πDσ(b) is completely bounded. We let Bσ be the
completion of B is the norm induced by πDσ , and define the localised module EBσ over Bσ via
the map HB+ → HBσ+ .

Lemma 3.17. Let EB be a complete projective operator module for (B, FC ,D) with column
finite frame (xi) and frame approximate unit χn. Then for all states σ : C → C, the localised
module EBσ is a complete projective module for (Bσ, F σ,Dσ). Moreover, under the identifica-
tion E⊗̃BF σ ∼= (E⊗̃BF )σ we have 1⊗∇ Dσ = (1⊗∇ D)σ as unbounded operators. Therefore
1) for each n, the operator vπσ(χn)v∗ maps Dom(∂σ)∗ into Dom ∂σ;
2) there is an approximate unit (un) ⊂ C (χn) such that p[Dσ

ε , vπσ(un)v∗]p converges to 0
∗-strongly on HB+⊗̃B+F σ.

Proof. To check that EBσ is a complete projective module, it suffices to show that the defining
frame (xi) of EB is column finite for Bσ, and that there exists an approximate unit (un) ∈
C (χn) such that p[Dσ

ε , vunv
∗]p→ 0 ∗-strongly on HB+⊗̃B+F σ. Column finiteness follows from

complete boundedness of the map πD(b) 7→ πDσ(b), proved after (3.23) above. This is because
complete boundedness shows that for all e ∈ EB

‖πDσ(〈xi, e〉)i∈Ẑ‖ ≤ ‖|πD(〈xi, e〉)i∈Ẑ‖,

and so in particular for all the vectors xj . Definition 3.9 gives an approximate unit (un)
in the convex set C (χn) ⊂ FinB(E) for which the sequence p[Dσ

ε , vunv
∗]p converges to 0

strictly on HB+⊗̃B+F and is therefore uniformly bounded in n. Thus the localised sequence
p[Dσ

ε , πσ(un)]p = πσ(p[Dε, un]p) is bounded as well and converges strongly to 0 on the dense
subspace HB+⊗̃ισ(F ) and thus on all of HB+⊗̃F σ. Hence EBσ is a complete projective module
for (Bσ, F σ,Dσ), which in particular proves 2).

The operator 1 ⊗∇ Dσ is defined on its core E ⊗B+ DomDσ while (1 ⊗∇ D)σ is defined on
ισ(Dom 1⊗∇ D). We claim that the subspace

X := ισ(E⊗B DomD) = E⊗B ισ(DomD) ⊂ ισ(Dom 1⊗∇ D),

is a common core for (1 ⊗∇ D)σ and 1 ⊗∇ Dσ. Since E ⊗B DomD is a core for 1 ⊗∇ D, its
image under ισ is a core for (1 ⊗∇ D)σ. To see that it is also a core for 1 ⊗∇ Dσ, we use the
definition

1⊗∇ Dσ(e⊗ f) = γ(e)⊗Df +∇D(e)f = γ(e)⊗Dσf +
∑

γ(xi)⊗ [Dσ, 〈xi, e〉]f,

and take a sequence fk ∈ DomD converging to f ∈ DomDσ in the graph norm. The term
γ(e) ⊗ Dσfk will then converge to γ(e) ⊗ Dσf . The other term can be estimated using the
Haagerup norm∥∥∑ γ(xi)⊗ [D, 〈xi, e〉](fk − f`)

∥∥2

h
≤
∥∥∑ |xi〉〈xi|

∥∥
K(E)

∥∥([D, 〈xi, e〉](fk − f`))i∈Ẑ
∥∥2

≤
∥∥([D, 〈xi, e〉])i∈Ẑ

∥∥2 ‖fk − f`‖2,

and the norm of the column ([D, 〈xi, e〉])i∈Ẑ is finite because e ∈ EB. Therefore we can approx-
imate any y ∈ E⊗B DomDσ by elements of X in the graph norm of 1⊗∇Dσ. Thus the closure
of 1⊗∇ Dσ on X contains E⊗B DomDσ which is the defining core for 1⊗∇ Dσ. Therefore X
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is a common core and since the operators (1 ⊗∇ D)σ and 1 ⊗∇ Dσ coincide on X, it follows
that (1⊗∇ D)σ = 1⊗∇ Dσ.

Statement 1) now follows by applying Lemma 3.15 to the frame (xi) of the complete projective
module EBσ .

We now come to the main application of complete projective modules: self-adjointness of
the connection operator 1 ⊗∇ D. A further application of the domain mapping properties of
approximate units then allows us to show that K(E∇) is a differentiable algebra.

Theorem 3.18. Let EB be a complete projective module for (B, FC ,D). Then the operator
1⊗∇ D is self-adjoint and regular.

Proof. We must show that for all states σ : C → C the operator ∂σ on the Hilbert space
(E⊗̃BF )σ ∼= E⊗̃BF σ is self-adjoint. Let (un) ⊂ C (χn) be an approximate unit as in Definition
3.9. By Lemma 3.17, vπσ(un)v∗ maps Dom(∂σ)∗ into Dom ∂σ and p[Dσ

ε , vπσ(un)v∗]p converges
to 0 ∗-strongly on HB+⊗̃B+F σ . Using Lemma 3.14 we have that ∂σx = pDεpx for x in the
dense subspace HB+ ⊗DomDσ, which is a core for ∂σ. Thus, suppressing πσ in the notation,
we have

[∂σ, vukv
∗]x = ∂σvukv

∗x− vukv∗∂σx = pDσ
ε pvukv

∗x− vukv∗pDσ
ε px = p[Dσ

ε , vukv
∗]px→ 0,

(3.24)
in norm, and by uniform boundedness of p[Dε, vukv

∗]p, the convergence holds for all x ∈
HB+⊗̃F σ. Since there is an equality of closures

[(∂σ)∗, vukv∗] = [∂σ, vukv∗],

and the latter operator is bounded, it follows that [(∂σ)∗, vukv
∗] → 0 strictly on HB+⊗̃B+F .

Therefore if y ∈ Dom(∂σ)∗ then vukv
∗y ∈ Dom ∂σ by Lemma 3.17, and vukv

∗y → y. Whence
by (3.24) we can compute

(∂σ)∗y = lim vukv
∗(∂σ)∗y = lim ∂σvukv

∗y − [(∂σ)∗, vukv
∗]y = lim ∂σvukv

∗y,

and it follows that ∂σvukv
∗y is convergent to (∂σ)∗y since vukv

∗(∂σ)∗y is. So Dom ∂σ is a core
for (∂σ)∗, and as ∂σ is a closed symmetric operator, it is self-adjoint. The local-global principle
of [31, 45] now says that ∂ is self-adjoint and regular.

We now describe the algebra of adjointable operators on a complete projective module. Let the
isometry of C∗-modules v : E → HB+ be such that it induces a column finite frame (xi)i∈Ẑ,

which in turn determines a complete projective submodule EB ⊂ E∇ ⊂ EB. The defining
representation

π∇(K) =

(
vKv∗ 0

p[Dε, vKv
∗]p vKv∗

)
,

preserves the submodule (pHB+⊗̃B+F )⊕ (pHB+⊗̃B+F ), and annihilates the orthogonal com-
plement.

Definition 3.19. The algebra of adjointable operators on the module E∇ is the idealiser of
π∇(K(E∇)) in End∗C((pHB+⊗̃B+F )⊕2). It is denoted End∗B(E∇).
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Proposition 3.20. If EB is a complete projective module then End∗B(E∇) is an operator
∗-algebra, isometrically isomorphic to M(K(E∇)) and coinciding with a closed subalgebra of
Lip(1⊗∇ D). Hence K(E∇) is a differentiable algebra.

Proof. This essentially follows from Propositions 1.9 and 1.17. Since 1 ⊗∇ D is self-adjoint
and regular the commutators [1 ⊗∇ D, vKv∗] coincide with the operators p[Dε, vKv

∗]p when
K is finite rank. Suppose now that T ∈ End∗B(E∇), so there is a sequence of operators Tn
such that for all K ∈ FinB(E) we have TnK ∈ FinB(E) and both TnK and p[Dε, vTnKv

∗]p are
convergent. Then since

p[Dε, vTnKv
∗]p = [∂, vTnKv

∗],

it follows that
∂(vTnKv

∗x) = [∂, vTnKv
∗]x+ vTnKv

∗∂(x),

is convergent for all x ∈ Dom ∂. Thus TK preserves Dom ∂ for all K ∈ FinB(E) and
vFinB(E)v∗ · Dom ∂ is dense in pDom ∂ in the graph norm by definition of 1 ⊗∇ D. Thus
T preserves a core, and on this core the commutator

[∂, vTv∗]vKv∗x = [∂, vTKv∗]x− vγ(T )v∗[∂, vKv∗]x,

is a bounded operator. Thus vTv∗ ∈ Lip(∂), which is equivalent to T ∈ Lip(1⊗∇D) as desired.
The argument now proceeds as in Proposition 1.17.

4 Completeness and the Kasparov product

The constructive approach to the Kasparov product has appeared in several slightly different
versions in recent years, [13, 32, 42]. The variations have come from the assumptions imposed
on the correspondences (A,EB, S,∇) which refine the notion of unbounded Kasparov module.
The most recent refinement in [13] was the inclusion of a class of unbounded projections
into the theory, required to deal with examples arising from the Hopf fibration. Unbounded
projections also appear in the construction of products for Cuntz-Krieger algebras [25], the
natural Kasparov module for SUq(2) [35, 48] and the differential approach to the stabilisation
theorem [30]. In the previous section of the present paper, the notion of complete projective
module enlarges the class of unbounded projections we can work with.

4.1 Constructing the unbounded Kasparov product

In this section we will show that the lifting constructions of [4, 37] can be refined in such a
way that we can lift a pair of cycles (A,EB, F1) and (B,FC , F2) to an unbounded Kasparov
module (B, FC , T ) and a correspondence (A, EB, S,∇) for (B, FC , T ). This has the advantage
that their Kasparov product as constructed through Theorem 4.4 is then well-defined. Since
we only have to lift two classes, we provide a significant improvement over the results of [37],
where it was shown that any three KK-classes, with one the product of the other two, can be
lifted to unbounded classes in a way compatible with Kucerovsky’s conditions for representing
products [36].

Our first task is to assemble the results in the literature and blend them with the present work
in order to give sufficient conditions under which the unbounded Kasparov product can be
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constructed. These conditions will allow us to show in Section 4.4 that any Kasparov product
can be realised as the composition of a correspondence and an unbounded Kasparov module.

Definition 4.1. Given (B, FC , T ) an unbounded Kasparov module with bounded approximate
unit for B, an A-B correspondence for (B, FC , T ) is a quadruple (A,EB, S,∇) such that:
1) EB is a complete projective operator module over the algebra B;
2) A is a ∗-algebra and A ⊂ End∗B(E∇) ∩ Lip(S);
3) S : DomS → E is a self-adjoint regular operator such that (S ± i)−1 ∈ End∗B(E∇) and
a(S ± i)−1 ∈ KB(E∇) for a ∈ A;
4) ∇ : E∇ → E⊗̃BΩ1

D is a connection such that ∇((S± i)−1E∇) ⊂ DomS⊗1 and the operator
[∇, S](S ± i)−1 : E∇ → E⊗̃BΩ1

T is completely bounded.

The correspondence is called strongly complete if there is an approximate unit (un) for the
C∗-closure A of A such that both [S, un]→ 0 and [1⊗∇ T, un ⊗ IdF ]→ 0 in C∗-norm.

In condition 4), we regard ∇ as an odd operator so the commutator is the graded commutator
[∇, S] = ∇S − γ(S)∇. One of the key points in the construction of the Kasparov product is
the self-adjointness of the product operator, and this is deduced from the general framework
of weakly anti-commuting operators described in the appendix.

Lemma 4.2. Let (A,EB, S,∇) be an A-B correspondence for (B, FC , T ). The self-adjoint
regular operators s := S ⊗ 1 and t := 1⊗∇ T weakly anticommute in E⊗̃BF .

Proof. We will show that the conditions of Definition 4.1 imply those of Definition A.1. By
Lemma 3.14 the map

g : E∇⊗̃BG(T )→ G(1⊗∇ T ), e⊗
(
f
Tf

)
7→
(

e⊗ f
1⊗∇ T (e⊗ f)

)
,

has dense range. This means that the submodule X := E∇ ⊗B DomT , is a core for 1 ⊗∇ T .
Since (S ± i)−1 : E∇ → E∇, the resolvents (s ± i)−1 preserve the core X, so 1) of Definition
A.1 is satisfied. By condition 4) of Definition 4.1 it follows that t(s± i)−1X ⊂ Dom s, so 2) of
Definition A.1 is satisfied as well. On the core X the graded commutator can be computed as

[t, (s± i)−1] = t(s± i)−1 + (s∓ i)−1t = (s∓ i)−1(t(s± i) + (s∓ i)t)(s± i)−1

= (s∓ i)−1[s, t](s± i)−1,

and this is a bounded operator because

[s, t](e⊗ f) = (S ⊗ 1)(γ(e)⊗ Tf +∇(e)f) + γ(Se)⊗ Tf +∇(Se)⊗ f = [∇, S](e)f.

Thus, (s±i)−1 preserve the domain of t and [s, t](s±i)−1 are bounded there, proving condition
3) of Definition A.1.

Lemma 4.3. Let (A,EB, S,∇) be an A-B correspondence for (B, FC , T ). For any K ∈ K(E)⊗1
and t := 1⊗∇ T , the operators (t± i)−1K and K(t± i)−1 are compact in E⊗̃BF .

Proof. For any e ∈ E we have the norm convergent series
∑

i∈Ẑ[Tε, 〈xi, e〉]∗[Tε, 〈xi, e〉], which
implies that the operator

t|e〉 − |γ(e)〉T : f →
∑
i∈Ẑ

xi⊗T 〈xi, e〉 − γ(e)⊗ Tf =
∑

xi ⊗ (T 〈xi, e〉 − 〈xi, γ(e)〉T )f (4.1)

=
∑
i

xi ⊗ [Tε, 〈xi, e〉]f,
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is bounded. Moreover, for any e ∈ E the operator |e〉(T ± i)−1 : F → E⊗̃BF, is compact for if
un is an approximate unit for the C∗-algebra B then |eun〉 → |e〉 in norm and thus

|e〉(T ± i)−1 = lim
n→∞

|eun〉(T ± i)−1 = |e〉un(T ± i)−1,

is a norm limit of compact operators, whence compact. Therefore, by (4.1)

(t± i)−1|e1〉〈e2| = |γ(e1)〉(T ± i)−1〈e2|+ (t± i)−1(|e1〉T − t|γ(e1)〉± i|e1− γ(e1)〉)(T ± i)−1〈e2|,

is a compact operator. Hence (t± i)−1K is compact for all K ∈ K(E)⊗ 1.

The following theorem encompasses and generalises the constructions of the unbounded Kas-
parov product that have appeared in [13, 32, 42].

Theorem 4.4. Let (B, FC , T ) be an unbounded Kasparov module and let (A,EB, S,∇) be an
A-B correspondence for (B, FC , T ). Then (A, (E⊗̃BF )C , S ⊗ 1 + 1 ⊗∇ T ) is an unbounded
Kasparov module representing the Kasparov product of (A, EB, S) and (B, FC , T ).

Proof. The operator 1 ⊗∇ T is self-adjoint and regular in E⊗̃BF by Theorem 3.18, as is the
operator S⊗1. Now S⊗1 and 1⊗∇T weakly anticommute by Lemma 4.2, and hence their sum
is self-adjoint and regular in E⊗̃BF by Theorem A.4. Lemma 4.3 replaces [32, Proposition
6.6] so that the argument of [32, Theorem 6.7] shows that S ⊗ 1 + 1⊗∇ T has locally compact
resolvent. Thus (A, (E⊗̃BF )C , S ⊗ 1 + 1 ⊗∇ T ) is an unbounded Kasparov module. One
then shows, exactly as in [32, Theorem 7.2] and [42, Theorem 6.3.4], that the hypotheses
of Kucerovsky’s theorem, [36, Theorem 13], are satisfied. Hence this cycle represents the
Kasparov product.

Now we embark on a series of lifting results of increasing sophistication, whose ultimate aim is
to show that any pair of composable KK-classes can be represented by unbounded Kasparov
modules satisfying the hypotheses of Theorem 4.4. Recall that for a bounded (A,B)-Kasparov
module (A,EB, F ) the associated ideal of A-locally compact operators is

JA(EB) := {T ∈ End∗B(EB) : aT, Ta ∈ K(EB) for all a ∈ A}.

The operator F is in the idealiser of JA(EB), for if T ∈ JA(EB) then FTa ∈ K(EB) since
Ta ∈ K(EB) and aFT = FaT − [F, a]T ∈ K(EB) as well. Moreover, 1 − F 2 and hence

(1 − F 2)
1
2 are both elements of JA(EB). The C∗-algebra JA(EB) is not σ-unital in general.

The following counterexample to σ-unitality arose from discussions of the first author with J.
Kaad: Let I be an ideal in a unital C∗-algebra B. Take E := C0(N, I) viewed as a C∗-module
over C0(N, I) and let A := C0(N, B). Then JA(E) = Cb(N, I) which is not σ-unital.

Lemma 4.5. For a Kasparov module (A,EB, F ) with F ∗ = F , define

JF := K(EB) + C∗(1− F 2) + FC∗(1− F 2).

Then JF is a separable C∗-subalgebra of JA(EB) containing K(EB) as an ideal and with the
property that FJF , JFF, AJF , JFA ⊂ JF .
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Proof. The space C∗(1− F 2) + FC∗(1− F 2) is a commutative separable C∗-algebra. First, it
is a separable linear space. Second, because the operator F commutes with C∗(1 − F 2), it is
∗-closed. Finally, for a, b, c, d ∈ C∗(1− F 2), we have

(a+ Fb)(c+ Fd) = ac+ F (ad+ bc) + F 2bd = ac+ F (ad+ bc) + (F 2 − 1)bd+ bd,

which shows that C∗(1− F 2) + FC∗(1− F 2) is C∗-algebra. It thus follows by [33, Section 3,
Lemma 2] that JF is a separable C∗-algebra containing K(EB) as an ideal. Moreover, since
FK(EB) ⊂ K(EB) and F 2C∗(1− F 2) ⊂ C∗(1− F 2), just as for F above, it follows that FJF
and hence also JFF are in JF . That AJF , JFA ⊂ JF is immediate.

In [4] it was shown that any bounded Kasparov module (A,EB, F ) can be represented by an
unbounded Kasparov module (A,EB,D). The operator D is obtained from F by construct-
ing a suitable strictly positive ` element in the ideal JA(EB) and then setting D := F`−1.
The element ` is constructed from an approximate unit for JF with certain quasicentrality
properties.

Definition 4.6. Let (A,EB, F ) be a Kasparov module with [AEB] = EB, F = F ∗ and
1− F 2 ≥ 0. A strictly positive element ` ∈ JF is admissible if:
1) F : `E → `E and there exists C > 0 with ±i[F, `] ≤ C`2;

2) (1− F 2)
1
2 `−1 is bounded on the range of ` and has norm c < 1;

3) there is a total subset {ai} ⊂ A for which ai : `E → `E, the commutators [`−1, ai] and
[F, ai]`

−1 are bounded on the range of `, and so extend to operators in End∗B(E).

Theorem 4.7. If ` ∈ JF is admissible then D := 1
2(F`−1 + `−1F ) is a self-adjoint regular

operator with the property that (A, EB,D) is an unbounded Kasparov module defining the same
class as (A,EB, F ).

Proof. Because F preserves the image of `, the operator `−1F is defined on Im `, and in
particular F`−1 has a densely defined adjoint. Moreover,

〈±i[F, `−1]`e, `e〉 = 〈±i`−1[F, `]e, `e〉 = 〈±i[F, `−1]e, e〉 ≤ C〈`e, `e〉,

so [F, `−1] is bounded on Im `. It is shown in [37, Lemmas 1.4, 2.2] that F`−1 defines an almost
self-adjoint regular operator on EB with resolvent in JF and that it has bounded commutators
with all the ai. Thus (A, EB,D) is an unbounded Kasparov module and it suffices to show the
equivalence of the Kasparov modules defined by F and D̃(1 + D̃∗D̃)−1/2, where D̃ = F`−1. By
[6, Proposition 17.2.7], it suffices to show that

a
(
F D̃(1 + D̃∗D̃)−1/2 + (D̃(1 + D̃∗D̃)−1/2F

)
a∗

is positive modulo compacts for all a ∈ A. Simplifying yields

F D̃(1 + D̃∗D̃)−1/2 + D̃(1 + D̃∗D̃)−1/2F

= F 2`−1(1 + (F`−1)∗(F`−1))−1/2 + F`−1(1 + (F`−1)∗(F`−1))−1/2F

= F [F, `−1](1 + (F`−1)∗(F`−1))−1/2 + F`−1[F, (1 + (F`−1)∗(F`−1))−1/2]

+ 2F`−1/2[`−1/2, (1 + (F`−1)∗F`−1)−1/2]F + 2F`−1/2(1 + (F`−1)∗F`−1)−1/2`−1/2F
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The first term on the right hand side of the last equality is compact when multiplied by any
a ∈ A on the right and the last term is positive, so we are left with the second and third terms.
Now we compute the commutator in the second term using the integral formula for fractional
powers, [14]. So

`−1[F, (1 + (F`−1)∗(F`−1))−1/2] =
1

π

∫ ∞
0

λ−1/2`−1[F, (λ+ 1 + (F`−1)∗(F`−1))−1] dλ

= − 1

π

∫ ∞
0

λ−1/2`−1(λ+ 1 + `−1F 2`−1)−1[F, (F`−1)∗(F`−1)](λ+ 1 + `−1F 2`−1)−1dλ

= − 1

π

∫ ∞
0

λ−1/2`−1(λ+ 1 + `−1F 2`−1)−1[F, `−1]F 2`−1(λ+ 1 + `−1F 2`−1)−1dλ

− 1

π

∫ ∞
0

λ−1/2`−1(λ+ 1 + `−1F 2`−1)−1`−1F 2[F, `−1](λ+ 1 + `−1F 2`−1)−1dλ .

We observe that `−1(1 − F 2)1/2 is bounded and of norm c < 1 by Definition 4.6. It follows
that `−1F 2`−1 = `−2 − `−1(1 − F 2)`−1 ≥ `−2 − c21. The functional calculus then yields the
estimates [15, Appendix A] (for the norm of endomorphisms on EB)

‖`−1(1 + λ+ `−2 − c2)−1‖ ≤ 1

2
√

1 + λ− c2
, ‖(1 + λ+ `−2 − c2)−1‖ ≤ 1

1 + λ− c2
.

Thus the integral converges in norm. Since multiplying the integrand on right and left by an
element of A yields a compact endomorphism, the same is true of the integral. For the third
term the integral formula yields

`−1/2[`−1/2, (1 + `−1F 2`−1)−1/2]

= −`−1/2 1

π

∫ ∞
0

λ−1/2(1 + λ+ `−1F 2`−1)−1`−1[`−1/2, F 2]`−1(1 + `−1F 2`−1 + λ)−1 dλ.

In order to obtain the norm convergence of this integral, we write

`−1[`−1/2, F 2]`−1 = `−1/2(`−1(F 2 − 1)`−1)− (`−1(F 2 − 1)`−1)`−1/2

and
`−1/2(1 + λ+ `−1F 2`−1)−1 = `−1/2(1 + λ+ `−1F 2`−1)−1`−1/2`1/2.

Since `−1/2(1 + λ+ `−1F 2`−1)−1`−1/2 ≤ `−1(1 + λ+ `−2 − c2)−1, the same norm estimates we
used for the second term give us

‖`−1/2[`−1/2, (1 + `−1F 2`−)−1/2]‖

≤ c2

2π

∫ ∞
0

λ−1/2(1 + λ− c2)−3/2dλ+
c2‖`1/2‖

4π

∫ ∞
0

λ−1/2(1 + λ− c2)−1dλ <∞

and so the integral converges in norm. As multiplying the integrand on both sides by an
element of A yields a compact endomorphism, the same is true of the operator defined by the
integral. This completes the proof.
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4.2 Quasicentral approximate units

The construction of an admissible multiplier ` needed in Theorem 4.7 uses quasicentral ap-
proximate units as in [4]. In order to lift Kasparov modules to correspondences, this notion
needs to be refined. The existence of quasicentral approximate units in C∗-algebras has been
crucial for the development of KK-theory, notably in Higson’s proof of the Kasparov technical
theorem.

In this section B will always denote a unital operator algebra, and J ⊂ B a closed
ideal with bounded approximate unit.

For such J and B, we wish to prove the existence of quasicentral approximate units. We will
do this by using the argument of Akemann and Pedersen [1]. This method was employed
in [2, Theorem 3.1] to construct quasicentral approximate units for closed ideals in operator
algebras with contractive approximate units. By virtue of Proposition 1.7, the technique works
for operator algebras with bounded approximate unit.

In Theorem 4.15 below, we prove a strong form of quasicentrality, unknown even in the case
of C∗-algebras. Namely, we will view the ideal J ⊂ B as sitting inside End∗B(HB) as ‘scalar’
matrices J · IdHB

. Although J is not an ideal inside End∗B(HB), we will see that J admits
approximate units that are quasicentral inside End∗B(HB). That is [uλ · IdHB

, T ]→ 0 in norm
for all T ∈ End∗B(HB).

By an ideal in an operator algebra we will always mean a closed, two sided ideal. For an
operator algebra B its amplification is

B∞ := {(bi)i∈Ẑ ∈
∏
i∈Ẑ

B : sup
i∈Ẑ
‖bi‖ <∞},

which is canonically an operator algebra in the indicated norm.

For a general operator algebra B, the module of infinite columns HB is paired with the module
of infinite rows Ht

B via

((bi)
t
i∈Ẑ, (ci)i∈Ẑ) :=

∑
bici,

and End∗B(HB) is defined to be the algebra of completely bounded operators T : HB → HB for
which there exists T̃ : Ht

B → Ht
B such that (x, Ty) = (T̃ x, y) for all x ∈ Ht

B, y ∈ HB, cf. [8,
Section 3]. For operator ∗-algebras, the spaces Ht

B and HB are anti-isomorphic ([42, Lemma
4.4.1]) and this definition of End∗B(HB) is equivalent to the one given earlier in (3.2).

We wish to describe End∗B(HB) as an algebra of infinite matrices. Since B is unital, to an
element T ∈ End∗B(HB) we can associate matrix coefficients (Tij) by using the canonical basis
ei of HB. For an infinite matrix T := (Tij)i,j∈Ẑ the N -truncation is the finite 2N × 2N -matrix

TN = (Tij)N := (Tij)1≤|i|,|j|≤N .

Lemma 4.8. Let T ∈ End∗B(HB) and π : B→ B(H) be a completely isometric representation.
Then the matrix coefficients Tij ∈ B satisfy

∑
i

π(Tij)
∗π(Tij) <∞,

∑
j

π(Tij)π(Tij)
∗ <∞,
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where these series are norm convergent in B(H). For any (bi)i∈Ẑ ∈ HB the series∑
j∈Ẑ

π(Tij)π(bj),
∑
j

π(Tij)
∗π(bj),

are norm convergent in B(H).

Proof. Using the basis vectors ei and considering

T (ej) = (Tij)i∈Ẑ ∈ HB, T̃ (ej)
t = (Tji)i∈Ẑ ∈ Ht

B,

we obtain the stated conditions on the rows and columns of T . Considering the series
∑

j Tijbj ,
estimate the tails by∥∥ ∑

|j|≥n

π(Tijbj)
∥∥2

=
∥∥ ∑
|j|,|k|≥n

π(xk)
∗π(Tik)

∗π(Tij)π(bj)
∥∥

= ‖(π(bk))
∗
|k|≥n · (π(Tik)

∗)|k|≥n · (π(Tij))
t
|j|≥n · (π(bj))|j|≥n‖

≤
∥∥∑π(xj)

∗π(xj)
∥∥∥∥(π(Tik)

∗)|k|≥n · (π(Tij))
t
|j|≥n

∥∥
= ‖x‖2HB

∥∥ ∑
|j|≥n

π(Tij)π(Tij)
∗∥∥→ 0,

as n → ∞ because the the rows (Tij)j∈Ẑ are elements of HB. The argument for the series∑
i π(Tij)

∗π(Tij) is similar, now using the condition on the columns of (Tij).

Given a closed, two-sided ideal J ⊂ B there is an embedding HJ → HB and we define the
subalgebra

End∗B(HB, J) = {T ∈ End∗B(HB) : THB ⊂ HJ}. (4.2)

Lemma 4.9. Every T ∈ End∗B(HB) has the property that THJ ⊂ HJ. Consequently the
subalgebra End∗B(HB, J) is a closed two-sided ideal in End∗B(HB). The algebra End∗B(HB, J)
can be equivalently defined as the subalgebra of those T ∈ End∗B(HB) all of whose matrix
coefficients Tij ∈ J.

Proof. Let x = (bj)j∈Ẑ ∈ HJ and ei the standard basis elements of HB. We need to show that

for T ∈ End∗B(HB), the coordinates 〈ei, Tx〉 are elements of J. For an isometric representation
π we have

π(〈ei, Tx〉) =
∑
j∈Ẑ

π(Tijbj) ∈ J,

which is a convergent series by Lemma 4.8. The elements of the series lie in J since bj ∈ J, and
J is closed, so it follows that 〈ei, Tx〉 ∈ J.

To see that End∗B(HB, J) is closed, we use the fact that HJ ⊂ HB is closed. For then if Tn is
a sequence in End∗B(HB, J) which is Cauchy for the norm on End∗B(HB) then for each x ∈ HB

the sequence Tnx ∈ HJ is Cauchy. Hence the limit Tx ∈ HB is actually an element of HJ.
For S ∈ End∗B(HB), T ∈ End∗B(HB, J) and x ∈ HB we have STx ∈ HJ because Tx ∈ HJ and
TSx ∈ HJ by definition of End∗B(HB, J).

It is immediate that for T ∈ End∗B(HB, J) all the Tij are in J. Conversely, if Tij ∈ J for all i, j
then by Lemma 4.8 for any (bi)i∈Ẑ ∈ HB we have T (bi)i∈Ẑ = (

∑
Tijbj)i∈Ẑ which is an element

of HB all of whose coordinates are in J and hence an element of HJ.
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For a directed set Λ, the set
Λ∞ := {(λi)i∈Ẑ : λi ∈ Λ},

is a directed set with the partial order

(λi) ≤ (µi)⇔ λi ≤ µi, for all i.

If {uλ}λ∈Λ is a bounded approximate unit for an ideal J ⊂ B, then

u(λi) := {diag (uλi)i∈Ẑ}(λi)∈Λ∞ ,

is a net in End∗B(HB, J) indexed by Λ∞. The diagonal matrices vn,λ defined by

(vn,λ)ii :=

{
uλ |i| ≤ n
0, |i| > n

constitute a subnet. The algebra End∗B(HB, J) admits an approximate unit whenever J does.

Lemma 4.10. If (uλ)λ∈Λ is a bounded approximate unit for J, then:
1) the net (u(λi))(λi)∈Λ∞, is a bounded approximate unit for End∗B(HB, J);
2) the subnet (vn,λ) is a bounded approximate unit for K⊗̃J. In particular K⊗̃J has a sequential
approximate unit whenever J does.

Proof. Given an operator T := (bij) and ε > 0, by Lemma 4.8 we can choose λj , j ∈ Ẑ, such
that the columns (bij)i satisfy

‖(bij − bijuλj )i‖ < ε2−(|j|+1).

Since (λj)j∈Ẑ ∈ Λ∞, the matrix u(λj) = diag(uλj ) is an element of the directed set in 1). We
can estimate

‖Tdiag(uλj )− T‖ = ‖(bij)diag(uλj )− (bij)‖ = ‖
∑
j

(bijuλj − bij)i‖

≤
∑
j

‖(bijuλj − bij)i‖ <
∑
j

ε2−(|j|+1) ≤ ε,

showing we have a right approximate unit. In a similar way one shows that the directed set is
a left approximate unit. The proof of 2) is similar but easier.

We define two representations π : B→ B(Hπ) and ρ : B→ B(Hρ) to be cb-equivalent if there
exists a cb-isomorphism g : Hπ → Hρ such that π = g−1ρg.

Lemma 4.11. Let π : End∗B(HB) → B(H) be a cb-representation. There exist idempotents
qi ∈ π(End∗B(HB)) ⊂ B(H) such that

∑
i qi = π(1) and supi ‖qi‖ < ∞. Consequently, π is

cb-equivalent to the representation

End∗B(HB)→ B
(⊕
i∈Ẑ

qiH
)

(bij) 7→ (qiπ(bij)qj).
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Proof. Using matrix coefficients and embedding B in the (i, i)-diagonal slot of End∗B(HB)
we obtain from π a family of representations πi : B → B(H) satisfying πiπj = 0. The
elements qi := πi(1) are the corresponding idempotents in B(H). We also write q = π(1).
If we write Hi := qiH, then since qiqj = δij , and ‖qi‖ ≤ ‖π‖, we have a cb-isomorphism
qH ∼=

⊕
i∈ẐHi and so a cb-isomorphism g : H→ (1−q)H⊕

⊕
i∈ẐHi. Using the identifications

[π(B)H] = qH and Nil π(B) = (1− q)H, this clearly gives a cb-equivalence between π and the
matrix representation (qiπ(aij)qj).

Lemma 4.12. Let J ⊂ B be an ideal in a unital operator algebra B and let (uλ) be a bounded
approximate unit for J. Let π : End∗B(HB) → B(H) be a cb-representation. Consider the
subalgebras J ∼= J · IdHB

⊂ End∗B(HB, J) ⊂ End∗B(HB) and the representations π : J → B(H)
and π : End∗B(HB, J)→ B(H), defined by restriction. Then:
1) there is an equality of essential subspaces [π(J)H] = [π(End∗B(HB, J))H];
2) the idempotent q = w-limuλ ∈ B(H) from Proposition 1.7 commutes with π(T ) for all
T ∈ End∗B(HB).

Proof. First we show that [π(J)H] = [π(End∗B(HB, J))H]. It is clear that

[π(J)H] ⊂ [π(End∗B(HB, J))H],

so we proceed to show the reverse inclusion. By Lemma 4.11 we may assume that there
are idempotents qi : H → H such that H =

⊕
i∈ẐHi and π(aij) = (qiπ(aij)qj). We wish

to show that for (hi) ∈ [π(End∗B(HB, J))H], it holds that π(uλ · IdHB
)(hi) → (hi), so that

(hi) ∈ [π(J · IdHB
)H]. Thus we must show that for every ε > 0 there exists µ ∈ Λ such that for

all λ ≥ µ it holds that ‖π(uλ · IdHB
)(hi)− (hi)‖ < ε. So let ε > 0 and choose N ∈ N such that∥∥∥ ∑

|i|>N

〈hi, hi〉
∥∥∥ 1

2
<

ε

2(C‖π‖+ 1)
,

where C := supλ ‖uλ‖. We claim we can choose µ such that for all λ ≥ µ and 1 ≤ |i| ≤ N − 1

‖π(uλ · IdHB
)(hi)|i|<N − (hi)|i|<N‖ <

ε

2N
. (4.3)

To see this, first observe that (hi)1≤|i|≤N ∈ [π(End∗B(HB, J))Hi]. This is the case because

q[N ] :=
∑

1≤|i|≤N

qi ∈ End∗B(HB),

and (hi)1≤|i|≤N = q[N ](hi). Then, by Lemma 1.6 and Lemma 4.10

π(uλ · IdHB
)(hi)|i|<N → (hi)|i|<N ,

and since we only deal with finitely many entries (at most 2N), this means we can choose µ
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as in Equation (4.3). Thus we have for λ ≥ µ that

‖π(uλ · IdHB
)(hi)− (hi)‖ ≤ ‖π(uλ · IdHB

)(hi)1≤|i|≤N − (hi)1≤|i|≤N‖
+ ‖π(uλ · IdHB

)(hi)|i|>N − (hi)|i|>N‖

≤
∑

1≤|i|≤N

‖πi(uλ · IdHB
)hi − hi‖

+
∥∥∥ ∑
|i|>N

〈(π(uλ · IdHB
− IdHB

)hi, (π(uλ · IdHB
− IdHB

)hi〉
∥∥∥ 1

2

<
ε

2
+ (‖π(uλ · IdHB

)‖+ 1)
∥∥∥ ∑
|i|>N

〈hi, hi〉
∥∥∥ 1

2

<
ε

2
+

(‖π(uλ · IdHB
)‖+ 1)ε

2(C‖π‖+ 1)
< ε,

showing that π(uλ)(hi)→ (hi).

In the same vein [π(J)∗H] = [π(End∗B(HB, J))∗H]. As End∗B(HB, J)) is an ideal in End∗B(HB),
the subspace [π(End∗B(HB, J))H] is End∗B(HB)-invariant. The topological complement, given
by [π(End∗B(HB, J))∗H]⊥, is End∗B(HB) invariant as well. For if v ∈ [π(End∗B(HB, J))∗H]⊥ and
h ∈ [π(End∗B(HB, J))∗H], then π(T )∗h ∈ [π(End∗B(HB, J))∗H] because End∗B(HB, J) is an ideal
and thus

〈π(T )v, h〉 = 〈v, π(T )∗h〉 = 0.

That is π(T )v ∈ [π(End∗B(HB, J))∗H]⊥. From 3), 4) of Proposition 1.7, we see that

qπ(T )q = π(T )q, (1− q)π(T )(1− q) = π(T )(1− q),

from which qπ(T ) = π(T )q follows readily.

Lemma 4.13. Let (uλ) be a bounded approximate unit for an ideal I in an operator algebra B.
Then for all T ∈ End∗B(HB), [uλ · IdHB

, T ]
w−→ 0. That is, uλ · IdHB

commutes with End∗B(HB)
weakly asymptotically.

Proof. The argument we give is modelled on the proof of [1, Lemma 3.1]. We assume that
End∗B(HB), and hence J and B are completely isometrically embedded in B(H). Let the linear
functional φ : End∗B(HB)→ C be continuous. By the Hahn-Banach theorem we may extend φ
to the enveloping C∗-algebra C∗(End∗B(HB)), the C∗-algebra generated by End∗B(HB) ⊂ B(H).
Since every element in the dual of a C∗-algebra is a linear combination of four states, it suffices
to prove weak convergence with respect to all states of C∗(End∗B(HB)). If we denote by
πu : C∗(End∗B(HB)) → B(Hu) the universal GNS-representation of C∗(End∗B(HB)), the state
φ has the form b 7→ 〈v, πu(b)v〉, where v is a vector in the GNS-space Hu. Since (uλ) is an
approximate unit for J, π(uλ) converges strongly to an idempotent q onto [π(J)Hu]. By Lemma
4.12, q commutes with π(aij). Hence

lim
λ
φ([uλ · IdHB

, T ]) = 〈v, [q, πu(T )]v〉 = 0.

Definition 4.14. Let J ⊂ B be an ideal and uλ a bounded approximate unit for J. The
bounded approximate unit uλ is said to be End∗B(HB)-quasicentral if for all T ∈ End∗B(HB)
we have limλ ‖[T, uλ · IdHB

]‖ = 0.
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We are now ready to establish the existence of End∗B(HB)-quasicentral approximate units. It
should be noted that this result is new even for C∗-algebras.

Theorem 4.15. Let (uλ)λ∈Λ be a bounded approximate unit for a closed ideal J in a unital
operator algebra B. Then there is an End∗B(HB)-quasicentral approximate unit (vµ)µ∈M for J,
contained in the convex hull of (uλ).

Proof. The proof is formally identical to that of [1, Theorem 3.2]. We assume End∗B(HB) is
isometrically isomorphically embedded in B(H). Denote by C (uλ) the convex hull of (uλ·IdHB

).
Choose elements b1, . . . , bn ∈ End∗B(HB), v ∈ C (uλ) and ε > 0. Consider

C (uλ) ⊂ End∗B(HB)n =
n⊕
i=1

End∗B(HB),

by diagonal embedding and set b = diag(b1, . . . , bn). The set Cb := {[u, b] : u ∈ C (uλ)} is convex
and hence its norm and weak closures in B(Hn) coincide. By Lemma 4.13, [uλ · IdHB

, b]
w−→ 0,

and hence 0 must be a norm limit of elements of Cb. That is, there exists v ∈ Cb with
‖[v, b]‖ < ε. Letting Ω denote the set of finite subsets of End∗B(HB), the argument shows that
for each pair (λ, ω) ∈ Λ× Ω there is a vλ,ω ∈ C (uµ : λ ≤ µ) for which

‖[vλω, b]‖ <
1

|ω|
,

for all b ∈ ω. The relation

(λ, ω) ≤ (λ′, ω′)⇔ λ ≤ λ′ and ω ⊂ ω′,

defines a partial order on Λ×Ω, with respect to which (vλω) is a bounded approximate unit.

The next theorem considers quasicentral approximate units for algebras of multipliers, relative
to a second ideal. This result is not as general as the above theorem, but provides the statement
we need for our refinement of the Kasparov technical theorem in the next section.

Theorem 4.16. Let B be a unital operator algebra and K an ideal with bounded approximate
unit (vn). Assume that J, A ⊂ B are subalgebras such that J is an ideal in B, JA, AJ ⊂ K and
KA = AK = K. If A has a bounded approximate unit (uk) then there exists an End∗B(HB, J)
quasicentral approximate unit for A contained in the convex hull of (uk).

Proof. Assume without loss of generality that End∗B(HB) is completely isometrically embedded
in B(H) and let C∗(End∗B(HB)) ⊂ B(H) denote its enveloping C∗-algebra in this representation.
We wish to prove that for all functionals φ : End∗B(HB,K)→ C, and all T ∈ End∗B(HB, J) we
have φ([uk, T ])→ 0.

As in the proof of Lemma 4.13, it will suffice to prove this for vector states φ = 〈v, ·v〉 on
C∗(End∗B(HB)) coming from the universal GNS representation πu : C∗(EndB(HB))→ B(Hu).
Since both K and A have bounded approximate units, Proposition 1.7 gives two idempotents:
p mapping onto

[πu(K · IdHB
)Hu] = [πu(End∗B(HB,K))Hu],

(cf. Lemma 4.12) and q mapping onto [πu(A · IdHB
)Hu] as the strong limits of (vn) and (uk)

respectively. Since AK = K, we have [πu(A)[πu(K)Hu]] = [πu(K)Hu] and thus uk → 1 strongly
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on [πu(K)Hu] = pHu, again by Proposition 1.7. We claim that pq = qp = p. To see this, first
observe that pq = qp, since by Lemma 4.13, p commutes with all elements of B and hence in
particular with A. Therefore, for any h ∈ Hu we have

qph = limukph = lim pukh = pqh.

Then since (uk) converges strongly to 1 on [πu(K)Hu] it follows that

qph = limπ(uk)ph = ph,

which proves our claim. Now let T ∈ End∗B(HB, J) and consider [uk, T ] ∈ End∗B(HB,K). The
operator T commutes with p and since [uk, T ] ∈ End∗B(HB,K) this operator equals p[uk, T ]p,
and

limφ([uk, T ]) = lim〈v, πu([uk, T ])v〉 = lim〈v, pπu([uk, T ])pv〉
→ 〈v, p[q, πu(T )]pv〉 = 〈v, [p, πu(T )]v〉 = 0.

Thus, the commutators [uk, T ] converge to 0 in the weak topology of End∗B(HB,K). The same
argument as in the proof of Theorem 4.15 now shows that the convex hull of (uk) contains an
approximate unit that is quasicentral for End∗B(HB, J).

4.3 Completeness and the technical theorem

Having established the existence of quasi-central approximate units in operator algebras with
bounded approximate unit, we can formulate an extension of Kasparov’s technical theorem in
the spirit of Higson, [26]. For practical purposes we state the following corollary of Theorem
4.15 as a Lemma. When (un) is a sequential approximate unit, we say that (vn) ∈ C (uk) is a
sequence of far out convex combinations if (vn) ∈ C (uk : k ≥ n).

Lemma 4.17. Let J be an ideal in a separable unital operator algebra B, (un) a sequential
bounded approximate unit for J. Let (zi)i∈N ⊂ B a countable norm bounded subset of B and
1 > ε > 0. There exists a B quasicentral, sequential bounded approximate unit (vn) for J,
contained in the convex hull of (un), such that

sup
i∈N
‖[vn+1 − vn, zi]‖ < εn.

Proof. Assuming B separable and (un) countable, the new approximate unit can be chosen
in such a way as to satisfy the asserted properties. This is done by choosing a countable
dense subset {b1, b2, . . . } of B, embedding B in B∞ diagonally as usual, and considering
z := diag(z1, . . . , zi, . . . ) ∈ B∞. From the proof of Theorem 4.15 we obtain an End∗B(HB)
quasicentral approximate unit vn,ω indexed by N × Ω, with Ω the set of finite subsets of
End∗B(HB). Now choose v0 := v0{z} and inductively assume vk := vnk,ωk ∈ C (un) was chosen
from vn,ω in such a way that

vk =

mk∑
i=nk

θiui, θi ∈ [0, 1],

mk∑
i=nk

θi = 1,

for some nk,mk ∈ N. Now choose

vk+1 := vnk+1,{z,b1,...,bnk+1
},
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where nk+1 > mk, yielding a sequential approximate unit for J, which is quasicentral for the
(bi) and hence for B, as well as for the element z ∈ B∞. It should be noted that quasicentrality
does not necessarily hold for all of B∞. By choosing a subsequence, we can realise that

‖[(vn+1−vn)·IdHB
, x]‖ = ‖[(vn+1−vn)·IdHB

, diag(z1, . . . , zi, . . . )]‖ = sup
i∈N
‖[vn+1−vn, zi]‖ < εn,

for the given sequence zi as desired.

Theorem 4.18. Let B be a unital operator algebra, K ⊂ B an ideal with countable bounded
commutative approximate unit and A, J ⊂ B closed separable subalgebras with AJ, JA ⊂ K,
K ⊂ J and AK = KA = K. Suppose we are given
1) a bounded total subset {ai} ⊂ A and countable bounded approximate units (u′k) ⊂ A, (v′k) ∈
J, and
2) F ∈ B such that 1− F 2 ∈ J, FJ, JF ⊂ J, [F,A] ⊂ K and limk→∞ ‖[F, u′k]‖ = 0.

For any 0 < ε < 1, there exist countable bounded approximate units (vn), (uk) contained in
the convex hull C (v′k) and C (u′k) respectively such that for dn := vn+1 − vn the following
convergence properties hold:
1) ‖[dn, F ]‖ < ε2n;
2) ‖[dn, ai]‖ < ε2n for all i;
3) ‖[dn, uk]‖ < ε2n for all k;
4) ‖[dn, uk]‖ < ε2k for all n;
5) ‖dn[F, ai]‖ < ε2n for n ≥ i;
6) ‖dn[F, uk]‖ < ε2k for all n;
7) ‖dn[F, uk]‖ < ε2n for n ≥ k;
8) ‖ukai − ai‖ < ε2k for k > i;
9) ‖dn[F, ukai − ai]‖ < εk+2n for n > k > i;
10)‖[dn, ukai − ai]‖ < εk+2n for n > k > i.

In fact these properties continue to hold for any subsequence (ṽn) := (vkn) and the conclusion
holds for any finite number of subalgebras A1, . . . ,An satisfying the hypotheses on A.

Proof. The case of a finite number of algebras A1, . . . ,An is reduced to that of a single algebra
by setting A := ⊕ni=1Ai ⊂ ⊕ni=1B and ⊕ni=1J. We thus prove the theorem for a single algebra
A.

The hypotheses imply that J̃ := 1 + F + J ⊂ B is an algebra and that J is an ideal in J̃.
Theorem 4.15 gives us an F -quasicentral approximate unit for J. Using this approximate unit,
consider B̃ := 1 + A + J ⊂ B, in which J is an ideal as well. Embed B̃, and hence K, J and A

into End∗
B̃

(H
B̃

) as multiples of the identity operator IdH
B̃

. The elements

a := diag(a1, . . . , ai, . . . ) and u := diag(u′1, . . . , u
′
k, . . . ),

are elements of End∗
B̃

(H
B̃

) as well. Thus by Theorem 4.15, there exists a countable, com-
mutative, approximate unit (vn) ⊂ C (v′n), which is quasicentral for a, u, whilst retaining
quasicentrality for F .

Write dn := vn+1− vn. By quasicentrality for F, a and u, we can re-index the (vn) if necessary,
and we may assume that

‖[dn, F ]‖, ‖[dn, a]‖, ‖[dn, u]‖ < ε2n, (4.4)
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which in particular means that

‖[dn, u′k]‖, ‖[dn, ai]‖ < ε2n, for all i, k.

This proves the estimates 1), 2), as well as 3) for for the approximate unit u′k.

Next we construct an approximate unit (uk) ⊂ C (u′k) satisfying 3) and 4). We again consider

the algebra B̃ := 1 + A + J ⊂ B, in which J is an ideal. The uniformly bounded sequence
dn ∈ J defines an element d := diag(d1, . . . , dn, . . . ) ∈ End∗

B̃
(H

B̃
, J). Apply Theorem 4.16

to the approximate unit (u′k) to obtain a countable approximate unit (uk) ⊂ C (u′k) which is
quasicentral for d. Thus we may assume that

‖[dn, uk]‖ < ε2k, for all n.

Property 3) is preserved under convex combinations, and is thus valid for uk.

For 5), since [F, ai] ∈ K ⊂ J, we may reindex vn and assume that

‖dn[F, ai]‖ < ε2n, whenever n ≥ i, (4.5)

as desired.

To prove 6), observe that because by assumption limk→∞ ‖[F, u′k]‖ = 0, we may assume that

‖[F, uk]‖ <
ε2k

2C
,

with C := supk ‖v′k‖. Then since ‖dn‖ ≤ 2C the claim follows.

For 7) we use that [F, uk] ∈ K ⊂ J so dn[F, uk]
n−→ 0 for each k, which, by passing to a

subsequence of the dn if necessary, amounts to

‖dn[F, uk]‖ < ε2n, whenever n ≥ k.

For each ai we have the norm convergence ukai
k−→ ai. Therefore, given 0 < ε < 1, we may

re-index the approximate unit uk for A such that

‖ukai − ai‖ < εk, whenever k > i.

Note that such a re-indexing does not affect the norm convergence [F, uk]
k−→ 0 nor the properties

3), 4) and 6). To preserve property 7) we may need to pass to a reindexing of vn, which can be
done without affecting properties 1) − 6). This means that we may assume that for all k > i
we have ‖ukai − ai‖ < ε2k, which proves 8).

For 9) and 10), we can, since 8) is true, assume that for all i ∈ Ẑ we have that

zi := diag

(
ukai − ai

εk

)
k

∈ A∞ ⊂ End∗B(HB).

Apply Lemma 4.17 to obtain an approximate unit (vn) for J which is quasicentral for all the
zi, and we may achieve

‖[dn, zi]‖ < ε2n, whenever n ≥ i, (4.6)

as well. Note that the estimates (4.4), (4.5), (4.6) remain valid when (vn) is replaced by a
subsequence or a sequence of far out convex combinations. The same is true when (uk) is
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replaced by a subsequence (ũk) := (unk), so that u is replaced by ũ := diag(ũk)k and zi by
z̃i := ( ũkai−ai

εk
)k:

‖[dn, ũ]‖ = sup
k
‖[dn, ũk]‖ = ‖[dn, ũnk ]‖ ≤ sup

k
‖[dn, uk]‖ < ε2n,

and

‖[dn, z̃i]‖ = sup
k
‖[dn,

ũkai − ai
εk

]‖ ≤ sup
k
‖[dn,

unkai − ai
εnk

]‖ ≤ sup
k
‖[dn,

ukai − ai
εk

]‖ < ε2n.

Lastly, since for fixed i, k we have [F, ukai−ai
εk

] ∈ J, the sequence

dn[F,
ukai − ai

εk
]
n−→ 0,

which means that another re-indexing achieves

‖dn[F,
ukai − ai

εk
]‖ < ε2n,

for n > k > i and thus

‖dn[F, ukai − ai]‖ < εk+2n, whenever n > k > i.

This completes the proof of 9) and 10).

For our first lifting result, we need the following elementary result concerning the strict topology
on a C∗-module.

Lemma 4.19. Let (Tn) ⊂ K(EB) be a sequence converging strictly to T ∈ K(EB). Then there
exists a sequence (Sn) ⊂ C (Tn) such that Sn → T in norm. Hence for any essential Kasparov
module (A,EB, F ), A has an approximate unit (un) such that [F, un]→ 0 in norm.

Proof. We need to show that Tn → T in the weak topology of K(EB), for then there exists
a sequence in the convex hull of the Tn that converges to Sn in norm. Since every linear
functional on a C∗-algebra is a linear combination of four states, it suffices to show that for
all states σ : K(EB) → C we have σ(Tn) → σ(T ). Any such σ can be realised as a vector
state for a vector vσ in the universal GNS-representation Hu of K(E). The representation
πu : K(EB) → B(Hu) is essential, so πu(Tn) converges to πu(T ) weakly in B(Hu). Thus
σ(Tn) = 〈vσ, πu(Tn)vσ〉u → 〈vσ, πu(T )vσ〉u = σ(T ) and we are done.

Let (A,EB, F ) be a Kasparov module for which the A representation is essential. Any approx-
imate unit (un) for A will converge strictly to the identity operator on EB and [F, un] → 0
strictly in EB. Therefore the previous argument yields a contractive approximate unit (u′n)
for A such that [F, u′n]→ 0 in norm.

Proposition 4.20. Let A,B be separable C∗-algebras. Any class in KK(A,B) can be repre-
sented by an unbounded Kasparov module (A, EB, S) such that A admits an approximate unit
(un) with [S, un]→ 0 in norm.

53



Proof. Let (A,EB, F ) be a Kasparov module for which the A representation is essential. Let
(u′k) be an approximate unit for A such that [F, u′k] → 0 in norm, as in Lemma 4.19. Let v′n
be a contractive approximate unit for JF , where JF is defined in Lemma 4.5.

Applying Theorem 4.18 with B = End∗B(E), K = K(E), J = JF , A = A, we obtain approxi-
mate units (vn) for JF and (un) for A with the properties 1)-10) of Theorem 4.18. Recalling
that dn := vn+1 − vn, we define

`−1 = c :=
∞∑
n=0

ε−ndn,

which is an unbounded multiplier of the ideal JF . By 2) of Theorem 4.18, [`−1, a] is bounded
on Im ` for a dense set of a ∈ A, and by 5), [F, a]`−1 is also bounded on Im ` for the same

dense set of a ∈ A. By 1) [F, `−1] is bounded on Im ` and since (1 − F 2)
1
2 ∈ JF we may also

assume (1 − F 2)
1
2 `−1 to be bounded of norm < 1. Thus ` is admissible and by Theorem 4.7

the operator S := 1
2(F`−1 + `−1F ) lifts (EB, F ) to an unbounded Kasparov module.

Thus it only remains to check that [S, uk] → 0 and that [S, ukai − ai]
k−→ 0 for all i. The

properties 3), 4), 6) and 7) now imply that

‖[F`−1, uk]‖ = ‖F [`−1, uk] + [F, uk]`
−1‖ = ‖

∞∑
n=0

Fε−n[dn, uk] + ε−n[F, uk]dn‖

≤ ‖
∑
n≤k

Fε−n[dn, uk] + ε−n[F, uk]dn‖+ ‖
∑
n>k

Fε−n[dn, uk] + ε−n[F, uk]dn‖.

Now applying properties 4) and 6) to the first term and properties 3) and 7) to the second we
estimate

‖[F`−1, uk]‖ ≤
∑
n≤k

2ε2k−n +
∑
k>n

2εn = εk(
∑
n≤k

2εn +

∞∑
n=1

2εn) ≤ Cεk,

and thus limk→∞[S, uk] → 0. Lastly, observe that by 8) we have ‖ukai − ai‖ < ε2k whenever
k > i. Then for k > i we can estimate

‖[F`−1, ukai − ai]‖ ≤ ‖[F, ukai − ai]`−1‖+ ‖F [`−1, ukai − ai]‖

≤
∑

ε−n‖F [dn, ukai − ai]‖+ ε−n‖[F, ukai − ai]dn‖

≤
∑
n≤k

ε−n‖F [dn, ukai − ai]‖+ ε−n‖[F, ukai − ai]dn‖

+
∑
n>k

ε−n‖F [dn, ukai − ai]‖+ ε−n‖[F, ukai − ai]dn‖

≤
∑
n≤k

Cε2k−n +
∑
n>k

Cεn+k by 8), 9) and 10)

≤ 2Cεk,

and thus [S, ukai − ai]
k−→ 0 for all i.

In the case of Fredholm modules, the absence of technicalities related to complementability of
submodules allow for a better version of the above proposition. For an A-Fredholm module

54



(A,H, F ), we write p for the projection onto [π(A)H], also note that [F, p] ∈ J since

[F, p]π(a) = [F, pπ(a)]− p[F, π(a)] = [F, π(a)]− p[F, π(a)].

Lemma 4.21. Let A be a separable C∗-algebra, (A,H, F ) be a Fredholm module with F = F ∗

and F 2 ≤ 1. Let p be the projection onto [π(A)H]. There exists h ∈ J such that:
1) h has dense range;
2) [pFp, h] = 0.

Proof. Since the module (H, pFp) is a compact perturbation of (H, F ), and 1−p ∈ J , it suffices
to construct h ∈ B(pH), since h + (1 − p) ∈ B(H) then has the desired properties. Thus, we
replace H with pH = [π(A)H] and F with pFp, so we may assume p = 1. The operator 1−F 2

is in J and H splits as
H = [Im (1− F 2)]⊕ ker(1− F 2).

The operator F respects this decomposition since F is self-adjoint. Choose a strictly positive
k ∈ K(ker(1−F 2)), and consider k+FkF : ker(1−F 2)→ ker(1−F 2). This element commutes
with F |ker(1−F 2) since F 2 = 1 on this subspace. Now define

h := (1− F 2) + k + FkF ∈ J,

which commutes with F . Moreover h ≥ 0 since 1 − F 2 ≥ 0 and h has dense range because it
is an orthogonal sum of elements with dense range in their respective subspaces.

Using this particular h, one can lift the Fredholm module directly to a self-adjoint element,
and one does not need to assume that the representation is essential.

Definition 4.22. Let A, B, C be separable C∗-algebras (A,EB, F ) an essential (A,B) Kas-
parov module and (B, FC , T ) an essential unbounded Kasparov module such that B has
bounded approximate unit.

Suppose we are given a complete projective B-submodule EB ⊂ EB with Grassmann connection
∇ : E∇B → E⊗̃BΩ1

T so that 1 ⊗∇ T is the associated self-adjoint regular operator on E⊗̃BFC .
The pair (EB,∇) is compatible with (A,EB, F ) if

1) F ⊗ 1, (1− F 2)
1
2 ⊗ 1 ∈ Lip(1⊗∇ T );

2) there are bounded total subsets {ai} ⊂ A and {cj} ⊂ JF consisting of self-adjoint elements
such that for all i, j, the elements ai, cj ∈ Lip(1 ⊗∇ T ) and the closed subalgebras A, J ⊂
Lip(1⊗∇ T ) generated by {ai} and {cj} satisfy AJ, JA, FJ, JF ⊂ J;
3) there is an approximate unit (uk) ⊂ A for which

lim
k→∞

‖[1⊗∇ T, uk]‖ → 0, lim
k→∞

‖[F, uk]‖ → 0, and for all i, lim
k→∞

‖[1⊗∇ T, ukai − ai]‖ = 0;

4) there is an approximate unit (wn) for JF such that limn→∞ ‖[1 ⊗∇ T,wn]‖ = 0 and for all
j, limn→∞ ‖[1⊗∇ T,wncj − cj ]‖ → 0.

The proof of the next result brings together our various technical innovations. First, the
characterisation of our strongest form of completeness from Theorem 1.25 is present to ensure
that the operator [s, t](s ± i)−1 is bounded. Our version of Kasparov’s technical theorem,
Theorem 4.18, is used only for C∗-algebras, but we use quasicentrality for a differentiable
algebra J in precisely one place, to ensure that [F, `−1] is not just bounded, but even in
Lip(1⊗∇ T ).
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Theorem 4.23. Let A, B be separable C∗-algebras, B a differentiable algebra of an unbounded
Kasparov module (B, FC , T ) and (A,EB, F ) a bounded (A,B) Kasparov module. If EB admits
a compatible complete projective submodule EB ⊂ EB, then (A,EB, F ) can be lifted to a corre-
spondence (A,EB, S,∇) for (B, FC , T ).

Proof. Since we are given a compatible complete projective submodule EB ⊂ EB we use the
notation and data of Definition 4.22. By Proposition 3.20 the elements ai and cj are in
End∗B(E∇). Denote by A and J the closed subalgebras of End∗B(E∇) defined under 2) and let

∇ : E∇B → E⊗̃BΩ1
T ,

be the Grassmann connection.

We proceed in two steps. By hypothesis, there is a countable approximate unit (wn) for J

satsifying condition 4) of Definition 4.22 and FJ, JF ⊂ J. By Theorem 4.15 there is an
F quasi-central approximate unit v′n for J contained in the convex hull of wn, and we set
d′n = v′n+1 − v′n, and we can assume ‖[F, d′n]‖J = ‖[F, d′n]‖1⊗∇T < ε2n, cf. Theorem 4.18. Since
(v′n) =

∑mn
i=kn

θiwi is built from far out convex combinations of wn, this approximate unit will
in particular again satisfy

[1⊗∇ T, v′n] =

mn∑
i=kn

θi[1⊗∇ T,wi]→ 0,

in norm. We may without loss of generality assume that ‖[1⊗∇ T, v′n]‖ < ε2n. Thus we have

‖[F, v′n+1 − v′n]‖1⊗∇T < ε2n, ‖[1⊗∇ T, v′n]‖ < ε2n. (4.7)

In particular (v′n) is an approximate unit for the C∗-algebra JF . By applying Theorem 4.18
with B = End∗B(E), J = JF , A = A, and K = K(EB) we obtain the approximate unit (vn) for
JF with the properties 1)-10) of Theorem 4.18.

It is important to notice that this can be achieved without losing the properties (4.7), because
these are stable under far out convex combinations. Thus, by Theorem 1.25 we obtain the
positive unbounded multiplier

`−1 = c :=
∑

ε−ndn, dn = vn+1 − vn

for the algebra J, with the property that [1 ⊗∇ T, `−1] is bounded. Because the (vn), as
an approximate unit for the C∗-algebra JF , have properties 1)-10) from Theorem 4.18, the
argument from the proof of Proposition 4.20 can be repeated to see that the self-adjoint lift
S := 1

2(F`−1 + `−1F ) makes (A, EB, S) into an unbounded Kasparov module such that A has
an approximate unit with [S, un] → 0 in norm. So 1) of Definition 4.1 is satisfied, and 2) is
satisfied by the assumption that EB is complete and 3) by assumptions 2) and 3) of Definition
4.22. We now turn to proving 4) of Definition 4.1.

It follows from the properties (4.7) that [F, `−1] ∈ Lip(1⊗∇ T ). To see this, observe that the
finite sums

∑k
n=0 ε

−n[F, dn] preserve the domain of 1⊗∇ T , and using the properties (4.7) we
find that

‖[1⊗∇ T, [F, `−1]]‖ = ‖
∑
n

ε−n[1⊗∇ T, [F, dn]]‖ ≤
∑
n

ε−n‖[1⊗∇ T, [F, dn]]‖ ≤
∑

εn <∞.

56



Now compute on Dom 1⊗∇ T

[1⊗∇ T, S](S ± i)−1 = [1⊗∇ T, S](S ± i)−1 = [1⊗∇ T, F`−1 − [F, `−1]](S ± i)−1

= [1⊗∇ T, F`−1](S ± i)−1 − [1⊗∇ T, [F, `−1]](S ± i)−1,

by which it suffices to show that [1⊗∇T, F`−1](S± i)−1 is bounded. Note that we may assume
that ‖[F, `−1]‖ < 1 and thus that F`−1±i : Im `→ EB is surjective and has adjointable inverse
(F`−1 ± i)−1. Then by the resolvent equation

(S ± i)−1 = (F`−1 − 1

2
[F, `−1]± i)−1 = (F`−1 ± i)−1 +

1

2
(F`−1 ± i)−1[F, `−1](S ± i)−1,

and it suffices to show that [1⊗∇ T, F`−1](F`−1 ± i)−1 is bounded on Dom 1⊗∇ T . Then

[1⊗∇ T, F`−1](F`−1 ± i)−1 = [1⊗∇ T, F ]`−1(F`−1 + i)−1 + F [1⊗∇ T, `−1](F`−1 ± i)−1

= [1⊗∇ T, F ](F ± i`)−1 + F [1⊗∇ T, `−1](F`−1 ± i)−1,

which is bounded on Dom 1⊗∇ T . Therefore (A,EB, S,∇) has the required properties.

4.4 Lifting Kasparov modules to correspondences

In view of Theorem 4.23, in order to lift a pair of Kasparov modules (A,EB, G1) and (B,FC , G2)
so that we can construct their Kasparov product, we need to find an unbounded representative
(B, FC , T ) such that (A,EB, G1) admits a compatible pair (EB,∇) of a complete projective
submodule and connection in the sense of Definition 4.22. We begin with a Lemma about a
special subalgebra of the multipliers of the linking algebra. Recall that the linking algebra
L(EB) of the C∗-module EB is the algebra of compact endomorphisms of EB ⊕B.

Lemma 4.24. Let EB be a C∗-module and A ⊂ End∗B(E) an essential C∗-subalgebra with
self-adjoint contractive approximate unit (uAn ), and let (uBn ) be an approximate unit for B.
Then the collection of operators

LA(EB) :=

{(
a+K |e〉
〈f | b

)
: a ∈ A, K ∈ K(EB), b ∈ B, e, f ∈ EB

}
⊂ End∗B(E ⊕B), (4.8)

is a C∗-subalgebra containing the linking algebra L(EB) as an ideal and un :=
( uAn 0

0 uBn

)
is an

approximate unit for LA(EB). The algebra LA+(EB+) coincides with the unitisation LA(EB)+.

Proof. A quick computation shows that LA(EB) ∗-algebra. Since K(EB) is an ideal in End∗B(E)
it follows that A + K(EB) is a C∗-algebra. Moreover, because A is essential, [AEB] = EB, it
follows that uAn 〈e| = 〈uAn e| → 〈e| and |e〉uAn = |uAn e〉 → |e〉 for all e ∈ EB. Thus uAnK → K
for all K ∈ K(EB), and uAn is approximate unit for A + K(EB). Using the corresponding

properties for uBn , the same argument shows that
( uAn 0

0 uBn

)
is an approximate unit for LA(E).

The statement on the unitisation is immediate.

We now recall a definition from [18], where the notion of connection was introduced in the
bounded picture of KK-theory.
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Definition 4.25. Let (B,FC , G) be a (B,C) Kasparov module and EB a C∗-module over B.
An operator G ∈ End∗C(E ⊗B FC) is a G2-connection if for each e ∈ E the operator[(

G 0
0 G2

)
,

(
0 |e〉
〈e| 0

)]
∈ End∗C(E⊗̃BFC ⊕ FC),

is compact.

It is well known that G2-connections always exist, by realising EB as a complemented sub-
module of HB+ via v : EB → HB+ and defining G := v∗εdiag(G2)v =: v∗G2,εv. It is useful to
observe that in End∗C(E⊗̃BF ⊕ F ) we have the identity(

G 0
0 0

)
=
∑
i∈Ẑ

(
0 |γ(xi)〉
0 0

)(
0 0
0 G2

)(
0 0
〈xi| 0

)
,

which can also be written as a matrix product(
0 |xi〉
0 0

)t
i∈Ẑ
·
(
εdiag

(
0 0
0 G2

))
·
(

0 0
〈xi| 0

)
i∈Ẑ

,

of a row, a diagonal matrix and a column.

Lemma 4.26. Let A ⊂ End∗B(EB) be an essential subalgebra with approximate unit (ũn) and
(B,FC , G2) a Kasparov module. Let (xi)i∈Ẑ be a homogenous frame for EB with stabilisation
isometry v : EB → HB+ and associated G2-connection G = v∗εdiag(G2)v. Then there is
a G-quasicentral approximate unit (un) for A contained in the convex hull C (ũn): that is
[G, un]→ 0 in norm.

Proof. This will follow from a direct application of Theorem 4.15. Consider the algebra

LA+(EB+) and the ideal LA(EB+) as defined in (4.8), with its approximate unit u′n =

(
ũn 0
0 1

)
.

We view the row, respectively column,

|x〉 :=

(
0 |xi〉
0 0

)t
i∈Ẑ

, 〈x| :=
(

0 0
〈xi| 0

)
i∈Ẑ

,

as elements in End∗LA+ (EB+ )(HLA+ (EB+ )). By Theorem 4.15, the convex hull C (ũn) contains

an 〈x|, |x〉-quasicentral approximate unit u′′n =

(
un 0
0 1

)
. Observe that[

u′′n · IdHL
A+

(EB+ ), ε · diag

(
0 0
0 G2

)]
= 0.

Writing u′′n for u′′n · IdHL
A+

(EB+ ) when necessary, we can compute(
[G, un] 0

0 0

)
=

[(
G 0
0 0

)
,

(
un 0
0 1

)]
=

[(
0 |x〉
0 0

)
·
(
ε · diag

(
0 0
0 G2

))
·
(

0 0
〈x| 0

)
,

(
un 0
0 1

)]
=

[(
0 |x〉
0 0

)
,

(
un 0
0 1

)](
ε · diag

(
0 0
0 G2

))
·
(

0 0
〈x| 0

)
+

(
0 |x〉
0 0

)
·
(
ε · diag

(
0 0
0 G2

))
·
[(

0 0
〈x| 0

)
,

(
un 0
0 1

)]

58



which converges to 0 in norm by Theorem 4.15. Therefore [G, un] converges to 0 in norm.

Given a ∗-homomorphism B → End∗C(F ), the algebra End∗B(EB ⊕B) is naturally represented
on the C∗-module E⊗̃BF ⊕F . In particular, the linking-type algebras defined in Lemma 4.24
act on E⊗̃BF ⊕ F . We prepare the setting for the proof of our final lifting result, which
is yet another application of Theorem 4.18. Recall that given a bounded Kasparov module
(A,EB, G1), we define JG1 to be the C∗-algebra generated by K(EB) and IdEB −G2

1.

Lemma 4.27. Let (A,EB, G1) and (B,FC , G2) be Kasparov modules and (xi)i∈Ẑ a homogenous
frame for EB with stabilisation isometry v : EB → HB+ and associated G2-connection G =
v∗G2,εv. Write G̃ :=

(
G 0
0 G2

)
and G̃1 :=

(
G1⊗1 0

0 0

)
. As in Lemma 4.24 consider the algebras

A0 := LA(EB), A1 := LJG1
(EB).

For p = 0, 1 define the C∗-algebras J̃p generated by K(EB) ⊗ 1 ⊕ K(FC), [G̃, Ap], [G̃, G̃1] and
1− G̃2 on E⊗̃FC ⊕FC . Let B̃p be the C∗-algebras generated by IdE⊗̃BF⊕F , Ap and J̃p. Let Kp

be the C∗-subalgebra of B̃p generated by ApJ̃p and J̃pAp. Finally, define Jp = Kp + J̃p. Then:
1) Ap admits G̃,G1 ⊗ 1-quasicentral approximate units upn of the form

(u0
n) =

(
ũAn 0
0 ũBn

)
, (u1

n) =

(
w̃1
n 0

0 ũBn

)
,

where (ũAn ), (ũBn ), (w̃1
n) are approximate units for A,B and JG1 respectively;

2) Jp admits an approximate unit (vpn) =
( ṽpn 0

0 w̃2
n

)
where (ṽpn) is an approximate unit for the

algebra generated by [G,Ap], [G,G1 ⊗ 1], 1 − G2 and K(EB) ⊗ 1 and (w̃2
n) is an approximate

unit for JG2;
3) Kp is an ideal in B̃p;
4) ApKp = KpAp = Kp, that is Kp is Ap-essential;
5) ApJp, JpAp ⊂ Kp ⊂ Jp;
6) [G,Ap] ⊂ Kp.

Proof. To prove 1), we show that both A0 and A1 admit approximate units (u0
n), (u1

n) that
are quasicentral for G̃ and G̃1 ⊗ 1. Since both A and JG1 are essential on EB, by Lemma 4.26
there exist approximate units (ũAn ), (w̃1

n) for A and JG1 , respectively, that are quasicentral
for G. Since [G1, A], [G1, JG1 ] ⊂ K(EB), the approximate units (ũAn ), (w̃1

n) can be chosen
G1-quasicentral as well by Lemma 4.19. For the same reason B admits a G2 quasicentral
approximate unit (ũBn ). By Lemma 4.24 setting

(u0
n) :=

(
ũAn 0
0 ũBn

)
, (u1

n) :=

(
w̃1
n 0

0 ũBn

)
,

yields G̃, G1 ⊗ 1-quasicentral approximate units for A0 and A1.

To prove 2) we first show that any G̃-quasicentral approximate unit (vpn) for J̃p is an approxi-
mate unit for Jp. Since J̃p is essential (it contains L(EB) ), existence of such (vpn) is guaranteed
by Lemma 4.26. It is clear that (vpn) is an approximate unit for J̃p and J̃pAp. For ApJ̃p it
suffices to show that

vpna[G̃, b] = vpn[G̃, ab]− vpn[G̃, a]b→ 0,

vpna[G̃, G̃1] = [G̃, vpnaG̃1]− [G̃, vpn]aG̃1 − vpn[G̃, a]G̃1 → 0,

59



vpna(1− G̃2) = vpn(1− G̃2)a+ [G̃, vpn][G̃, a]− G̃vn[G̃, a]− vpn[G̃, a]G̃→ 0,

which all follow from G̃-quasicentrality of (vpn).

Now we proceed to the statement of 2). Consider the subalgebra of End∗C(E⊗̃F ) generated
by [G,Ap], [G,G1 ⊗ 1], 1−G2 and K(EB)⊗ 1, and choose a G-quasicentral approximate unit
(ṽpn) for this algebra, as well as a G2-quasicentral approximate unit (w̃2

n) for the algebra JG2 .
Then (vpn) := diag(ṽpn, w̃2

n) is clearly an approximate unit for the diagonal entries of Jp. For
the off-diagonal entries, it suffices to show that for all e ∈ EB, (vpn) is a two-sided approximate
unit for the operators[(

G 0
0 G2

)
,

(
0 |e〉
0 0

)]
=
∑
i∈Ẑ

(
0 |xi〉[G2, 〈xi, e〉]
0 0

)
. (4.9)

Since e ∈ EB, the series
∑

i∈Ẑ[G2, 〈xi, e〉]∗[G2, 〈xi, e〉] is norm convergent in K(FC) ⊂ JG2 .
Therefore (vpn) is a right approximate unit for the operator in Equation (4.9). On the other
hand, since the series

∑
i∈Ẑ |xi〉[G2, 〈xi, e〉] is norm convergent and (ṽpn) is an approximate for

K(EB)⊗ 1, it follows that (vpn) is a left approximate unit for operators of the form (4.9).

For 3) it is sufficient to observe that A2
p is dense in Ap and J̃2

p is dense in J̃p. Thus the

subalgebra generated by ApJ̃p, J̃pAp is indeed a two-sided ideal in B̃p.

For 4), to show that ApKp = KpAp = Kp it suffices to show that J̃pAp ⊂ ApKp and ApJ̃p ⊂
KpAp. To show that J̃pAp ⊂ ApKp, it suffices to show that for all a, b ∈ Ap we have

upn[G̃, a]b→ [G̃, a]b, upn[G̃,G1 ⊗ 1]a→ [G̃,G1 ⊗ 1]a, upn(1− G̃2)a→ (1− G̃2)a.

These limits all follow directly from G̃,G1 ⊗ 1 quasicentrality of (upn).

Property 5) is immediate from the definition of Kp and Jp.

Property 6) follows from the convergence upn[G, a] = [G, upna]− [G, upn]a→ [G, a] for all a ∈ Ap,
since upn[G, a] ∈ ApJp ⊂ Kp.

Lemma 4.28. Let (A,EB, G) be a Kasparov module, {ai} ⊂ A a bounded self-adjoint total
subset for A, and A := alg{ai}, the (non-closed) subalgebra generated by {ai}. There exists
a bounded self-adjoint total subset {cj} for JG, as defined in Lemma 4.5, such that J , the
(non-closed) linear span of the {cj}, satisfies

A J , J A , GJ , JG ⊂J .

Proof. Choose some total subset {c′j} for JG and let J0 be the (non-closed) algebra generated

by (1−G2), {c′j} and [G,A ]. Now consider the (non-closed) algebra J1 and linear subspace
J given by

J1 := alg{J0,A J0,J0A ,A J0A } ⊂ JG, J := span{GJ1,J1G,GJ1G} ⊂ JG.

Since A is an algebra, A 2 ⊂ A and thus A0J1 ⊂J1 and similarly for the reversed product
set. Since J1 is an algebra and thus

G2J1 = (G2 − 1)J1 + J1 ⊂J1

we have GJ ⊂J and since [G,A ] ⊂J0 ⊂J1 we have A J ⊂J . Since J is countable,
{c′j} can be extended to a bounded self-adjoint set {cj} such that span(cj) = J .
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Proposition 4.29. Let A,B,C be separable C∗-algebras, and let (A,EB, G1), (B,FC , G2) be
essential Kasparov modules. Then (B,FC , G2) can be lifted to an unbounded Kasparov module
(B, FC , T ) such that B has an approximate unit (un) with [T, un]→ 0 in norm, and moreover
EB admits a compatible complete projective B-submodule EB ⊂ EB in the sense of Definition
4.22.

Proof. To prove the theorem, we have to lift G2 to an unbounded representative T with
resolvent in JG2 , such that B admits a differentiable subalgebra with an approximate unit
(uBn ) such that [T, uBn ] → 0 in norm. Moreover, the lift T should also satisfy Definition 4.22.
This means we have to provide a column finite frame (xi)i∈Ẑ for EB such that the resulting
submodule EB is complete, as well as satisfying properties 1)-4). These properties imply that,

for∇ the Grassmann connection associated to the frame (xi)i∈Ẑ, the operatorsG1 and (1−G2
1)

1
2

are elements of Lip(1 ⊗∇ T ) and the algebras A and JG1 admit differentiable subalgebras A

and JG1 , generated by (1−G2
1) and K(EB), with approximate units (uAn ) and (wJ

n) such that
limn→∞[1⊗∇T, uAn ] = limn→∞[1⊗∇T,wJ

n] = 0. In order to achieve this, we once again employ
linking-type algebras.

Choose a stabilisation isometry v : EB → HB+ . Consider the frame (xi)i∈Ẑ := (v∗ei)i∈Ẑ and
the corresponding frame approximate unit (χn) :=

∑
|xi〉〈xi|. By Lemma 4.26 there exists

an approxmate unit (wn) ∈ C (χn) with [G,wn] → 0 in norm. We proceed with the notation
introduced in Lemma 4.27, and apply Theorem 4.18 with

B = B̃0 ⊕ B̃1, J = J0 ⊕ J1, F = G̃ =

(
G 0
0 G2,ε

)
, A = A0 ⊕A1, K := K0 ⊕K1,

which by Lemma 4.27 satisfy AJ, JA ⊂ K, AK = KA = K and the algebra B is unital.
Since the approximate units (u0

n) for A0 and (wn) for K(EB) are G̃-quasicentral, and (vpn)
are approximate units for Jp, we can apply Theorem 4.18 by setting (u′n) := (u0

n) ⊕ (u1
n),

(v′n) = (v0
n) ⊕ (v1

n). In doing so we obtain approximate units (un), (vn) satisfying properties
1)−10) from Theorem 4.18. In addition to these properties, with dpn = vpn+1− v

p
n, we may also

assume that:

11) ‖d1
n[G̃,diag(wk, 0)]‖ < ε2k for all n;

12) ‖d1
n[G̃,diag(wk, 0)]‖ < ε2k for n ≥ k;

13) ‖[d1
n, diag(0, 〈xi, xk〉)i∈Ẑ]‖ < ε2n for n ≥ k;

14) ‖d1
n[G̃,diag(0, 〈xi, xk〉)i∈Ẑ]‖ < ε2n for n ≥ k;

15) ‖[dpn, 〈x|]‖ < ε2n.

Properties 11) and 12) can be achieved because K(EB) ⊗ 1 ⊕ 0 ⊂ J1, so this only requires
a further convexity argument when running the proof of Theorem 4.18. Properties 13), 14)
and 15) are a direct application of Theorem 4.15 by viewing the columns 〈x| and (〈xi, xk〉)i∈Ẑ
as elements in End∗L(EB)+(HL(EB)+).

The (vpn) so obtained from Theorem 4.18 define two unbounded multipliers on E⊗̃FC ⊕ FC

h−1
p =

∑
n

cndpn =

(
k−1
p 0

0 `−1

)
, vpn =

(
ṽpn 0
0 w2

n

)
, dpn = vpn+1 − v

p
n,

which we use to lift G̃ in two ways. That we obtain the same `−1 for p = 0, 1 follows from the
form of (vpn), that is, the approximate unit (w2

n) for JG2 occurs in both lower right corners.
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From the specific form of the (upn) and (vpn), cf. Lemma 4.27 2) and 3), it follows that we
obtain new approximate units (uAn ) for A, (w1

n) for JG1 and (vpn) for the algebras generated by
[G,Ap], [G,G1 ⊗ 1], 1−G2 and K(EB)⊗ 1.

This allows us to define unbounded lifts T̃0 := Gk−1
0 and T̃1 := Gk−1

1 . Choosing total subsets
{ai} and {cj} as in Lemma 4.28 one proves, as in Proposition 4.20, that A admits a differ-
entiable subalgebra A for which (uAn ) is an approximate unit with lim[T̃0, u

A
n ] → 0 in norm.

For JG1 the same statement holds with respect to T̃1. Moreover, 11) and 12) ensure that
[T̃1, wn] → 0 in norm as well, again with the same proof as Proposition 4.20. Furthermore
properties 13) and 14) guarantee that the columns [T, 〈xi, xk〉]i∈Ẑ are elements of HEnd∗C(F ).
That is, the frame (xi) is column finite for T .

It must be noted that our method does not allow us to obtain a uniform bound on the norms
of these columns, and thus we are not able to produce a projection operator in End∗B(HB).
Later, we will see that we do obtain a complete projective module.

We now compare the connection operator 1 ⊗∇ T of the frame (xi)i∈Ẑ to the operators T̃p,
p = 0, 1, which we have used to lift the bounded connection G. Condition 15) guarantees that
[h−1
p , 〈x|] is a bounded operator. Since

[
h−1
p , 〈x|

]
=

(
0 0

〈xi|k−1
p − `−1〈xi| 0

)
i∈Ẑ

, (4.10)

it follows that v Im kp ⊂ Im ` and v∗ Im ` ⊂ Im kp. We wish to show that the difference
T̃p − 1⊗∇ T is bounded. To this end we compute

v∗G2,ε`
−1v −Gk−1

p = |x〉G2,ε`
−1〈x| − |x〉G2,ε〈x|k−1

p = |x〉G2,ε(`
−1〈x| − 〈x|k−1

p ), (4.11)

which is bounded by construction. Note that this implies the self-adjointness of 1 ⊗∇ T , and
also that T̃0 and T̃1 have the same domain.

It now follows that A and J are the closures of {ai} and {cj} inside Lip(1⊗∇ T ) respectively,
and thus by Lemma 4.28 it follows that AJ, JA, FJ, JF ⊂ J.

Since [T̃1, un] → 0 in norm and un → 1 strictly on E⊗̃BF , it follows that [1 ⊗∇ T, un] → 0
strictly, and so is a bounded sequence. Hence p[Tε, vunv

∗]p = v[v∗Tεv, un]v∗ → 0 on a dense
subspace of HB+⊗̃F , and by boundedness of the sequence, strictly on all of HB+⊗̃F . Hence the
frame (xi) defines a complete projective submodule EB ⊂ EB, which also (and independently)
proves the self-adjointness of 1⊗∇ T .

Lastly, we must show that there are approximate units (uAn ) ∈ C (uAn ) for A and (wn)J ∈ C (w1
n)

for JG1 that satisfy
lim[1⊗∇ T, uAn ] = lim[1⊗∇ T,wJ

n]→ 0, (4.12)

in norm. Observe that we can obtain the strict convergences of Equation (4.12), for both (uAn )
and (w1

n) converge strictly to 1 on E⊗̃BF and the lifts T0 and T1 are bounded perturbations
of 1⊗∇ T .

The column in Equation (4.10) is an element of End∗
B̃p

(HB̃p
, Jp), because for each i we have[

h−1
p , 〈xi|

]
∈ Jp. Thus by Theorem 4.16 there exist [h−1

p , 〈x|]-quasicentral approximate units

in the convex hull C (upn), which at the same time remain G̃-quasicentral. The resulting ap-
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proximate units will again be of the form indicated in Lemma 4.27, 1). Now compute(
[Gk−1

p − v∗G2,ε`
−1v, uAn ] 0

0 0

)
=

[
|x〉
(

0 0
0 G2,ε

)
[h−1
p , 〈x|],

(
uAn 0
0 uBn

)]
=

[
|x〉G̃[h−1

p , 〈x|],
(
uAn 0
0 uBn

)]
→ 0,

and the same computation works for (wJ
n).

Theorem 4.30. Let A,B,C be separable C∗-algebras, x ∈ KK(A,B) and y ∈ KK(B,C).
There exists an unbounded Kasparov module (B, FC , T ) representing y and a correspondence
(A,EB, S,∇) for (B, FC , T ) representing x. Consequently (A, E⊗̃BFC , S⊗1+1⊗∇T ) represents
the Kasparov product x⊗B y.

Proof. First represent x and y by essential Kasparov modules. By Proposition 4.29, for any
pair of essential Kasparov modules, the second module can be lifted such that the first module
admits a compatible complete projective submodule. Now apply Theorem 4.23.

By the same method, and lifting simultaneously with n + 1 Kasparov modules instead of 2,
one can prove that for classes xn, . . . , x0 with xj ∈ KK(Aj+1, Aj), one can find an unbounded
Kasparov module (A1, EA0 , T0) representing x0 and correspondences (Aj+1,EAj , Tj ,∇j) repre-
senting xj such that for each 1 ≤ j ≤ n, (Aj+1,EAj , Tj ,∇j) is compatible with(

j⊗
i=1

(Ai+1,EAi , Ti,∇i)

)
⊗ (A1, EA0 , T0).

A Weakly anticommuting operators

Definition A.1 (cf. [31]). Let EB be a graded C∗-module and s, t odd self-adjoint regular
operators such that for all λ, µ ∈ R \ {0}:
1) there is a core X for t such that (s± λi)−1X ⊂ Dom t;
2) t(s± λi)−1X ⊂ Dom s;
3) [s, t](s± λi)−1 is bounded on X.

Then we say that the pair (s, t) weakly anticommutes, or that t anticommutes weakly with s.
Note that this relation is not symmetric in s and t, and that the graded commutator is defined
on Im (s+ λi)−1X.

It was proved in [31] that the sum of weakly anticommuting operators occurring in odd Kas-
parov products is self-adjoint and regular on Dom s∩Dom t. Since we are concerned here with
the general graded case, a few words are in order.

Lemma A.2. If (s, t) is a weakly anticommuting pair then the operators (s ± λi)−1 preserve
the domain of t and [s, t](s± λi)−1 is bounded on Dom t. Consequently

s
(
(s− λi)−1 Dom t

)
⊂ Dom t, t

(
Im (s− λi)−1 Dom t

)
⊂ Dom s. (A.1)

Therefore [s, t] is defined on (s− λi)−1 Dom t = Im (s− λi)−1(t− µi)−1.
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Proof. For x ∈ X, the commutator [t, (s± λi)−1] can be expanded as

[t, (s± λi)−1]x = (t(s± λi)−1x+ (s∓ λi)−1tx = (s∓ λi)−1((s∓ λi)t+ t(s± λi))(s± λi)−1x

= (s∓ λi)−1[s, t](s± λi)−1x,

and by 2) of Definition A.1 this operator is bounded. Thus by [22, Proposition 2.1] (s± λi)−1

preserves the domain of t. Since X is a core for t, for every x ∈ Dom t we can choose a sequence
xn ∈ X such that xn → x and txn → tx. Then

t(s− λi)−1xn = −(s+ λi)−1txn + (s+ λi)−1[s, t](s− λi)−1xn

→ −(s+ λi)−1tx+ (s+ λi)−1[s, t](s− λi)−1x ∈ Dom s,

which is a Cauchy sequence, so the limit equals t(s − λi)−1x ∈ Dom s. The statement that
s
(
(s− λi)−1 Dom t

)
⊂ Dom t follows directly from the equality

s(s− λi)−1(t− µi)−1 = (t− µi)−1 + λi(s− λi)−1(t− µi)−1

This proves (A.1).

Lemma A.3. For |λ| > 1 there is a constant C such that ‖[s, t](s±λi)−1‖ < C. Thus, for |λ|
sufficiently large, we may assume ε := ‖(s∓ λi)−1[s, t](s± λi)−1‖ < 1.

Proof. Let C := 2‖[s, t](s+ i)−1‖ and write

(s+ λi)−1 = (s+ i)−1 − (s+ i)−1(λ− 1)i(s+ λi)−1.

Using this, estimate

‖[s, t](s+ λi)−1‖ ≤ ‖[s, t](s+ i)−1 − [s, t](s+ i)−1(λ− 1)i(s+ λi)−1‖
≤ ‖[s, t](s+ i)−1‖+ ‖[s, t](s+ i)−1‖‖(λ− 1)i(s+ λi)−1‖

≤ C

2

(
1 +
|λ− 1|
|λ|

)
< C,

since |λ| > 1. Consequently, using that ‖(s± λi)−1‖ ≤ 1
|λ| , we find that

‖(s∓ λi)−1[s, t](s± λi)−1‖ ≤ C

|λ|
< 1,

for |λ| sufficiently large.

Theorem A.4 (cf.[31]). If (s, t) weakly anitcommutes, then s + t is closed, self-adjoint and
regular on Dom s ∩ Dom t, and Im (s ± i)−1(t ± i)−1 is a core for s + t. The same holds for
s− t.

Proof. It was shown in [31] that the sum s + t of such operators is closed, self-adjoint and
regular on Dom s ∩ Dom t by a localisation argument. However, to get the statement on the
core, we proceed by adapting the spectral argument given in [42]. Choose λ large enough as
in Lemma A.3. The operators

x := (t+ µi)−1 − (s− λi)−1, y := x∗ = (t− µi)−1 − (s+ λi)−1,
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have dense range. This follows because xx∗ is strictly positive by esitmating

xx∗ = (µ2 + t2)−1 + (λ2 + s2)−1 − (t+ µi)−1(s+ λi)−1 − (s− λi)−1(t− µi)−1

= (µ2 + t2)−1 + (λ2 + s2)−1 − (t+ µi)−1(s+ λi)−1([s, t]− 2λµ)(s− λi)−1(t− µi)−1

= (µ2 + t2)−1 + (λ2 + s2)−1 + 2λµ(t+ µi)−1(λ2 + s2)−1(t− µi)−1

− (t+ µi)−1(s+ λi)−1[s, t](s− λi)−1(t− µi)−1

≥ (1− ε)(µ2 + t2)−1 + (λ2 + s2)−1 + 2λµ(t+ µi)−1(λ2 + s2)−1(t− µi)−1,

using A.1 and Lemma A.3. Since the latter operator is strictly positive, so is xx∗ by [38,
Corollary 10.2]. The same holds for x∗x. The rest of the proof now follows by using the
factorisations

x = (s+ t+ (µ− λ)i− (s+ λi)−1([s, t]− 2λµ))(s− λi)−1(t− µi)−1,

y = (s+ t+ (λ− µ)i− (s− λi)−1([s, t]− 2λµ))(s+ λi)−1(t+ µi)−1,

as in [42, Theorem 6.18], and applying [42, Lemma 6.1.7]. The statement for s− t is obtained
by observing that (s,−t) weakly anticommutes.
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