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Abstract
Connes and Cuntz showed in [5] that suitable cyclic cocycles can be repre-

sented as Chern characters of finitely summable semifinite Fredholm modules. We
show an analogous result in twisted cyclic cohomology using Chern characters of
modular Fredholm modules. We present examples of modular Fredholm modules
arising from Podleś spheres and from SUq(2).
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1 Introduction

Let A be an associative algebra over the field of complex numbers C, A ∗C A the free
product, and qA 1 the ideal generated by ι(a) − ῑ(a), a ∈ A, where ι, ῑ are the two

1There is a clash in the standard notations: in this section q is used for qA and q(a), while later in
the paper q is used as a deformation parameter. The different usages will be clear from context.
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canonical inclusions of A in A ∗C A. In [5], it was shown that those cyclic cocycles for
A which arise from positive traces on (qA)n are Chern characters of finitely summable
semifinite Fredholm modules.

In this note we show that those twisted cyclic cocycles arising from KMS weights on
(qA)n are Chern characters of finitely summable modular Fredholm modules, a twisted
version of the usual notion of Fredholm modules. While this is not in any way a practical
method of obtaining such representing Fredholm modules, it shows that in general one
must consider the semifinite and modular settings.

The examples treated in the last two sections, the Podleś spheres S2
q,s and the SU q(2)

quantum group, show that we can construct non-trivial twisted cyclic cocycles from
naturally arising modular Fredholm modules. Moreover these cocycles encode the correct
classical dimension, in the sense that the Hochschild class of these cocycles is non-
vanishing at the classical dimension. This was first observed in [17] for the standard
Podleś sphere. Thus using twisted cohomology avoids the ‘dimension drop’ phenomena,
at least in these examples.

We observe that the objects and phenomena studied here seem to have little to do with
[6] and related papers such as [10]. The use of twisted commutators in these papers
leads to a need for twisted traces, but ultimately these produce actual (not twisted)
cyclic cocycles.

Acknowledgements. AR was supported by the Australian Research Council, and
thanks Jens Kaad for numerous discussions on related topics. MY was supported in part
by the ERC Advanced Grant 227458 OACFT “Operator Algebras and Conformal Field
Theory”. AS acknowledges support of MNII grant 189/6.PRUE/2007/7 and thanks for
the warm hospitality at Mathematical Sciences Institute, Australian National University,
Canberra.

2 The algebraic background

We begin with a short recollection of the twisted cyclic cohomology of an algebra A.

Definition 2.1. Let A be an algebra and σ be an automorphism of A. We say that
φ : A⊗(n+1) → C is a σ-twisted cyclic n-cocycle if,

• φ is σ-invariant:

φ(a0, a1, . . . , an) = φ(σ(a0), σ(a1), . . . , σ(an));

• φ is σ-cyclic:

φ(a0, a1, . . . , an) = (−1)nφ(σ(an), a0, a1, . . . , an−1);

• φ is a σ-twisted Hochschild cocycle

(bσφ)(a0, a1, . . . , an, an+1) =
n∑
k=0

(−1)kφ(a0, . . . , akak+1, . . . , an+1)

+ (−1)n+1φ(σ(an+1)a0, a1, . . . , an) = 0,
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where a0, . . . , an+1 ∈ A.

In the examples we consider, one can use the algebraic tensor product, as we work
with polynomial subalgebras. Alternatively, one could complete A in a suitable Fréchet
topology and use the projective tensor product: see [1] and [4, III, Appendix B] for
more information. As all our algebras will have a natural C∗-completion, we define
all K-theories in terms of such completions. It will transpire for our examples that
generators of the relevant K-theory groups will belong to the polynomial subalgebras
we will work with.

Now, let us present a simple generalisation of a result of Connes and Cuntz [5] to the
twisted cyclic theory.

Let A be a unital algebra and qA be an algebra generated by the elements q(a), q(a)b,
and aq(b) for a, b ∈ A, subject to the relation q(λa+ b+ µ) = λq(a) + q(b) and

q(ab) = q(a)b+ aq(b)− q(a)q(b), a, b ∈ A. (2.1)

Equivalently, one may identify qA with the ideal within the unital free product algebra
A ∗C A generated by the elements q(a) := ι(a) − ῑ(a) for a ∈ A. If A is an involutive
algebra, then so is qA with the involution defined by q(a)∗ = q(a∗) for a ∈ A.

Setting J := qA ⊂ A∗CA, we can define J n to be the ideal of A∗CA generated by the
products a0q(a1) · · · q(am) and q(a1) · · · q(am) for m ≥ n. If σ is an automorphism of A,
then we can extend σ to an automorphism of J and J n by setting σ(q(a)) := q(σ(a)).

Proposition 2.1 (see [5], Proposition 3). Let A be a unital algebra, σ an automorphism
of A, and let J be the ideal qA of A∗CA described above. Suppose that T is a σ-twisted
trace on J n for some even integer n. That is, T is a linear functional such that

T (xy) = T (σ(y)x), ∀x ∈ Jk, y ∈ J l, k + l = n (2.2)

with the convention that J0 = A ∗C A. Then the formula

τ(a0, a1, . . . , an) := T (q(a0)q(a1) · · · q(an)), a0, a1, . . . , an ∈ A

defines a σ-twisted cyclic n-cocycle τ on A.

Proof. Setting x = 1 in (2.2), we obtain that T is σ-invariant. The σ-cyclicity follows by
setting x = q(a0) · · · q(an−1) and y = q(an). It remains to verify the σ-twisted Hochschild
cocycle condition. If a0, . . . , an are elements of A, (2.1) implies

n∑
k=0

(−1)kT (q(a0) · · · q(akak+1) · · · q(an+1))

= T (a0q(a1) · · · q(an+1)) + T (q(a0) · · · q(an)an+1)− T (q(a0) · · · q(an+1)).

Then, using (2.2), one sees that this is equal to

T ((q(σ(an+1))a0 + σ(an+1)q(a0)− q(σ(an+1))q(a0))q(a1) · · · q(an)).
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Again by (2.1), we obtain

n∑
k=0

(−1)kT (q(a0) · · · q(akak+1) · · · q(an+1)) = T (q(σ(an+1)a0)q(a1) · · · q(an)) ,

which is equivalent to the desired equality bστ = 0.

For the analogous statement for odd cocycles, we need to extend the automorphism σ
to J n in a different way, cf. [5, Lemme 4]. We define σ̃ via the formula

σ̃ (a0q(a1) · · · q(am)) = (−1)m(σ(a0)− q(σ(a0)))q(σ(a1)) · · · q(σ(am)),

σ̃ (q(a1) · · · q(am)) = (−1)mq(σ(a1)) · · · q(σ(am)).

Then it is easy to check that σ̃ is indeed an automorphism of qA and, just as above, we
have

Proposition 2.2. If T is a σ̃-twisted trace on J n, for n an odd integer, then the formula

τ(a0, a1, . . . , an) := T (q(a0)q(a1) · · · q(an)), a0, a1, . . . , an ∈ A,

defines a σ-twisted n-cyclic cocycle on A.

3 The analytic picture

In this section we look at a version of [5, Théorème 15] in twisted cyclic cohomology. In
brief, [5] shows that positive traces on certain ideals in the free product A∗CA give rise
to cyclic cocycles on A. These cyclic cocycles can be represented as the Chern characters
of semifinite Fredholm modules. By replacing traces with KMS functionals, we arrive
at an analogue of this result in twisted cyclic theory. There are also some analytic
differences in our starting assumptions, which we discuss at the end of this section.

We let A be a unital C∗-algebra and consider the unital full free product C∗-algebra
A ∗C A. We denote by ι, ῑ the two canonical inclusions of A in A ∗C A, and by qA the
ideal generated by elements of the form q(a) := ι(a)− ῑ(a) for a ∈ A.

Similarly, if A ⊂ A is a dense subalgebra, then we let qA be the analogously defined
ideal in A ∗C A. Introduce the shorthand Jk := (qA)k and J k := (qA)k for k ∈ N.

Our starting point is a lower semicontinuous and semifinite weight φ on the C∗-algebra
J2p [20, Chapter VI] which satisfies the KMSβ condition for a strongly continuous one
parameter group σ• : R → Aut(J2p). We will assume that J 2p ⊂ dom(φ) and that J 2p

consists of analytic vectors for σ•, and that

φ(xx∗) = 0⇔ φ(x∗x) = 0, x ∈ A. (3.1)

The weight φ gives, via the GNS construction, a Hilbert space Hφ with a nondegenerate

representation πφ : J2p → B(Hφ), and a linear map Λ: dom1/2(φ) ⊂ J2p → Hφ. The
condition (3.1) implies that {x ∈ A | φ(xx∗) = 0} is the kernel of this representation,
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and that πφ(J2p) admits a faithful weight which induces φ. Since σ• leaves φ invariant,
it descends to πφ(J2p).

There is a canonical faithful normal semifinite extension Φ of φ to (πφ(J2p))′′ satisfying
φ = Φ ◦ πφ and σΦ

t ◦ πφ = πφ ◦ σ−βt. See [20, Proposition 1.5, Chapter VIII] for a proof.

The KMS property implies that for a, b ∈ J2p we have

φ(ab) = φ(σ(b)a),

where we define the (non-∗) automorphism σ to be the value of the extension of the
one-parameter group σ• to the complex value t = iβ.

We observe that the representation of J2p on Hφ extends naturally to a representation of
A ∗C A on Hφ, denoted λ, such that λ(A ∗C A) ⊂ (πφ(J2p))′′. This is the usual extension,
defined on the dense subspace πφ(J2p)Hφ by λ(α)(jξ) := (αj)ξ for α ∈ A ∗C A, j ∈ J2p

and ξ ∈ Hφ. If T is in the commutant of πφ(J2p) then

T (λ(α)(jξ)) = T ((αj)ξ) = (αj)(Tξ) = λ(α)(j(Tξ)) = λ(α)(T (jξ)),

showing that λ(α) is indeed in πφ(J2p)′′ for all α ∈ A ∗C A.

By [20, Theorem 2.6, Chapter VII], the (image under Λ of) dom1/2 Φ ∩ (dom1/2 Φ)∗

is a full left Hilbert algebra, which we denote by U. Moreover, the left von Neumann
algebra of U is precisely (πφ(J2p))′′. We record the following Lemma, whose proof follows
immediately from the definitions.

Lemma 3.1. Let N be the left von Neumann algebra of the left Hilbert algebra U and
Φ the corresponding faithful normal semifinite weight. Then for all α ∈ Jp ∩ dom1/2(φ)
we have λ(α) ∈ dom1/2(Φ), and Φ(λ(α)∗λ(α)) = φ(α∗α).

Definition 3.1. LetN be a von Neumann algebra acting on a Hilbert spaceH, and Φ be
a faithful normal semifinite weight on N . Then we say that (A,H, F ) is an n-summable
unital modular Fredholm module with respect to (N ,Φ) if

o) A is a separable unital ∗-subalgebra of N ;

i) A is globally invariant under the group σΦ, and consists of analytic vectors for it;

ii) F is a self-adjoint operator in the fixed point algebra M := N σΦ
with F 2 = 1N ;

iii) [F, a]n ∈ dom(Φ) for all a ∈ A.

If there exists a self adjoint element γ of M satisfying γ2 = 1, γa = aγ for all a ∈ A
and γF +Fγ = 0, the quadruple (A,H, F, γ) is said to be an even module. In contrast,
a Fredholm module without the grading γ is said to be odd.

The Chern character of a modular Fredholm module is the class of the σ := σΦ
i twisted

cyclic n-cocycle defined by the formula

Chn(a0, a1, . . . , an) = λn
1

2
Φ(γF [F, a0][F, a1] · · · [F, an]), a0, a1, . . . , an ∈ A.
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Here we set γ = 1 if the module is odd. The constants λn are given by

λn =

{
(−1)n(n−1)/2Γ(n

2
+ 1) n even√

2i(−1)n(n−1)/2Γ(n
2

+ 1) n odd
.

Theorem 3.2. Suppose that A is a ∗-subalgebra of a C∗-algebra A, and φ is a weight on
J2p which is lower semicontinuous, semifinite, and satisfies (3.1). We further assume
that it satisfies the KMSβ condition for a one parameter group σ such that J 2p := (qA)2p

consists of analytic vectors in the domain of φ. Then there exists a 2p-summable modular
Fredholm module for A. The modular Fredholm module has Chern character

Ch2p(a0, a1, . . . , a2p) = λ2p(−1)pφ(q(a0) q(a1) · · · q(a2p)).

Proof. The universal property of A ∗C A gives two ∗-homomorphisms πφ, π̄φ : A →
B(L2(Jp+1, φ)), whose images lie in N = πφ(J2p)′′. The modular Fredholm module
is given by the data:

• the Hilbert space H := L2(Jp+1, φ)⊕ L2(Jp+1, φ);

• the representation π2 : A → B(H), π2(a) = πφ(a)⊕ π̄φ(a);

• the operator F =

(
0 1
1 0

)
;

• the von Neumann algebra M2(N);

• the weight Φ ◦ Tr2.

Observe that

[F, π2(a)] =

(
0 π̄φ(a)− πφ(a)

πφ(a)− π̄φ(a) 0

)
=

(
0 −πφ(q(a))

πφ(q(a)) 0

)
.

Since J2p+1 ⊂ J2p, the Chern character is well-defined. The computation of the Chern
character is straightforward.

The odd case is similar using the σ̃-automorphism of J n.

Remark 3.3. When σ is trivial, the above construction reduces to a particular case of
the one in [5, Section V]. Since we started from a positive (unbounded) functional on
the enveloping C∗-algebra rather than a one on the algebraic object J 2p, the analytic
argument leading to the existence of the underlying left Hilbert algebra is greatly sim-
plified. If we were to assume only a ‘positive twisted trace’ on J 2p in some sense, we
would not necessarily have enough control to prove this pre-closedness.
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4 The modular index and pairing with K-theory.

We recall here the construction of the modular index and its computation through the
pairing between the equivariant K-theory and twisted cyclic cohomology. This section
adapts [16] to the notation and notions used here.

Let (N ,Φ) be a von Neumann algebra with a faithful normal semifinite weight, and
(A,H, F, γ) be a 2n-summable even modular Fredholm module with respect to (N ,Φ),
as defined in the previous section.

Furthermore, let us assume that there exists a densely defined operator Ξ in H which
implements the modular automorphism. Thus, Ξ is an unbounded self adjoint operator
satisfying

[F,Ξ] = 0, [Ξ, γ] = 0, Ξ−1aΞ = σ(a), ∀a ∈ A,

where we identify a with the operator in the representation π(A).

With this set up we can make the following definition, and we assume in what follows
that (N ,Φ) = (B(H),Tr(Ξ1/2 · Ξ1/2)), as this is the context we shall be working with in
the examples. Extending the definition to the more general situation is straightforward
using the theory of Breuer-Fredholm operators as in [2].

Definition 4.1. Let F be a Fredholm operator, which commutes with Ξ. We define the
modular index of F to be

q-Ind(F ) = Tr(Ξ|kerF )− Tr(Ξ|cokerF ).

This definition is well defined, since both kernel and cokernel are finite-dimensional and
at the same time invariant subspaces of Ξ, so in fact both traces are finite expressions.
We omit the proof of the next standard construction.

Proposition-Definition 4.1. Suppose that (A,H, F, γ) is an even modular Fredholm
module, and let p ∈ A be a projection which is fixed by the modular automorphism group
σ•. Replacing H by pH, N by Np = pNp, Φ by Φp = Φ|Np, F by pF+p in Definition 4.1,

we obtain a Fredholm operator for (Np,Φp). We define q-IndF (p) to be its modular index
q-Ind(pF+p).

More generally, we can extend the above index pairing on the classes in the equivariant
K0-group as follows. An element of the equivariant K0-group KR

0 (A) is given by a formal
difference of invariant projections in the R-algebras of the form A ⊗ End(X), where
U : R→ End(X) is an arbitrary finite dimensional representation of R [16, Theorem 3.1].
Assume that p ∈ A ⊗ End(X) is such a projection. Then we extend the modular
Fredholm module to (A⊗End(X),H⊗X,F⊗Id, γ⊗Id) with respect to (N⊗End(X),Φ⊗
GX), where GX(T ) = Tr(U−iT ) for T ∈ End(X). The above consideration gives the
number q-IndF (p), which only depends on the KR

0 -class of p, [18, Lemma 3.15]. This
way, we obtain the map

q-IndF : KR
0 (A)→ R.

With this definition the following two propositions follow as in [16].
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Proposition 4.2. Let H = H+ ⊕ H−, where γH± = ± Id and let us denote F+ the
restriction of F to H+. Let U : R → End(X) be a unitary representation of R on a
finite dimensional Hilbert space X. Let D be the generator of U , and put ∆X = e−D.
For any projection p ∈ A ⊗ End(X) invariant under the action (σt ⊗ Ad∆it

X
)t∈R, the

modular index of p(F+ ⊗ IdX)p is given by

q-IndF (p) = (−1)n TrH⊗TrX((Ξ⊗∆X)(γ ⊗ IdX)p[F ⊗ IdX , p]
2n). (4.1)

Outline of the proof. The proof follows standard lines, see [4, pp 296-297] and [16, pp
370-371]. The broad plan is to observe that

p− p(F ⊗ IdX)p(F ⊗ IdX)p = −p[(F ⊗ IdX), p][(F ⊗ IdX), p]p.

Then we observe that τ := TrH⊗TrX((Ξ ⊗∆X)·) is a trace on the fixed point algebra
(B(H)⊗End(X))σ⊗Ad∆X . Since (p−p(F ⊗ IdX)p(F ⊗ IdX)p)n is trace class with respect
to τ , we find that the τ -index of p(F+⊗IdX)p is given by τ(γ(p−p(F⊗IdX)p(F⊗IdX)p)n)
(see [8, Proposition 4.2]). By definition of τ , this is just q-IndF (p).

There is the notion of modular index pairing for odd modular Fredholm modules and
invariant unitaries. et (A,H, F ) be an odd modular Fredholm modules with respect to
(N ,Φ), and set E = 1

2
(1 + F )⊗ IdX .

Proposition-Definition 4.3. Let X be a finite-dimensional unitary representation of
R, and suppose that v is an unitary element in A ⊗ End(X) which is invariant under
(σt⊗Ad∆it

X
)t∈R. Then, EvEv∗, as an operator from vE(H⊗X) to E(H⊗X), becomes

a modular Fredholm operator. We let q-IndF (v) denote its modular index. This number
only depends on the equivariant K1-class of v.

Proposition 4.4. Under the above setting, the modular index of EvEv∗ is given by

q-IndF (v) =
(−1)n

22n
TrH⊗TrX(Ξ⊗∆X ([F, v][F, v∗])n). (4.2)

Outline of the proof. As in the even case, we just observe that (E−vEv∗)2 = −1
4
E[F, v][F, v∗],

and so by [3, Theorem 3.1] and the definition of τ above, the τ -index of EvEv∗ is given
by τ((E− vEv∗)2n− (E− v∗Ev)2n), and after standard algebraic manipulations (see [1,
pp. 51-52]), we find the result of the proposition.

5 The Podleś spheres

5.1 The algebra

Given parameters 0 ≤ q < 1 and 0 ≤ s ≤ 1, the Podleś quantum sphere A(S2
q,s) is

defined as the universal ∗-algebra with generators A = A∗, B, and B∗ subject to the
relations

B∗B + (A− 1)(A+ s2) = 0, BB∗ + (q2A− 1)(q2A+ s2) = 0, AB = q−2BA.

8



When 0 < s, the algebra A(S2
q,s) has two inequivalent irreducible representations π+ and

π− on `2(N). In terms of is the standard orthonormal basis {ek}k∈N, they are given by
the formulae

π+(B)ek =
√

1− q2k
√
s2 + q2kek−1, π+(A)ek = q2kek, (5.1)

π−(B)ek = s
√

1− q2k
√

1 + s2q2kek−1, π−(A)ek = −s2q2kek. (5.2)

The algebra A(S2
q,s) can be completed to a C∗-algebra C(S2

q,s) by means of the operator
norm induced by the representation π+ ⊕ π−. The modular group (σt)t∈R is periodic,
and it extends by continuity to an action of U(1) on C(S2

q,s). These U(1)-C∗-algebras
are known to be isomorphic to the fibre product of the two copies of the Toeplitz algebra
T with respect to the symbol map T → C(S1) [19]. Here, we consider the gauge action
of U(1) on each copy of T and the translation action on C(S1).

Definition 5.1. We construct an even Fredholm module (A(S2
q,s), F,H) by taking H =

`2(N)⊕ `2(N), endowed with the representation of A(S2
q,s) defined by the formula

π(a) =

(
π+(a) 0

0 π−(a)

)
, (a ∈ A(S2

q,s)),

along with the grading operator and Fredholm operator F given by

γ =

(
1 0
0 −1

)
, F =

(
0 1
1 0

)
.

In addition, we let K be the diagonal modular operator on H defined by

Kek,± = q−2kek,±, (k ∈ N).

Here, ek,+ is a basis in the first direct summand (supporting π+) `2(N) of H, and ek,− is
in the second direct summand (supporting π−).

Lemma 5.1. For 0 < s ≤ 1 and 0 < q < 1, the Fredholm module (A(S2
q,s), F,H) can be

regarded as a 2-summable modular Fredholm module with the following data. The von
Neumann algebra N is B(H), with the weight Φ defined by

Φ(S) = Tr(K1/2SK1/2), 0 ≤ S ∈ B(H).

The modular automorphism σ(T ) = K−1TK leaves A(S2
q,s invariant, and the restriction

can be expressed as

σ(A) = A, σ(B) = q−2B, σ(B∗) = q2B∗.

Proof. By [20, Theorem 2.11], Φ is a faithful normal semifinite weight on B(H), with
modular group given by T 7→ KitTK−it.
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As a next step, we show that for any a ∈ A(S2
q,s) the operator K[F, π(a)] is bounded

and [F, π(a)] is of trace class. Applying the definitions of the representation π and the
operator F yields

K[F, π(A)]ek,± = ±(1 + s2)ek,∓,

K[F, π(B)]ek,± = ±q−2k
√

1− q2k
(√

s2 + q2k − s
√

1 + s2q2k
)
ek−1,∓.

To make an estimate for the last expression we observe that√
s2 + q2k − s

√
1 + s2q2k =

(s2 + q2k)− s2(1 + s2q2k)√
s2 + q2k + s

√
1 + s2q2k

=
(1− s4)q2k√

s2 + q2k + s
√

1 + s2q2k
.

Since the denominator is greater than or equal to 2s, we find

|
√
s2 + q2k − s

√
1 + s2q2k| = (1− s4)q2k√

s2 + q2k + s
√

1 + s2q2k
≤ 1− s4

2s
q2k.

Now, since [F, π(a)] = K−1(K[F, π(a)]) and K−1 is a trace class operator, it follows
directly that [F, π(a)] is of trace class for any a ∈ A(S2

q (s)).

Therefore, in the end we obtain that for any a0, a1 ∈ A(S2
q,s), the operator K[F, a0][F, a1]

is of trace class, and so [F, a0][F, a1] is in the domain of Φ.

Corollary 5.2. The 3-linear functional φ defined by the formula

φ(a0, a1, a2) = Φ(γF [F, a0][F, a1][F, a2]), a0, a1, a2 ∈ A(S2
q,s),

determines a σ-twisted cyclic cocycle over A(S2
q,s).

To see that the cyclic cocycle we obtained is non-trivial, we explicitly compute its pairing
with the twisted cyclic cycle ω2, found by Hadfield [11]. In our notation the twisted cyclic
2-cycle ω2 is given by

ω2 =2
(
A⊗B⊗B∗ − A⊗B∗⊗B + 2B⊗B∗⊗A− 2q−2B⊗A⊗B∗

+ (q4 − 1)A⊗A⊗A
)

+ (1− q−2)s2(1− s2)1⊗1⊗1

+ (1− s2)
(
1⊗B∗⊗B − q−21⊗B⊗B∗ + (1− q2)1⊗A⊗A

)
.

The pairing of ω2 with φ (we skip the straightforward computations) gives

(φ, ω2) = (1 + s2)3.

Since ω2 comes from HH σ
2 (A(S2

q,s)), this also shows that the Hochschild class of φ is
nontrivial.
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5.2 The index pairing, local picture

Consider the projection P ∈M2(A(S2
q,s)) defined by

P =
1

1 + s2

(
1− q2A B
B∗ A+ s2

)
.

This projection becomes R-invariant with respect to the representation (σt ⊗∆it)t∈R of
R on A(S2

q,s)⊗ C2, where ∆ ∈M2(C) is given by

∆ =

(
q−1 0
0 q

)
. (5.3)

The classes of 1 and P generate the U(1)-equivariant K0 group of C(S2
q,s) [21]. We

explicitly compute the index pairing of P with the twisted cocycle given by the Chern
character of the modular Fredholm module constructed above.

Proposition 5.3. The pairing of the Chern character of F and [P ] is equal to q.

Proof. Expanding the relevant definitions, one has

Ch2(P, P, P ) = −1

2

2q

(1 + s2)2

×
∞∑
k=0

(
2s2(q4 − 1)q4k + 2s(ak+1 − ak) + (q2 − 1)(1− s2)2q2k + 2s(bk − bk+1)

)
,

where

ak =
√
s2 + q2k

√
1 + s2q2kq2k, bk =

√
s2 + q2k

√
1 + s2q2k.

We compute the sum explicitly. First, observe that

∞∑
k=0

(ak+1 − ak) = −(1 + s2),
∞∑
k=0

(bk − bk+1) = (1 + s2)− s,

which then allows the rest of the sum to be computed to yield

Ch2(P, P, P ) = −1

2

2q

(1 + s2)2

(
−2s2 − 2s(1 + s2)− (1− s2)2 + 2s(1 + s2 − s)

)
= q.

This proves the assertion.

Note that the index pairing is independent of the parameter s, since the K-theoretic data
is invariant under continuous deformation as we shall see in detail in the next section.
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5.3 The index pairing, global picture

In this section we give an alternative global picture of the index pairing. For this purpose
it is convenient to use a different set of generators of the equivariant K-theory group.

Since A ∈ A(S2
q,s) is σ-invariant, the spectral projections of the selfadjoint operator A

give elements of the σ-equivariant K0 group of C(S2
q,s). For each k ∈ N, let us denote

the projection onto the span of ek,+ (resp. ek,−) by p
(+)
k (resp. by p

(−)
k ).

By (5.1), the spectral projections of A for the positive (resp. negative) eigenvalues are

given by the p
(+)
k ⊕ 0 (resp. 0 ⊕ p(−)

k ) for k ∈ N. In what follows we abbreviate these

projections as p
(+)
k and p

(−)
k .

From the description of K in Lemma 5.1, Proposition 4.2 implies

Ch2(p
(±)
k , p

(±)
k , p

(±)
k ) = ±q−2k (k ∈ N).

Let us relate this computation to the calculation of Proposition 5.3. One may think of P
as a family of projections onH⊗C2 parametrized by 0 ≤ q < 1 and 0 < s ≤ 1. Moreover,
the C∗-algebras C(S2

q,s) can be identified with each other because they have the same
image under the representation π. From its presentation, P is operator norm continuous
in the parameters q ∈ [0, 1) and s ∈ (0, 1]. Hence the class of P in K

U(1)
0 C(S2

q,s) is
independent of q and s.

Now, the projection (π+ ⊕ π−)(P ) at q = 0 and s = 1 can be written as

1

2

(
1 S∗

S 1 + p
(+)
0

)
⊕ 1

2

(
1 S∗

S 1− p(−)
0

)
,

where S is the isometry ek 7→ ek+1 on `2(N). This projection and(
1 0

0 p
(+)
0

)
⊕
(

1 0
0 0

)
are connected by a continuous path of U(1)-invariant projections f

(+)
t ⊕ f (−)

t (t ∈ [0, 1])
defined by

f
(+)
t =

1

2

(√
1− t2 + 1 tS∗

tS (1−
√

1− t2)(1− p(+)
0 ) + 2p

(+)
0

)
and

f
(−)
t =

1

2

(√
1− t2 + 1 tS∗

tS (1−
√

1− t2)(1− p(−)
0 )

)
.

Using the representation of K in Equation (5.3), we obtain

Ch2(P, P, P ) = Ch2(1, 1, 1)q−1 + Ch2(p
(+)
0 , p

(+)
0 , p

(+)
0 )q = q,

which gives a ‘global’ picture of the index pairing.
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6 The modular Fredholm modules over A(SU q(2))

As an example of odd-dimensional case, let us present the quantum group SU q(2). In
this section the parameter q takes value in (0, 1). The ∗-algebra A(SUq(2)) is universally
generated by a and b satisfying the relations

ba = qab, bb∗ = b∗b, b∗a = qab∗, aa∗ + bb∗ = 1, a∗a+ q2bb∗ = 1.

In this section we shall demonstrate that the fundamental Fredholm module presented
first in [15] and the Fredholm module arising from the spectral triple constructed in [7]
both give rise to non-trivial twisted cyclic cocycles. We explicitly compute the pairing
of these cocycles with an element from the equivariant K1 group, and show that the two
pairings are both non-zero.

6.1 The basic Fredholm module

We briefly review the construction of the module Fredholm module. The Hilbert space
is H = `2(N)⊗ `2(Z), with an representation π0 of the A(SUq(2)) defined by

π0(a)ek,l =
√

1− q2k+2ek+1,l, π0(b)ek,l = qkek,l+1,

in terms of the standard basis for k ≥ 0, and l ∈ Z. The Fredholm operator F is chosen
to be Fek,l = sign(l)ek,l, where we put sign(0) = 1.

Lemma 6.1. The triple (F, π0,H) is a 3-summable modular Fredholm module with re-
spect to the von Neumann algebra B(H) and weight Φ defined as follows. Define the
modular operator by

Kek,l = q−2kek,l.

Then the weight Φ is given by Φ(T ) := Tr(K1/2TK1/2), for T ≥ 0.

Proof. From the way π0 is defined, one obtains the commutation relation

[F, π0(a)] = 0, [F, π0(b)]ek,l = 2qkδl,−1ek,l+1. (6.1)

It follows that for any x ∈ A(SU q(2)), the matrix coefficient of [F, π0(x)] decays by
the order of qk with respect to the index k ∈ N. Therefore, for any elements x, y in
A(SU q(2)), the operator K[F, π0(x)][F, π0(y)] is bounded, and for any three elements x,
y, and z, the operator K[F, π0(x)][F, π0(y)][F, π0(z)] is of trace class. This means that
[F, π0(A(SU q(2)))]3 is in the domain of Φ.

The modular automorphism σ(T ) = K−1TK is given on the generators by

σ(b) = b, σ(b∗) = b∗, σ(a) = q−2a, σ(a∗) = q2a∗.
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Since the Fredholm module is odd, we can use it to construct a twisted 3-cyclic cocycle.
Let us investigate the pairing of this cocycle with the equivariant K1-group. Consider
the unitary V in A(SUq(2))⊗M2(C) given by

V =

(
−qb∗ a
a∗ b

)
. (6.2)

This gives a generator of the U(1)-equivariant K1-group of C(SU q(2)) with respect to
σt. If we extend the action of the modular operator to H⊗ C2 by the generator

K̃ = K ⊗
(
q−1 0
0 q

)
,

then we see that V is invariant under σ = AdK̃ . We can now compute the modular
index pairing using (4.2).

Proposition 6.2. The equivariant pairing between the class of Ch3 and the class of V
is nontrivial and is equal to q.

Proof. We compute the pairing explicitly:

〈[Ch3], [V ]〉 =
(−1)2

24
Tr
(
K̃F [F, V ][F, V ∗][F, V ][F, V ∗]

)
=

1

16

(
∞∑
k=0

∑
l∈Z

16q−2k sign(l)
(
qδl,0q

4k + q3δl,−1q
4k
))

=
∞∑
k=0

q(1− q2)q2k = q.

It follows from results of Hadfield and Krähmer (see [12, Lemma 4.6]) that the map
I : HH σ

3 (A(SUq(2))) → HC σ
3 (A(SUq(2))) is surjective. Therefore, the Hochschild class

of the Chern character is nontrivial in HH 3
σ(A(SUq(2))). Similar comments apply to the

Chern character in the next section.

6.2 The modular Fredholm module of SUq(2) from its spectral triple.

The Fredholm module for A(SUq(2)) presented above gives (up to sign) the same (or-
dinary) K-homology class as the Fredholm module arising from the spectral triple over
A(SUq(2)) discovered in [7]. It is therefore not surprising that the modular index pair-
ings and the twisted cyclic three-cocycles obtained from these two examples are both
nontrivial.

Let us briefly recall the construction of the equivariant spectral triple over A(SUq(2))
due to [7]. We will use the notation from that work, and refer there for more details.

When j ∈ 1
2
N is a half integer, put j± = j±1/2 when j ∈ 1

2
N. For each j ∈ 1

2
N, consider

finite dimensional Hilbert spaces

W ↑
j = span{|jµn ↑〉 | µ = −j,−j + 1, . . . , j, and n = −j+, . . . , j+},

W ↓
j = span{|jµn ↓〉 | µ = −j,−j + 1, . . . , j, and n = −j−, . . . , j−},
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where the elements of the respective sets form orthonormal bases. The spectral triple
is realized on the completion H of the pre-Hilbert space ⊕∞2j=0W

↑
j ⊕W

↓
j . The action of

A(SUq(2)) on H is given ([7], Proposition 4.4) as follows. First, the action of a is given
by

π′(a) |jµn ↑〉 = α+
jµn↑↑

∣∣j+µ+n+ ↑
〉

+ α+
jµn↓↑

∣∣j+µ+n+ ↓
〉

+ α−jµn↑↑
∣∣j−µ+n+ ↑

〉
,

π′(a) |jµn ↓〉 = α+
jµn↓↓

∣∣j+µ+n+ ↓
〉

+ α−jµn↓↓
∣∣j−µ+n+ ↓

〉
+ α−jµn↑↓

∣∣j−µ+n+ ↑
〉
,

where the coefficients α±jµn are given by (writing [k] = (q−k − qk)(q−1 − q)−1)

(
α+
jµn↑↑ α+

jµn↑↓
α+
jµn↓↑ α+

jµn↓↓

)
= q(µ+n−1

2
)/2 [j + µ+ 1]

1
2

 q−j−
1
2

[j+n+ 3
2 ]

1
2

[2j+2]
0

q
1
2

h
j−n+

1
2

i 1
2

[2j+1][2j+2]
q−j

h
j+n+

1
2

i 1
2

[2j+1]


and

(
α−jµn↑↑ α−jµn↑↓
α−jµn↓↑ α−jµn↓↓

)
= q(µ+n−1

2
)/2 [j − µ]

1
2

 qj+1

h
j−n+

1
2

i 1
2

[2j+1]
−q

1
2

h
j+n+

1
2

i 1
2

[2j][2j+1]

0 qj+
1
2

h
j−n−1

2

i 1
2

[2j]

 .

Similarly, the action of b can be expressed as

π′(b) |jµn ↑〉 = β+
jµn↑↑

∣∣j+µ+n− ↑
〉

+ β+
jµn↓↑

∣∣j+µ+n− ↓
〉

+ β−jµn↑↑
∣∣j−µ+n− ↑

〉
,

π′(b) |jµn ↓〉 = β+
jµn↓↓

∣∣j+µ+n− ↓
〉

+ β−jµn↓↓
∣∣j−µ+n− ↓

〉
+ β−jµn↑↓

∣∣j−µ+n− ↑
〉
,

where the coefficients are given by

(
β+
jµn↑↑ β+

jµn↑↓
β+
jµn↓↑ β+

jµn↓↓

)
= q(µ+n−1

2
)/2 [j + µ+ 1]

1
2

 [j−n+ 3
2 ]

1
2

[2j+2]
0

−q−j−1

h
j+n+

1
2

i 1
2

[2j+1][2j+2]
q−

1
2

h
j−n+

1
2

i 1
2

[2j+1]


and

(
β−jµn↑↑ β−jµn↑↓
β−jµn↓↑ β−jµn↓↓

)
= q(µ+n−1

2
)/2 [j − µ]

1
2

 −q
−1

2

h
j+n+

1
2

i 1
2

[2j+1]
−qj

h
j−n+

1
2

i 1
2

[2j][2j+1]

0 −
h
j+n−1

2

i 1
2

[2j]

 .

The Dirac operator D acts as the scalar j on W ↑
j and as −j on W ↓

j . The phase F of D

is therefore given by the factor 1 on W ↑
j and by −1 on W ↓

j .

In this basis, the modular element K is represented by

K |jµn ↑↓〉 = q−2(µ+n) |jµn ↑↓〉 .

We take the von Neumann algebra B(H), and the weight Φ(T ) := Tr(K1/2TK1/2) for
0 ≤ T ∈ B(H).
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Proposition 6.3. The triple (A(SUq(2)), H, F ) is an odd 3-summable modular Fredholm
module with respect to (B(H),Φ).

Proof. Since x 7→ [F, x] is a derivation, we only need to verify the summability condition
for the generators x = a, b. Let P ↑ (resp. P ↓) denote the projection onto ⊕jW ↑

j (resp.

⊕jW ↓
j ). Then the commutator [F, x] can be expressed as P ↑xP ↓ − P ↓xP ↑. Thus, for

example,

[F, a] |jµn ↑〉 7→ q(µ+n−1
2

)/2 [j + µ+ 1]
1
2 q

1
2

[
j − n+ 1

2

]1
2

[2j + 1] [2j + 2]

∣∣j+µ+n+ ↓
〉
, (6.3)

[F, a] |jµn ↓〉 7→ q(µ+n−1
2

)/2 [j − µ]
1
2 q

1
2

[
j + n+ 1

2

]1
2

[2j] [2j + 1]

∣∣j−µ+n+ ↑
〉
. (6.4)

Therefore, we need to establish that the coefficients in the above expressions are summable
with respect to the modular weight. The asymptotics of [k] is the same as that of q−k as

k tends to infinity. Hence the asymptotics of the first component of [F, a]K
1
3 is bounded

from above by
q−(j+ 2

3
µ+ 1

3
n)

q−4j
.

Similarly, from (6.4), the second component of [F, a]K
1
3 is asymptotically bounded from

above by
q−(j+ 1

3
µ− 2

3
n)

q−4j
,

and one can see that it is a trace class operator. Analogously for x = b, using the
expression of the matrices β±jµn, the ‘matrix coefficients’ of [F, b]K

1
3 are asymptotically

bounded from above by

max(
q−(2j+ 2

3
µ+ 2

3
n)

q−4j
,
q−(j+ 1

3
µ− 1

3
n)

q−4j
),

and similar analysis shows that [F, b]K
1
3 ∈ L1(H) ⊂ L3(H). This proves the assertion.

Observe that the Fredholm module (A(SUq(2)), H, F ) is not 2-summable, as could be

easily seen by computing the asymptotics of [F, b]K
1
2 , which shows that this is only

bounded but not compact.

Since the product of at least three commutators with F is in the domain of the modular
weight Φ(·) = Tr(K1/2 ·K1/2) we can define the twisted Chern character of the modular
Fredholm module as before:

Ch3(x0, x1, x2, x3) = λ3
1

2
Tr(F [F, x0][F, x1][F, x2][F, x3]K), xi ∈ A(SUq(2)).

We now compute the pairing of Ch3 with the equivariant odd K-group. Taking V as in
(6.2) and with the same extension of K to H⊗ C2, we obtain the following:
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Proposition 6.4. The modular index of V relative to the above Fredholm module is
equal to 1.

Proof. First, observe that V can be written as V = SU , where S and U are given by

S =

(
0 1
1 0

)
, U =

(
a b
−qb∗ a∗

)
.

Recall that by [9], the operator PUP , where P = 1
2
(1 + F )⊗ Id, has a trivial cokernel,

whereas its kernel is one dimensional and spanned by

ξ0 =

( ∣∣0, 0,−1
2
↑
〉

−q−1
∣∣0, 0, 1

2
↑
〉 ) .

Since the matrix S commutes with the projection P , ξ0 also spans the kernel of PV P .
It is then easy to check that the eigenvalue of the modular operator K̃ acting on ξ0 is
1.

Remark 6.5. The above computations show that, the two modular Fredholm modules
of Sections 6.1 and 6.2 are related by multiplying a nontrivial 1-dimensional character
of U(1) if one considers the associated U(1)-equivariant K-homology classes.

7 Conclusions

The significance of the results in [5] is that we can represent those cyclic cocycles arising
from traces on J n as Chern characters of n-summable semifinite Fredholm modules.
Theorem 3.2 shows that we can represent those twisted cyclic cocycles arising from
KMS weights on J n as Chern characters of modular Fredholm modules.

This Fredholm module approach to twisted traces works well, and in the examples avoids
the dimension drop phenomena which plague q-deformations. An unbounded approach,
in the spirit of spectral triples, is still a work in progress, but see [13, 14, 18].
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