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KK-Theory and Spectral Flow in von Neumann Algebras
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Abstract

We present a definition of spectral flow for any norm closed ideal J in any
von Neumann algebra N . Given a path of selfadjoint operators in N which
are invertible in N=J , the spectral flow produces a class in K0.J /.

Given a semifinite spectral triple .A;H;D/ relative to .N;�/with A separable,
we construct a class ŒD� 2 KK1.A;K.N //. For a unitary u 2 A, the von
Neumann spectral flow between D and u�Du is equal to the Kasparov product
Œu� Ő AŒD�, and is simply related to the numerical spectral flow, and a refined
C �-spectral flow.
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1. Introduction

The theory of analytic spectral flow has received a great deal of attention in recent
years, with significant progress being made by many authors, [2, 4, 8, 9, 10, 22, 23,
24, 28]. The article [28] contains a much more detailed review of other aspects of
spectral flow.

Here we take a slightly different tack, replacing numerical measures of spectral
flow by K-theory valued measures, as in [18, 28]. The advantages of this approach
are the great generality in which it can be defined, and its compatibility with the
various numerical notions.

This compatability yields constraints on the possible values of spectral flow,
which, for example, in the semifinite setting of [22, 23], is a priori any real number.
Our description of spectral flow allows one to factor through a K-theory group, and
so constrain the possible values of the spectral flow. The more refined we can be
about the target K-theory group, the more refined our information.

We define von Neumann spectral flow for any norm closed ideal J in any von
Neumann algebraN . Given a path of selfadjoint operators inN which are invertible
in N=J , we obtain a class in K0.J /. In order to be able to work in such a general
context, we need to develop a K0.J /-valued index theory for any such pair N;J .
Such an index theory is developed in Section 2, and then in Section 3 we define
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and study the von Neumann spectral flow. We then follow the approach of [22, 23],
defining spectral flow in terms of relative indices of projections.

A closely related idea which we introduce is a von Neumann spectral triple,
modelled on the definition of semifinite spectral triples, but valid for any von
Neumann algebra N and ideal J . We show that such a triple defines a Kasparov
class, and relate the spectral flow to Kasparov products.

In particular, every semifinite spectral triple represents a KK-class, just as
ordinary spectral triples represent K-homology classes. This extends the observed
relation in [18, 19].

In Section 5 we discuss the consequences of refining our target K-theory group
to K0.B/, where B � J is a �-unital subalgebra. We show that this can always be
done for a von Neumann spectral triple, and so we can define a C �-spectral flow.
We relate this spectral flow to our previously defined von Neumann spectral flow.

Section 6 relates both von Neumann and C � spectral flow for a semifinite
spectral triple to the numerical spectral flow obtained from a trace.

The Appendix summarises some results from KK-theory that we require, and
proves an explicit formula for certain odd pairings inKK-theory, which plays a key
role throughout the paper.

Acknowledgments: It is a pleasure to thank Alan Carey and John Phillips for
many helpful conversations about spectral flow. We thank the referee for a careful
reading of the manuscript which resulted in several improvements.

2. K-theory-valued von Neumann Index Theory

Throughout this section, we let N be a von-Neumann algebra acting on a Hilbert
space H and let J be a norm closed ideal in N . Let � W N ! N=J be the quotient
map.

In all the following, we will distinguish between the kernel of an operator S W
H ! H called ker.S/ and the projection onto the kernel called N.S/ 2 L.H/.
Likewise we have the image of S , Im.S/ and the projection onto the norm closure
of Im.S/, denoted R.S/ 2 L.H/. If S is in N then N.S/ and R.S/ are in N also.

For any two projections p;q 2 L.H/ we denote the projection onto Im.p/ \
Im.q/ by p\ q 2 L.H/. If p;q 2 N and S 2 N 0, then Sp D pS and Sq D qS thus
Sp\ q D p\ qS . It follows easily that p\ q 2N 00 DN .

We recall some facts about the polar decomposition of an operator. Let S 2 N .
The partial isometry u 2 N from the polar decomposition of S is called the phase
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of S . The phase of S has the following properties

ujS j D S S� D u�jS�j

uu� DR.u/DR.S/ u�uDR.u�/DR.S�/

1�uu� DN.u�/DN.S�/ 1�u�uDN.u/DN.S/:

See [12, Appendice III] for more details. Since K-theory is well-defined for non-
separable C �-algebras, we can ask what the generalised index map in K-theory
gives us for an invertible in the ‘Calkin algebra’ N=J .

Lemma 2.1 Let Œ�.S/� 2 K1.N=J / be a class in K1.N=J / represented by the
unitary �.S/, where S 2Mn.N / for some n 2N. Then

@Œ�.S/�D ŒN.S/�� ŒN.S�/� 2K0.J /;

where @ W K1.N=J /! K0.J / is the boundary map in K-theory. See for instance
[3, Definition 8:3:1].

Proof: The algebraMn.N /DMn.C/˝N is a von-Neumann algebra acting on the
Hilbert space˚niD1H so S can be polar decomposed in Mn.N /. Let u 2Mn.N / be
the phase of S . Now, u is a lift of �.S/ since

�.S/D �.ujS j/D �.u/�.S�S/1=2 D �.u/:

And we conclude from the definition of the boundary map, [3, 14, 26], that

@Œ�.S/�D Œ1�u�u�� Œ1�uu��D ŒN.S/�� ŒN.S�/�

as claimed.

The generic situation where the index of an operator S is relevant for appli-
cations is when S W H1 ! H2. Even to define ‘odd’ index pairings one requires
such operators. Thus one must consider operators not in a von Neumann algebra N ,
but in a skew-corner qNp where p;q 2 N are projections. This situation was first
considered in [11] for semifinite von Neumann algebras. The following definition
generalises the semifinite notion of Fredholm.

Definition 2.2 Let p;q be projections in N . Then S 2 qNp is a .q-p/-Fredholm
operator if there exists a T;R 2 pNq such that

�.TS/D �.p/ and �.SR/D �.q/:

Since �.T /D �.TSR/D �.R/, we can choose R D T . The operator T is called a
parametrix for S .
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Remark 2.3 Suppose we have an operator S 2 qNp. Then

N.S/\p DN.S/p and N.S�/\ q DN.S�/q:

This follows immediately since

.1�p/N.S/D .1�p/DN.S/.1�p/) pN.S/DN.S/p

so N.S/\p DN.S/p. Similar comments apply to the projections N.S�/ and q.

Lemma 2.4 Let S 2 qNp and let u 2 N be the phase of S . Then u 2 qNp and we
have the identities

p�u�uDN.S/� .1�p/DN.S/\p

q�uu� DN.S�/� .1� q/DN.S�/\ q:

Furthermore if S 2 qNp is a .q-p/-Fredholm operator then �.u�u/ D �.p/ and
�.uu�/D �.q/. In particular u is .q-p/-Fredholm and N.S/\p;N.S�/\ q 2 J .

Proof: First, u is in qNp since .1�p/H � Ker.S/D Ker.u/ and Im.u/D Im.S/�
qH . Next, .1� p/N.S/ D .1� p/ so N.S/� .1� p/ D N.S/�N.S/.1� p/ D

N.S/p D N.S/ \ p by Remark 2.3. The statement concerning N.S�/ and q is
proved in the same way.

Now, suppose that S 2 qNp is a .q-p/-Fredholm operator with parametrix T 2
pNq. Then S�S 2 pNp is a .p-p/-Fredholm operator with parametrix T T � 2
pNp. This means that �.S�S/ is invertible in the C �-algebra �.p/.N=J /�.p/.
Similarly �.SS�/ is invertible in the C �-algebra �.q/.N=J /�.q/ Clearly, then the
phase u 2 qNp of S 2 qNp is a lift of �.S/�.S�S/�1=2 2 �.q/.N=J /�.p/. This
allows us to deduce the identities

�.u�u/D �.S�S/�1=2�.S�S/�.S�S/�1=2 D �.p/ and
�.uu�/D �.S/�.S�S/�1�.S�/D �.q/

as desired.

The result allows us to make the following definition.

Definition 2.5 Let S 2 qNp be a .q-p/-Fredholm operator. We define the .q-p/-
index of S as the class

Ind.q-p/.S/D ŒN.S/\p�� ŒN.S
�/\ q�

in K0.J /.
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Let S 2 qNp be a .q-p/-Fredholm operator and let u 2 qNp be the phase of S .
The triple .p;q;u/ is thus a relative K-cycle for .N;N=J / and thus defines the class
ŒS� WD Œp;q;u� 2K0.N;N=J / in relative K-theory. Recall that ‘.p;q;u/ is a relative
K-cycle for .N;N=J /’ means that, [14, Definition 4.3.1], p;q are projections in N ,
and �.p/D �.u�u/, �.q/D �.uu�/, where � WN !N=J is the quotient map. The
relative K-cycle .p;q;u/ is degenerate if u is a Murray-von Neumann equivalence
between p and q, in which case the K-theory class defined by .p;q;u/ is zero.

The relativeK-theoryK0.N;N=J / is related to theK-theory of the idealK0.J /
through the excision map

Exc WK0.J /!K0.N;N=J /

as defined in [14, Definition 4:3:7]. The excision map is an isomorphism, [14,
Theorem 4:3:8]. In the next theorem we will see that the .q-p/-index of S is simply
the inverse of the excision map applied to the class ŒS� 2 K0.N;N=J /. Many
properties of the .q-p/-index will thus follow immediately, and we will state the
ones we need as corollaries.

Theorem 2.6 Let S 2 qNp be a .q-p/-Fredholm operator and let u 2 qNp be the
phase of S . Then the identity

Exc�1ŒS�D Indq-p.S/

is valid in K0.J /.

Proof: We can express the class ŒS� 2K0.N;N=J / as a sum of classes

ŒS�D Œp;q;u�D Œp�u�u;q�uu�;0�C Œu�u;uu�;u�:

The relative K-cycle .u�u;uu�;u/ is degenerate so actually

ŒS�D Œp�u�u;q�uu�;0�:

The projections p�u�uDN.S/\p and q�uu� DN.S�/\q are in J by Lemma
2.4, so

Exc�1ŒS�D Œp�u�u�� Œq�uu��D Indq-p.S/

as desired.

Corollary 2.7 Let S0 2 qNp and S1 2 qNp be .q-p/-Fredholm operators. Suppose
that there is a norm-continuous path of .q-p/-Fredholm operators connecting S0
and S1. Then

Ind.q-p/.S0/D Ind.q-p/.S1/:
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Proof: Let t 7! St 2 qNp be the norm-continuous path of q-p Fredholm
operators. Then t ! �.St /�.S

�
t St /

�1=2 is continuous where the inverse is taken
in �.p/.N=J /�.p/. Then �.ut / D �.St /�.S

�
t St /

�1=2, where ut is the polar
decomposition of St . Next, �.u�0/�.ut / is actually unitary in �.p/.N=J /�.p/ for
all t since �.utu�t / D �.q/ and �.u�t ut / D �.p/ by Lemma 2.4. The continuous
path of unitaries �.u�0/�.ut /C�.1�p/ thus lies in the connected component of the
identity, since �.u�0/�.u0/C�.1�p/D �.1/, and so can be lifted to a continuous
path (of unitaries) fwtg in N . Thus we obtain a lifting fvtg WD fu0wtg of f�.ut /g.

Now .p;q;vt / is a relative K-cycle for each t 2 Œ0;1�, [14, Lemma 4:3:13]. If
u0 2 qNp and u1 2 qNp are the phases of S0 and S1 respectively, then �.u0/ D
�.v0/ and �.u1/D �.v1/ so we have the identity

ŒS0�D Œp;q;u0�D Œp;q;v0�D Œp;q;v1�D Œp;q;u1�D ŒS1�

in K0.N;N=J /. It thus follows immediately by Theorem 2.6 that

Ind.q-p/.S0/D Exc�1ŒS0�D Exc�1ŒS1�D Ind.q-p/.S1/

as desired.

Corollary 2.8 Let S 2 qNp be a .q-p/-Fredholm operator and let T 2 rNq be an
.r-q/-Fredholm operator. Then TS is an .r-p/-Fredholm operator and

Ind.r-q/.T /C Ind.q-p/.S/D Ind.r-p/.TS/:

Proof: Set U� D
�

qcos� qsin�
�qsin� qcos�

�
. Then, by homotopy invariance,

Ind.r-p/.TS/D Ind.r˚q-p˚q/..T˚q/U0.S˚q//D Ind.r˚q-p˚q/..T˚q/U�
2
.S˚q//:

But .T ˚ q/U�
2
.S ˚ q/�.T ˚ q/U�

2
.S ˚ q/ D S�S ˚ T �T , so if we set v Dphase

of T , and uDphase of S , we find that

Ind.r˚q-p˚q/..T ˚ q/U�
2
.S ˚ q//D Ind.r˚q-p˚q/..v˚ q/U�

2
.u˚ q//:

Again by homotopy invariance

Ind.r-p/.TS/D Ind.r-p/.vu/:

The claimed result follows since, inK0.N;N=J /, Œp;r;vu�D Œq;r;v�CŒp;q;u�:
Let N be a semifinite von Neumann algebra equipped with a fixed normal,

semifinite, faithful trace � . Let KN be the �-compact operators as defined in
Definition 6.1. All projections in KN have finite trace by Theorem 6.5. Applying
the homomorphism �� W K0.KN /! R from Theorem 6.4 to the main theorems of
this section we obtain some of the important results from Breuer-Fredholm theory,
[2, 5, 6, 8, 9, 10, 11, 22, 23, 24].
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3. Von Neumann Spectral Flow

3.1. Basic Definitions and Properties

Having set up the appropriate index theory for Fredholm operators in skew-corners
pNq, [11], we now analyse spectral flow. This is associated with odd index pairings,
and so self-adjoint operators. Specialising our definition of p-q-Fredholm to the
case p D q D 1 we have the following.

Definition 3.1 An operator T 2N is said to be J -Fredholm if �.T / is invertible in
N=J . The space of J -Fredholm operators is denoted by F . The space of selfadjoint
J -Fredholm operators is denoted by Fsa.

In order to develop our notion of spectral flow, we follow the work of Phillips,
[22, 23]. Indeed most of the results, and proofs, of this section are present, at
least implicitly, in Phillips’ work. Due to small differences in detail, we repeat the
statements and basic arguments for the reader’s benefit.

Let � WR!R be the indicator function for the interval Œ0;1/ defined by

�.t/D

�
1 t 2 Œ0;1/

0 t 2 .�1;0/:

Lemma 3.2 Let T 2 Fsa then �
�
�.T /

�
D �

�
�.T /

�
.

Proof: Note that �
�
�.T /

�
makes sense since 0 … Sp

�
�.T /

�
thus we can find an

" > 0 such that the interval Œ�";"� is included in the resolvent set of �.T /. Now
define the continuous functions f1 WR!R

f1.t/D

8<
:

0 t 2 .�1;�"�

"�1t C 1 t 2 Œ�";0�

1 t 2 Œ0;1/

and f2 WR!R by

f2.t/D

8<
:

0 t 2 .�1;0�

"�1t t 2 Œ0;"�

1 t 2 Œ";1/:

So f1 D �D f2 on Sp.�.T // while f1 � �� f2 on Sp.T /. Thus

�
�
�.T /

�
Df1

�
�.T /

�
D�

�
f1.T /

�
� �

�
�.T /

�
� �

�
f2.T /

�
Df2

�
�.T /

�
D�

�
�.T /

�
yielding �

�
�.T /

�
D �

�
�.T /

�
as desired.

Lemma 3.3 Let t 7! Bt be a norm continuous path in Fsa. Then t 7! �
�
�.Bt /

�
is

a norm continuous path in the C �-algebra N=J .
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To prove this lemma we need a general result from the theory of C �-algebras.
The result is probably well-known to the experts, but as we could not find a
reference, we include a proof.

Lemma 3.4 Let A be a C �-algebra and let U be an open subset of R. Denote
by Asa the real subspace of selfadjoint elements with the induced topology from A.
Then the set

fa 2 Asa jSp.a/� U g

is open in Asa.

Proof: Let a 2 Asa with Sp.a/� U . The function dist.�;U c/ W C! Œ0;1Œ defined
by

dist.�;U c/D inffj��	jj	 2 U cg

for all � 2 C is continuous. It attains thus its minimum on the compact set Sp.a/.
Furthermore for � 2 Sp.a/ we have dist.�;U c/ > 0 because � … U c D U c , so the
minimum is strictly positive. Set

"D
dist

�
Sp.a/;U c

�
2

D
inffj��	jj� 2 Sp.a/;	 2 U cg

2
> 0:

Now take b 2 Asa with kb � ak < "
2

and suppose for contradiction that there exists
a � 2 Sp.b/ with

B".�/\Sp.a/D ;:

Here B".�/ denotes the ball of radius " > 0 and center �. Let 	 2 B"=4.�/. Then
	 … Sp.a/ and

k.	� a/�1k�1 D supfj	�˛j�1 j˛ 2 Sp.a/g�1 D dist
�
	;Sp.a/

�
�
3"

4
:

Furthermore

k.�� b/� .	� a/k � j��	jC ka� bk<
"

4
C
"

2
� k.	� a/�1k�1:

So �� b is actually invertible which is a contradiction, see [17, Proposition 17:3].
Hence for � 2 Sp.b/ we cannot have

B".�/\Sp.a/D ;:

Because of the way the " was chosen we conclude that Sp.b/� U . Thus Sp.b/� U
for any b 2 Asa with kb� ak< "=2.
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Proof: of Lemma 3.3. Let t0 2 Œ0;1�. Choose an " > 0 such that the interval Œ�";"�
is included in the resolvent set of �.Bt0/. Now

Sp
�
�.Bt0/

�
� .�1;�"/[ .";1/:

By Lemma 3.4 and the continuity of t 7! �.Bt / there is a ı > 0 such that

Sp
�
�.Bt /

�
� .�1;�"/[ .";1/

for all t 2 .t0 � ı;t0C ı/\ Œ0;1�. So for all t 2 .t0 � ı;t0C ı/\ Œ0;1� we have the
identity

�
�
�.Bt /

�
D f

�
�.Bt /

�
where f is some fixed continuous function (for instance the function f1 from the
proof of Lemma 3.2). But the function

t 7! f
�
�.Bt /

�
is clearly continuous and the lemma is thereby proved.

With these tools at hand we can now define spectral flow as a class in K0.J /.

Definition 3.5 (Spectral flow) Let t 7! Bt be a norm continuous path in Fsa. By
Lemma 3.3 the path

t 7! �
�
�.Bt /

�
D �

�
�.Bt /

�
is norm continuous. Find a partition 0D t0 < t1 < ::: < tn D 1 such that

k�
�
�.Bt /

�
��

�
�.Bs/

�
k< 1=2 for all t;s 2 Œti�1;ti �:

Set pi D �.Bti /. We now define the spectral flow of the path fBtg to be

sf fBtg D
nX
iD1

�
.1�pi /\pi�1

�
�
�
.1�pi�1/\pi

�
2K0.J /:

This definition raises several questions which we will answer in the following
lemmas.

1. Are the elements pipi�1 2 piNpi�1 .pi -pi�1/-Fredholm operators for all
i 2 f1;:::;ng ?

2. Is the spectral flow independent of the partition chosen ?

3. Is the spectral flow invariant under homotopies of the path fBtg ?

4. Is the spectral flow of fBtg equal to the spectral flow of fCtg if Bt �Ct 2 J
for all t 2 Œ0;1� ?

Lemma 3.6 Suppose that p;q 2 N are two projections such that k�.p/��.q/k <
1. Then qp 2 qNp is a .q-p/-Fredholm operator. Thus, by Lemma 2.4, we have
.1� q/\p 2 J and .1�p/\ q 2 J .
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Proof: The inequality

k�.pqp/��.p/k � k�.p/��.q/k< 1

shows that �.pqp/ is invertible in �.pNp/, so there is an operator T 2 pNp such
that �.Tpqp/D �.p/. Likewise the inequality

k�.qpq/��.q/k � k�.q/��.q/k< 1

shows that �.qpq/ is invertible in �.qNq/, so there is an operator R 2 qNq such
that �.qpqR/D �.q/. It follows that qp is a .q-p/-Fredholm operator.

Corollary 3.7 For a path fBtg in Fsa and a partition 0 D t0 < t1 < ::: < tn D 1

such that

k�
�
�.Bt /

�
��

�
�.Bs/

�
k< 1=2 for all t;s 2 Œti�1;ti �

for all i 2 f1;:::;ng we can express the spectral flow of the path as the sum of .pi -
pi�1/-indices

sffBtg D
nX
iD1

Ind.pi -pi�1/.pipi�1/

where pi D �.Bti / for all i 2 f0;:::;ng. Thus by Theorem 2.8 we actually have

sffBtg D Ind.pn-p0/.pn :::p0/D ŒN.pn :::p0/\p0�� ŒN.p0 :::pn/\pn�:

Lemma 3.8 Suppose that p;q;r are three projections in N with

k�.p/��.q/k< 1=2 ; k�.q/��.r/k< 1=2 and k�.r/��.p/k< 1=2

then
Ind.r-q/.rq/C Ind.q-p/.qp/D Ind.r-p/.rp/:

Thus the spectral flow is independent of the partition chosen -it doesn’t change if a
finer one is chosen.

Proof: We want to prove that

Ind.r-q/.rq/C Ind.q-p/.qp/� Ind.r-p/.rp/D 0:

By Theorem 2.8 this amounts to show that

Ind.r-r/.rqpr/D 0:
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Verify the inequality

k�.rqpr/��.r/k � k�.qp/��.r/k

� k�.qp/��.q/kCk�.q/��.r/k

� k�.p/��.q/kCk�.q/��.r/k

< 1:

Let t 2 Œ0;1�, then

k�
�
.1� t /rqpr C t r

�
��.r/k D .1� t /k�.rqpr/��.r/k< .1� t /

thus �
�
.1� t /rqpr C t r

�
is invertible in �.rNr/ for all t 2 Œ0;1�. This means that

the path t 7! .1� t /rqpr C t r consists entirely of .r-r/-Fredholm operators and it
connects rqpr with r . To finish the proof we simply refer to Theorem 2.7 which
gives

0D Ind.r-r/.r/D Ind.r-r/.rqpr/

as desired.

Lemma 3.9 [2, 23] Let fBtg and fCtg be two paths of selfadjoint J -Fredholm
operators. Let H W Œ0;1� � Œ0;1� ! Fsa be a homotopy connecting fBtg and fCtg
leaving the endpoints fixed. That is H is norm-continuous with H.t;0/ D Bt ,
H.t;1/ D Ct for all t 2 Œ0;1� and H.0;s/ D B0, H.1;s/ D B1 for all s 2 Œ0;1�.
In particular B0 D C0 and B1 D C1. Then sffBtg D sffCtg.

Proof: The map 
 W Œ0;1�� Œ0;1�!N=J defined by


.t;s/D �
	
�
�
H.t;s/

�

is continuous and thus uniformly continuous, so we can choose a grid

0D t0 < t1 ::: < tn D 1 ; 0D s0 < s1 ::: < sn D 1

of Œ0;1�� Œ0;1� such that for any .t;s/;.u;v/ 2 Œti�1;ti �� Œsj�1;sj � we have k
.t;s/�

.u;v/k< 1

2
where i;j 2 f1;:::;ng are fixed.

Now look at the spectral flow along the borders of the squares. That is, for i;j 2
f1;:::;ng there are eight paths of selfadjoint J -Fredholm operators. For instance we
have

u 7!H
�
.1�u/ti�1Cuti ;sj�1

�
as one of them. The spectral flow of this path will be denoted by

sfH
�
.ti�1;sj�1/;.ti ;sj�1/

�
:
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Likewise for the spectral flow of the other paths. Applying Lemma 3.8 and the
definition of spectral flow gives

sfH
�
.ti�1;sj�1/;.ti ;sj�1/

�
C sfH

�
.ti ;sj�1/;.ti ;sj /

�
C sfH

�
.ti ;sj /;.ti�1;sj /

�
C sfH

�
.ti�1;sj /;.ti�1;sj�1/

�
D 0:

Furthermore

sfH
�
.ti�1;sj�1/;.ti ;sj�1/

�
D�sfH

�
.ti ;sj�1/;.ti�1;sj�1/

�
:

And an easy combinatorial argument yields the result.

Remark 3.10 Suppose that p;q 2N are two projections with kp� qk< 1, then

Ker.p/\ Im.q/D 0D Ker.q/\ Im.p/

so the J -index of the projections

Ind.p-q/.pq/D Œ.1�p/\ q�� Œ.1� q/\p�D 0:

To see this we start by deducing that 1� p C pqp is invertible in N from the
inequality

kp�pqpk � kp� qk< 1:

If now x is in Ker.q/\ Im.p/ we immediately have

.1�pCpqp/x D 0

but 1�pCpqp was invertible so x D 0. Therefore Ker.q/\ Im.p/D 0. To prove
that Ker.p/\ Im.q/D 0 simply interchange p and q.

Lemma 3.11 Let fBtg and fCtg be two paths of self adjoint J -Fredholm operators
with Bt �Ct 2 J for all t 2 Œ0;1� and

Ind.p0-q0/.p0q0/D Ind.q1-p1/.q1p1/D 0

where p0 D �.B0/, p1 D �.B1/, q0 D �.C0/ and q1 D �.C1/. Then sffBtg D
sffCtg. The condition (3.11) is true if for instance

k�.B0/��.C0/k< 1 and k�.C1/��.B1/k< 1

by Remark 3.10.
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Proof: Choose a partition 0D t0 < t1 < ::: < tn D 1 such that

k�
�
�.Bt /

�
��

�
�.Bs/

�
k<

1

4

and
k�
�
�.Ct /

�
��

�
�.Cs/

�
k<

1

4

for all t;s 2 Œti�1;ti �, i 2 f1;:::;ng.
Now join the elements Bti and Cti by a straight line for each i 2 f0;:::;ng

denoted by .BC/i . The straight line from Cti to Bti is denoted by .CB/i .
Notice that the lines are paths of selfadjoint J -Fredholm operators because

�
�
.1� t /Bti C tCti

�
D �.Bti /

for all t 2 Œ0;1� and i 2 f1;:::;ng.
Now, almost by definition, the spectral flow along the square

Cti�1  ���� Cti

.CB/i�1

??y .BC/i

x??
Bti�1 ����! Bti

is zero. Since too the spectral flow along the lines .BC/0 and .BC/1 is zero by
assumption we can use the same combinatorial argument as in the proof of Lemma
3.9 to reach the desired conclusion, namely sf fBtg D sf fCtg.

3.2. Von Neumann Spectral Triples and Spectral Flow

Definition 3.12 A von Neumann spectral triple .A;H;D/ relative to .N;J / consists
of a representation of the 	-algebra A in the von Neumann algebra N acting on the
Hilbert space H , together with a norm closed ideal J and a self-adjoint operator D
affiliated to N such that

1. ŒD;a� is defined on Dom.D/ and extends to a bounded operator on H for all
a 2A.

2. a.��D/�1 2 J for all � …R and a 2A.

The J -spectral triple is said to be unital if the unit of N is in A.

While type III factors have no nontrivial norm closed ideals, such ideals exist
in the non-factor case. We have no particular examples in the type III case, but the
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definition of J spectral triple emphasises that the type of the von Neumann algebra
is not the issue once we have a nontrivial ideal J .

If .A;H;D/ is a unital J -spectral triple, we use the spectral theorem to define
the bounded operator in N

FD WDD.1CD2/�1=2:

Let t 7! At be a path of selfadjoint operators in N . We claim the path

t 7!Dt WDDCAt

is a continuous path of unbounded selfadjoint J -Fredholm operators in the sense
that the path

t 7! FDt DDt .1CD2t /�
1
2

is a norm continuous path of self-adjoint J -Fredholm operators. The self-
adjointness and boundedness follows for all t 2 Œ0;1� from the spectral theorem
applied to the function

x 7! x.1C x2/�1=2:

So we need to prove the claims of continuity and J -Fredholmness.
For continuity, let t;s 2 Œ0;1�, and apply [8, Appendix A, Theorem 8] to find

kFDt �FDsk D kDt .1CD2t /�
1
2 �Ds.1CD2s /�

1
2 k � kAt �Ask

proving continuity.
To prove the J -Fredholmness, let t 2 Œ0;1�. Then [8, Lemma 2:7] says that for

0 < " < 1=4 we have

FDt �FD0 D B".1CD20/�.1=2�"/

where B" 2N and kB�k � C.�/kAt �A0k. For "D 1=4 we get

FDt �FD0 D B1=4.1CD20/�1=4:

By [8, Appendix, Lemma 6], and defining f .x/D 1C x2

2
C x

2

p
x2C 4, we have

.1CD20/�1 � f .kA0k/.1CD2/�1 2 J;

and as f .kA0k/ is scalar,

.1CD20/�1=4 � f .kA0k/1=4.1CD2/�1=4 2 J:
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Since B1=4 is in N we conclude

�.FD0/D �.FDt /:

At last for each t 2 Œ0;1�,

�.FDt /�.FDt /D �
�
D2t .1CD2t /�1

�
D �

�
.1CD2t /.1CD2t /�1

�
D �.1/

so �.FDt / is invertible for all t 2 Œ0;1�.
These considerations allow us to define spectral flow for such paths of un-

bounded Fredholm operators.

Definition 3.13 (Unbounded Spectral Flow) Let fAtgt2Œ0;1� be a norm continuous
path of self-adjoint operators in N , and .A;H;D/ a von Neumann spectral triple
relative to .N;J /. The spectral flow of the "continuous" path of unbounded
selfadjoint J -Fredholm operators t 7!DCAt is defined to be

sf fDtg WD sf fFDt g:

The relationship of this definition to the Riesz topology on unbounded self-
adjoint operators and spectral flow can be found in [4].

Theorem 3.14 Let fAtgt2Œ0;1� be a norm continuous path of self-adjoint operators
in N , and .A;H;D/ a von Neumann spectral triple relative to .N;J /. Let

p1 D �.FDCA1/ and p0 D �.FDCA0/:

The spectral flow of the path t 7! DCAt only depends on the end points DCA0
and DCA1 and is the class

sffDtg D sffFDt g D Œ.1�p1/\p0�� Œ.1�p0/\p1�

D Ind.p1-p0/.p1p0/ 2K0.J /:

Proof: Notice that

k�
�
�.FDt /

�
��

�
�.FDs /

�
k D k�

�
�.FDt /

�
��

�
�.FDs /

�
k D 0

for all s;t 2 Œ0;1� so by definition

sffDtg D sffFDt g D
�
.1�p1/\p0

�
�
�
.1�p0/\p1

�
:

From this formula it is obvious that the spectral flow only depends on the end points.
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4. Kasparov Modules from Spectral Triples

In this section we show that from any von Neumann spectral triple .A;H;D/ relative
to .N;J /, with J �-unital, we can construct a Kasparov module .MA;FD/ 2

E.A;J /, where MA W A! L.J / is left multiplication by elements in A. Defining
pF D

FDC1
2

we get the class ŒMA;pF �
1 2 KK1.A;J /. We will then show that for

any unitary u 2 A, the unbounded spectral flow from D to u�Du is given by the
Kasparov product Œu� Ő AŒMA;pF �

1. For an explanation of the terminology we refer
to the appendix.

In general the ideal J of a von Neumann spectral triple will not be �-unital.
(For example, if N is a factor, J is �-unital only if it is f0g or N D B.H/ for some
Hilbert space H and J D K.H/). We give one method of avoiding the lack of
�-unitality in the next Section.

4.1. Construction of a Kasparov Module

Let .A;H;D/ be a von Neumann spectral triple relative to .N;J / where the ideal J
is arbitrary.

The ideal J is a right Hilbert J -module when equipped with the inner product
hx;yi D x�y and the action of J from the right given by multiplication. Since A,
the norm closure of A, is represented inN , and FD 2N , we see that FD 2 L.J / and
that there is a 	-homomorphism MA W A! L.J / given by left multiplication. We
remark that the Hilbert module J is countably generated if and only if J is �-unital.

Theorem 4.1 For all a 2 A the operators ŒFD;a�, a.1� F 2D/ and a.FD � F
�
D/ are

in J . Thus, the pair .MA;FD/ is a Kasparov A-J -module when J is �-unital.

Proof: We have already noticed that FD D F
�
D . Let a 2 A. Calculating modulo J

aF 2D D a
�
D2.1CD2/�1

�

 a

�
D2.1CD2/�1C .1CD2/�1

�
D a:

So a.F 2D � 1/ 2 J for all a 2 A.
Let a;b 2A. We have

ŒFD;a�b DD
�
.1CD2/�1=2;a

�
bC ŒD;a�.1CD2/�1=2b:

As ŒD;a� 2N , see [10, p.456], we have

ŒD;a�.1CD2/�1=2b 2 J:

Thus we only need to show that

D
�
.1CD2/�1=2;a

�
b 2 J:
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Now, we employ integral formula, [20, p.8],

.1CD2/�1=2 D 1

�

Z 1
0

��1=2.1CD2C�/�1d�:

Denote the resolvent .1CD2C�/�1 by R.�/. Then provided

1

�

Z 1
0

��1=2D
�
R.�/;a

�
bd�

is convergent in operator norm, it is equal to

D
�
.1CD2/�1=2;a

�
b:

Applying some basic commutator identities yields

D
�
R.�/;a

�
b DDR.�/Œa;D2�R.�/b
DDR.�/Œa;D�DR.�/bCDR.�/DŒa;D�R.�/b:

To establish the required norm estimates we require some inequalities. The
following inequalities can be proved using the spectral theorem for unbounded
operators, see [8, Appendix A],

1. kR.�/k D k.1CD2C�/�1k � 1
1C�

2. kDR.�/k D kD.1CD2C�/�1k � 1

2
p
1C�

3. kD2R.�/k D kD2.1CD2C�/�1k � 1

for all � 2 Œ0;1/. Thus

1

�

Z 1
0

��1=2kD
�
R.�/;a

�
bkd�

�
1

�
kbkkŒa;D�k

Z 1
0

��1=2
�

1

4.1C�/
C

1

1C�

�
d� <1:

That is
D
�
.1CD2/�1=2;a

�
b D

1

�

Z 1
0

��1=2D
�
R.�/;a

�
bd�

where the integral is convergent in operator norm. At last

D
�
R.�/;a

�
b DDR.�/ab� ŒD;a�R.�/b� aDR.�/b
DDR.�/1=2R.�/1=2ab� ŒD;a�R.�/b� aDR.�/1=2R.�/1=2b 2 J
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for all � 2 Œ0;1/ since all the terms are in J . Thus we conclude that

D
�
.1CD2/�1=2;a

�
b 2 J

and thus that ŒFD;a�b 2 J for all a;b 2 A. By taking norm limits ŒFD;a�b 2 J for
all a;b 2 ADA.

The argument used in the preceding proof is almost identical with the argument
of S. Baaj and P. Julg used in [1] to build a bounded Kasparov module out of an
unbounded one.

4.2. The Pairing with K1.A/ and Spectral Flow

There is a certain case of unbounded spectral flow which is particularly interesting.
Suppose that .A;H;D/ is a unital von Neumann spectral triple relative to .N;J /.
Let u 2A be unitary and consider the path

t 7!Dt WD .1� t /DC tu�DuDDC t Œu�;D�u:

The function t 7! t Œu�;D�u is a continuous path of selfadjoint elements in N , so we
can calculate the spectral flow of the path Dt via the transformation Dt 7! FDt .

Lemma 4.2 Let .A;H;D/ be a unital von Neumann spectral triple relative to
.N;J /. Setting p D �.FD/ and letting u 2A be unitary, we have up�pu 2 J .

Proof: Polar decomposition of FD gives

FD D .2p� 1/jFDj:

So the image of FD in the Calkin algebra is

�.FD/D �.2p� 1/�.jFDj/D �.2p� 1/�.F
2
D/
1=2 D �.2p� 1/:

It follows that
2Œu;p�� Œu;FD�D Œu;.2p� 1/�FD� 2 J:

By Theorem 4.1 we have Œu;FD� 2 J so Œu;p� 2 J as claimed.

Theorem 4.3 Suppose that .A;H;D/ is a unital von Neumann spectral triple
relative to .N;J /, and u 2 A is a unitary. For the path t 7! Dt from above we
have

sffDtg D sffFDt g D @
�
�.pup/C�.1�p/

�
D Ind.p-p/.pup/

where p D �.FD/. From now on the spectral flow from D to u�Du will be denoted
by sf.D;u�Du/.
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Proof: From Theorem 3.14

sffFDt g D
�
.1�u�pu/\p

�
�
�
.1�p/\u�pu

�
since

�.Fu�Du/D �.u
�FDu/D u

��.FD/uD u
�pu:

Now

x 2 Ker.u�pu/\ Im.p/,
�
px D x and pux D 0

�
, x 2 Ker.pup/\ Im.p/

and

x 2 Ker.p/\ Im.u�pu/,
�
px D 0 and ux D pux

�
,
�
pu�pux D 0 and ux D pux

�
, ux 2 Ker.pu�p/\ Im.p/:

Thus
.1�u�pu/\p DN.pup/\p

and
u
�
.1�p/\u�pu

�
u� DN.pu�p/\p:

Since N.pupC 1�p/ D N.pup/\p and N.pu�pC 1�p/ D N.pu�p/\p we
conclude by Lemma 2.1 that

sffFDt g D
�
N.pup/\p

�
�
�
N.pu�p/\p

�
D @

�
�.pup/C�.1�p/

�
:

Remark that �.pup/C�.1�p/ is unitary in N=J since pu�up 2 J .

Corollary 4.4 Setting pF D FDC1
2

we actually have

sf.D;u�Du/D @Œ�.pF upF C 1�pF /�:

Proof: In the proof of Lemma 4.2 we saw that �.2p � 1/ D �.FD/ so �.p/ D
�.pF / and the corollary follows easily.

The last theorem of this section, which is the main theorem of the paper,
expresses spectral flow from D to u�Du in terms of a Kasparov product. We will
need to use three different boundary maps namely

@ WK1.N=J /!K0.J /

@J˝K WK1
�
C.J ˝K/

�
!K0.J ˝K/ and

@J WK1
�
C.J /

�
!K0.J /:

Note that for any C �-algebra B , C.B/ denotes the Calkin algebra L.B/=B .
Likewise we have the quotient maps

� WN !N=J �J˝K W L.J ˝K/! C.J ˝K/ and �J W L.J /! C.J /:



20 J. KAAD, R. NEST & A. RENNIE

Theorem 4.5 Suppose that the norm closed ideal J is �-unital and that the C �-
algebra A D A is separable. Denote by ŒD� D ŒMA;pF �

1 the class in KK1.A;J /
of the Kasparov module .MA;FD/ 2 E.A;J / constructed in Theorem 4.1. Recall
that pF D FDC1

2
.

Let u 2 A be unitary and denote by Œu� its class in K1.A/. Then we have the
identity

sf.D;u�Du/D @Œ�.pF upF C 1�pF /�D Œu� Ő AŒD�:
Proof: We start by stabilizing using the isomorphisms K1.A/ Š K1.A˝K/ and
KK1.A;J /ŠKK1.A˝K;J ˝K/. In this way we obtain the classes

Œu˝ e11C e� and ŒMA˝K;pF ˝ 1�
1

in K1.A ˝ K/ and KK1.A ˝ K;J ˝ K/ respectively, where e11 is a minimal
projection in K and e D 1 � 1˝ e11. See [21, Corollary 7:1:9] and [3, Corollary
17:8:8]. Thus, by Theorem 7.8 the product is given by

Œu� Ő AŒD�D @J˝K
�
�J˝K

�
pF ˝ 1.u˝ e11C e/pF ˝ 1C 1�pF ˝ 1

��
D @J˝K

�
�J˝K

�
.pF upF /˝ e11CpF ˝ 1�pF ˝ e11C 1�pF ˝ 1

��
D @J˝K

�
�J˝K

�
.pF upF C 1�pF /˝ e11C e

��
in K0.J ˝K/. Recall that �J .p2F �pF /D 0 since ŒMA;pF �

1 2KK1.A;J / and A
is unital.

But this is precisely the element @J Œ�J .pF upF C 1�pF /� 2 K0.J / under the
isomorphism of K0.J / with K0.J ˝K/ [14, Lemma 4:2:4]. Therefore the proof is
finished if we can prove the identity

@J Œ�J .pF upF C 1�pF /�D @Œ�.pF upF C 1�pF /�:

To do so, let x 2 N be a norm-one lift of �.pF upF C 1�pF / 2 N=J . Then, as N
acts on J by multiplication we have N � L.J /, so x 2 L.J / is too a norm-one lift
of �J .pF upF C 1� pF / 2 C.J /. Recalling the description of the boundary map
using norm-one lifts given in [14, Proposition 4:8:10], the desired identity follows.

5. C �-Spectral Flow

A problem with the construction of the Kasparov module in the last section is that it
only works for �-unital ideals J . For an arbitrary ideal in a von Neumann this may
very well not be the case. When we can replace J by a �-unital C �-algebra B , we
not only ensure the existence of the KK-class, but can obtain stronger constraints
on the values of the spectral flow.
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5.1. Basic Definitions

Let .A;H;D/ be a unital von Neumann spectral triple relative to .N;J /, and let
A D A be the norm closure of A. We assume throughout this section that A is a
separable C �-algebra.

Suppose that B � J is a �-unital C �-algebra such that .MA;FD/ 2 E.A;B/,
where MA W A ! L.B/, thus in particular A is supposed to act on B by left-
multiplication.

Note that B is a countably generated right Hilbert B-module when equipped
with the inner product hx;yi D x�y for all x;y 2 B and the action of B from the
right given by multiplication. The class ŒMA;pF �

1 2 KK1.A;B/ is denoted by
ŒDB � where pF D FDC1

2
.

Let @B W K1
�
C.B/

�
! K0.B/ be the boundary map, where C.B/ is the Calkin

algebra L.B/=B . Let �B W L.B/! C.B/ denote the quotient map.

Definition 5.1 Let .A;H;D/ and B � J � N be as above. We define the C �-
spectral flow as the quantity

sfB.D;u�Du/D @B Œ�B.pF upF C 1�pF /� 2K0.B/:

The reason for supposing the existence of the Kasparov module class ŒDB � is
that we want to describe the C �-spectral flow using a Kasparov product. In fact we
have

Theorem 5.2 Let .A;H;D/ be a unital von Neumann spectral triple relative to
.N;J /. Suppose that B � J is a �-unital C �-algebra such that .MA;FD/ 2

E.A;B/ where MA W A ! L.B/. Let u 2 A be unitary. The C �-spectral flow
from D to u�Du is equal to the product of ŒDB � 2 KK1.A;B/ and the class of the
unitary Œu� 2K1.A/. That is

Œu� Ő AŒDB �D @B Œ�B.pF upF C 1�pF /�D sfB.D;u�Du/:

Proof: The proof is similar to the one given in Theorem 4.5.
To justify the definition of C �-spectral flow, we must show that there exists a

�-unital C �-algebra B such that .MA;FD/ is a Kasparov A-B-module.

Theorem 5.3 Let .A;H;D/ be a unital von Neumann spectral triple relative to
.N;J / with A separable. Let B be the smallest C �-algebra in L.H/ containing the
elements

FDŒFD;a� bŒFD;a�

FDbŒFD;a� a'.D/
for all a;b 2 A and ' 2 C0.R/. Then B is separable, contained in J and the pair
.MA;FD/ is a Kasparov A-B-module. In particular B is �-unital.
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Proof: Recall that A is supposed to be unital. The C �-algebra C0.R/ is generated
by the resolvent function x 7! .iCx/�1 and the operator .iCD/�1 is in J so a'.D/
is in J for all ' 2 C0.R/. By Theorem 4.1, ŒFD;a� 2 J so all of the generators of B
are in J and thus B � J . Observe that B is separable, and so �-unital.

Now, clearly A acts on B by multiplication from the left. Furthermore FD is in
L.B/ since

1�F 2D D .1CD2/�1 2 B and FD'.D/ 2 B

for any ' 2 C0.R/.
Proving that .MA;FD/ is a Kasparov A-B-module is now straightforward.

5.2. The Relationship Between C �-Spectral Flow and von Neumann Spectral Flow

In this section we want to compare the C �-spectral flow with the von Neumann
spectral flow. Let .A;H;D/ be a unital von Neumann spectral triple relative to
.N;J / and let u 2A be unitary. In Corollary 4.4 we found the expression

sf.D;u�Du/D @Œ�.pF upF C 1�pF /� 2K0.J /

for the von Neumann spectral flow.
LetB be a �-unitalC �-algebra contained in J such that .MA;FD/ is a Kasparov

A-B-module. By definition we have the following expression

sfB.D;u�Du/D @B Œ�B.pF upF C 1�pF /� 2K0.B/

for the C �-spectral flow.
These two notions should coincide in K0.J / when we apply the map

i� WK0.B/!K0.J /

induced by the inclusion i W B! J .

Lemma 5.4 Let .A;H;D/ be a unital von Neumann spectral triple relative to
.N;J /, and let B be a �-unital C �-algebra contained in J such that .MA;FD/ 2

E.A;B/ where MA W A! L.B/ is left-multiplication. The inclusion of B in L.H/
can be extended to an injective 	-homomorphism

i W L.B/! L.H/

such that i.T /.bx/D .T b/x for all T 2 L.B/, b 2 B and x 2H . The image of the
extension i is contained in the double commutant of B � L.H/. In particular L.B/
can be realized inside N .
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Proof: Since .MA;FD/ is a Kasparov A-B-module and A is unital, we must have
1 � F 2D D .1CD2/�1 2 B . The image of .1CD2/�1 2 L.H/ is the domain of
D2 which is dense in H . The representation of B on H by i is thus seen to be
non-degenerate. Therefore, by [16, Proposition 2:1], the inclusion extends to L.B/
giving an injective 	-homomorphism

i W L.B/! L.H/

such that i.T /.bx/D .T b/x for all T 2 L.B/, b 2 B and x 2H .
Let S 2 B 0 and let T 2 L.B/. Suppose that x 2 H is of the form x D by for

some b 2 B and y 2H . Now

i.T /Sby D i.T /bSy D .T b/Sy D S.T b/y D Si.T /by

so i.T /S D Si.T / on a dense subspace of H and we conclude that i.T / 2 B 00 �
N 00 DN .

Theorem 5.5 Let .A;H;D/ be a unital von Neumann spectral triple relative to
.N;J /, and let B be a �-unital C �-algebra contained in J such that .MA;FD/ is
a Kasparov A-B-module. The von Neumann spectral flow coincides with the C �-
spectral flow under the homomorphism i� W K0.B/ ! K0.J /. More precisely for
u 2A unitary

sf.D;u�Du/D i�
�
sfB.D;u�Du/

�
:

Proof: By Lemma 5.4 there are isometric maps

i W B! J and i W L.B/!N

which allow us to also define the map (not necessarily injective)

i W C.B/!N=J:

Now, let x 2 L.B/ be a norm-one lift of the unitary �B.pF upF C 1� pF / 2
C.B/, then i.x/ 2 N is a norm-one lift of the unitary �.pF upF C 1�pF / 2 N=J .
By [14, Proposition 4:8:10] we have

i�

h
@B
�
�B.pF upF C 1�pF /

�i
D i�

��
xx� x.1� x�x/1=2

x�.1� xx�/1=2 1� x�x

�
�

�
1 0

0 0

��

D

"
i.x/i.x/� i.x/

�
1� i.x/�i.x/

�1=2
i.x/�

�
1� i.x/i.x/�

�1=2
1� i.x/�i.x/

#
�

�
1 0

0 0

�

D @Œ�.pF upF C 1�pF /�:

Which is the desired identity.
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Corollary 5.6 Let .A;H;D/ be a unital von Neumann spectral triple relative to
.N;J /, and let B be a �-unital C �-algebra contained in J such that .MA;FD/ is a
Kasparov A-B-module. For u 2 A unitary, the von Neumann spectral flow from D
to u�Du can be expressed in terms of the Kasparov product of ŒDB � 2 KK1.A;B/
and the class Œu� 2K1.A/ of the unitary u 2A. More precisely

sf.D;u�Du/D i�.Œu� Ő AŒDB �/:

Proof: This follows immediately by Theorem 5.5 and Theorem 5.2.

6. Numerical Spectral Flow

Our aim in this section is to relate the von Neumann spectral flow to the numerical
spectral flow in semifinite von Neumann algebras studied in [10, 22, 23].

In this section we letN denote a semifinite von Neumann algebra equipped with
a fixed semifinite, faithful, normal trace � . Furthermore, for any 	-algebra F � N
we let FC denote the 	-algebra generated in N by F and the unit in N . When F is
non-unital, we write the elements of FC as pairs xC�Id , where x 2 F and � 2C.

Definition 6.1 Let FN be the 	-algebra in N generated by the projections p with
finite trace, �.p/ <1. By [13, Section 1.8], FN is an ideal in N . The �-compact
operators, KN , is the norm-closure of FN .

Let .A;H;D/ be a semifinite spectral triple relative to .N;�/ as defined in [10,
Definition 2:1]. Notice that .A;H;D/ is a von Neumann spectral triple relative to
.N;KN / in an obvious way. For semifinite spectral triples, spectral flow is defined
as a real number, whereas our methods produce a class in K0.KN /. The problem is
solved by establishing a homomorphism �� WK0.KN /!R by means of the trace � .
The existence and nature of such a homomorphism is of course well known, but as
the link to the semifinite case is very important we will carry out the details.

Lemma 6.2 Let n 2N. For each finite set of elements fx1;:::;xmg �Mn.FN / there
is a projection p 2Mn.FN / with pxi D xi for all i 2 f1;:::;mg. The projection p
is called a local unit for fx1;:::;xmg.

Proof: For any finite set of projections fp1;:::;pmg in FN , the inequality
supfp1;:::;pmg � p1 C :::C pm holds so supfp1;:::;pmg 2 FN . Furthermore, for
each i 2 f1;:::;mg we have pi � supfp1;:::;pmg yielding supfp1;:::;pmgpi D pi ,
so supfp1;:::;pmg is a local unit for fp1;:::;pmg. To obtain the desired property for
FN , note that each element in FN is a complex polynomial of finite degree, where
the variables are projections with finite trace.

Now, let n 2 N and fix a finite set of matrices fx1;:::;xmg �Mn.FN /. Choose
a projection p 2 FN , such that pxkli D x

kl
i for all i 2 f1;:::;mg and k;l 2 f1;:::ng,
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where xkli is the matrix entry corresponding to row k and column l . Then obviously
diag.p;:::p/xi D xi for all i 2 f1;:::;mg as desired.

Lemma 6.3 For each n 2 N the 	-algebra FN is stable under the holomorphic
functional calculus. That is, for x 2Mn.FN / and for f a holomorphic function in
a neighborhood of the spectrum of x in Mn.KN / with f .0/ D 0 we have f .x/ 2
Mn.FN /. In other words, FN equipped with the C �-norm from KN becomes a pre-
C �-algebra. In particular it has a well-defined K-theory and, by [7, Proposition
3], the inclusion i W FN !KN induces an isomorphism i� WK0.FN /!K0.KN /.
Proof: We employ the technique of [25, Proposition 4]. First, notice that f .x/ 2
Mn.KN / because Mn.KN / is a C �-algebra. Now, for a closed curve � winding
once around the spectrum of x in Mn.KN / not touching 0, the identity

f .x/D
1

2�i

Z
�

f .�/.�� x/�1d�

is valid. Let p be a local unit for x, let � be in the resolvent of x and check that

.1�p/D .1�p/.x��/.x��/�1 D��.1�p/.x��/�1:

Thus for �¤ 0 we have

.1�p/.x��/�1 D�
1

�
.1�p/:

This enables us to calculate

.1�p/f .x/D
1

2�i

Z
�

f .�/.1�p/.�� x/�1d�

D
1

2�i

Z
�

�f .�/

�
.1�p/d�

D .1�p/f .0/D 0:

It follows that pf .x/D f .x/. AsMn.FN / is an ideal inMn.KN / and p 2Mn.FN /
we conclude that f .x/ 2Mn.FN / as desired.

Theorem 6.4 There is a homomorphism �� WK0.KN /!R given by

��
�
ŒxC�Id�� ŒyC	Id�

�
D �n.x/� �n.y/

for each pair of projections xC�Id; yC	Id 2Mn.FCN / with Œ��D Œ	� in K0.C/.
Remark that �n D � ˝Tr on the algebraic tensor product FN ˝Mn.C/DMn.FN /
where Tr is the canonical trace on Mn.C/.
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Proof: Define O� W FCN ! R by O�.x C �Id/ D �.x/ then O� satisfies the relation
O�.u�xu/ D O�.x/ for all unitaries u 2 FCN . Indeed, write u D v C ˛Id , where
v 2 FN and ˛ 2C, then

˛˛ D 1 and v�vC v�˛C v˛ D 0D vv�C v�˛C v˛:

Now, we simply calculate

.v�C˛Id/.xC�Id/.vC˛Id/

D .v�xvC v�x˛C v��vC v��˛C˛xvC xC˛�vC�Id/

D .v�xvC v�x˛C˛xvC xC�Id/

thus applying our extended O� yields

O�
�
.v�C˛Id/.xC�Id/.vC˛Id/

�
D �.v�xvC v�x˛C˛xvC x/D �.x/:

Now, clearly, there is a well-defined homomorphism �� W K0.FCN / ! R given
by O�.Œx C �Id� � Œy C 	Id�/ D �n.x/ � �n.y/ for each pair of projections
.xC�Id/;.yC	Id/ 2Mn.FCN /. SinceK0.FN / is the kernel of the homomorphism
�� W K0.FCN /! K0.C/ induced by the projection � W FCN ! C we get the desired
map by restriction and a reference to Lemma 6.3.

Theorem 6.5 Let p be a projection in Mn.KN /, then actually p 2Mn.FN /.
Proof: Since Mn.FN / is dense in Mn.KN /, there is a positive element e 2
Mn.FN / such that ke�pk< 1

24
. In particular kek< 2. The estimate

ke2� ek � ke.e�p/kCk.e�p/pkCkp� ek<
1

4

shows that e is almost a projection. It follows that 1=2 … Sp.e/, creating a gap in the
spectrum of e. There is thus an " > 0 such that

Sp.e/� Œ0;1=2� "�[ Œ1=2C ";5=4�

and the function f WR=f1
2
g !R given by

f .t/D

�
0 t < 1

2

1 t > 1
2

is holomorphic on a neighborhood of Sp.e/ with f .0/ D 0. By Lemma 6.3 the
projection f .e/ is in Mn.FN /. Moreover,

supfjf .t/� t jjt 2 Sp.e/g � supf1=2� ";1=4g



KK-Theory and Spectral Flow in von Neumann Algebras 27

so kf .e/� ek< 1
2

. This gives us the inequality

kp�f .e/k � kp� ekCke�f .e/k< 1

but then p and f .e/ must be equivalent, i.e. there exist a unitary u in Mn.KCN / such
that u�f .e/uD p by [14, Proposition 4:1:7]. The proof is finished by recalling that
Mn.FN / is an ideal in Mn.N /.

Definition 6.6 [22, 23] Let fBtg be a path of selfadjoint operators in N such that
�.Bt / 2N=KN is invertible for all t . Let 0D t0 < t1 < ::: < tn D 1 be a partition of
Œ0;1� such that for each i 2 f1:::;ng we have

k�
�
�.Bt /

�
��

�
�.Bs/

�
k< 1=2

for all t;s 2 Œti�1;ti �. Recalling that all projections in KN have finite trace by
Theorem 6.5, we define the semifinite spectral flow of the path fBtg as the real
number

sf fBtg D
nX
iD1

	
�
�
N.pi /\pi�1

�
� �

�
N.pi�1/\pi

�


where pi D �.Bti /.

Theorem 6.7 The semifinite spectral flow of the path fBtg from above can be
expressed as

sffBtg D �
�
N.pn :::p0/\p0

�
� �

�
N.p0 :::pn/\pn

�
:

Moreover it is independent of the partition chosen and is invariant under homo-
topies of the path fBtg keeping the endpoints fixed.

Proof: This follows immediately by applying our homomorphism �� WK0.KN /!
R from Theorem 6.4 to the results in Corollary 3.7, Lemma 3.8 and Lemma 3.9
recalling that each projection p 2KN has finite trace by Theorem 6.5.

Definition 6.8 [8, 9, 22, 23] Let .A;H;D/ be a unital semifinite spectral triple
relative to .N;�/. Suppose that the norm closure A D A of A, is a separable C �-
algebra. For each path of selfadjoint operators fAtg in N , we define the semifinite
spectral flow of the path t 7!DCAt WDDt as the real number sffDtg WD sffFDt g.

We can now state our main theorem relating the three different notions of
spectral flow we have discussed.

Theorem 6.9 Let .A;H;D/ be a unital semifinite spectral triple relative to .N;�/.
Suppose that the norm closure A D A of A, is a separable C �-algebra. Let u 2 A
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be unitary. Set Dt D .1 � t /D C tu�Du D D C tu�ŒD;u�, then the unbounded
semifinite spectral flow of the path t 7!Dt is given by

sffDtg D �
�
@Œ�.pupC 1�p/�

�
D �

�
N.pupC 1�p/

�
� �

�
N.pu�pC 1�p/

�
where �� W K0.KN /! R is the homomorphism from Theorem 6.4 and p D �.FD/.
In addition there exists a separable C �-algebra B � KN and a class ŒDB� 2

KK1.A;B/ such that
sffDtg D ��

�
i�.Œu� Ő AŒDB �/

�
where i W B!KN is the inclusion and Œu� 2K1.A/ is the class of the unitary.

Proof: This follows immediately by applying our �� W K0.KN / ! R from
Theorem 6.4 to both sides of the equalities in Theorem 4.3 and in Corollary 5.6,
keeping in mind that each projection in KN has finite trace by Theorem 6.5.

Theorem 6.9 shows that semifinite spectral triples represent KK-classes in a
precise sense. While this is really proved here only for odd spectral triples, the
discussion in [19] and some simple adaptations of these proofs show that such a
representation theorem is also true in the even case.

7. Appendix on Kasparov Products

In this appendix we give explicit forms for odd pairings in KK-theory. In order to
do this, we need to recall some basic definitions and results.

Definition 7.1 Let A and B be Z2-graded C �-algebras. A Kasparov A-B-module
is a pair . ;V / consisting of a graded 	-homomorphism  W A! L.E/, with E a
countably generated, graded right Hilbert B-module, together with an odd operator
V 2 L.E/ such that

1.  .a/.V 2� 1/ 2K.E/

2.  .a/.V �V �/ 2K.E/

3. ŒV; .a/� 2K.E/

for all a 2 A. The set of Kasparov A-B-module is denoted by E.A;B/. An element
. ;V / 2 E.A;B/ is called degenerate when a.V 2� 1/D a.V �V �/D ŒV;a�D 0.

The set E.A;B/ becomes the even KK-theory group KK.A;B/ when equipped
with direct sum and the equivalence relation 
oh generated by operator homotopy,
unitary equivalence and addition of degenerate elements. Unitary equivalence is
denoted by 
u. The class represented by the pair . ;V / 2 E.A;B/ is denoted by
Œ ;V � 2KK.A;B/. [3, Proposition 17:3:3].
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To define the odd KK-theory group we introduce the Clifford algebra C1,
that is the C �-algebra C ˚ C equipped with the standard odd grading, and we
set KK1.A;B/ D KK.A;B Ő C1/ where Ő denotes the graded tensor product as
defined in [3, Chapter 14:4].

For ungraded C �-algebras A and B there is a description of the odd KK-theory
using extensions of C �-algebras. More precisely

Theorem 7.2 [3, Proposition 17:6:5] There is an isomorphism

Ext�1.A;B˝K/ŠKK1.A;B˝K/:

An invertible extension given by the 	-homomorphism  W A! L.B ˝K/ and the
element p 2 L.B˝K/ that is with Busby-invariant � W a 7! �

�
p .a/p

�
2 C.B˝K/

is mapped to the Kasparov A-.B ˝ K/-module
�
 Ő 1;.2p � 1/ Ő "

�
2 E

�
A;.B ˝

K/ Ő C1
�

with  Ő 1 W A! L
�
.B˝K/ Ő C1

�
and "D .1;�1/ 2C1.

With this in mind we will employ the notation Œ ;p�1 for the class Œ Ő 1;.2p�
1/ Ő "� 2 KK1.A;B ˝K/ D KK

�
A;.B ˝K/ Ő C1

�
where  W A! L.B ˝K/ and

p 2 L.B˝K/ have the properties

1.  .a/.p2�p/ 2 B˝K

2.  .a/.p�p�/ 2 B˝K

3. Œp; .a/� 2 B˝K

for all a 2 A.
Let A, B and D be graded C �-algebras. Suppose that A and D are separable

and that B is �-unital. A fundamental property of KK-theory is the existence of a
bilinear associative product

Ő A WKK
i .D;A/�KKj .A;B/!KKiCj .D;B/:

The aim of this appendix is to give a concrete description of a certain instance of this
product namely the one betweenK1.A/DKK1.C;A/ andKK1.A;B/, [3, Chapter
18].

We will need to quote a couple of results. First of all, since the aim is to form
products with K-theory we will use the isomorphism of K-theory with KK-theory.

Lemma 7.3 Let A be an ungraded C �-algebra. The groups KK1.C;A˝K/ and
K1.A˝K/ are isomorphic. The isomorphism is given by

ŒMC;p�
1 7! @Œ�.p/�
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where MC W C ! L.A˝ K/ is left multiplication by the complex numbers, � W
L.A˝K/! C.A˝K/ is the quotient map and @ WK0

�
C.A˝K/

�
!K1.A˝K/ is

the boundary map, [3, Proposition 17:5:7].
From the definition of @ it follows that, for each class Œu� 2 K1.A˝K/, there

exists a selfadjoint q 2 L.A˝K/ with kqk � 1 such that Œu� D Œexp.2�iq/�, [26,
Proposition 12:2:2].

Likewise the groups KK.C;A ˝ K/ and K0.A ˝ K/ are isomorphic. The
isomorphism is given by

ŒMC;V � 7! @Œ�.T /�

where MC WC! L
�
.A˝K/˚ .A˝K/

�
, the element V 2 L

�
.A˝K/˚ .A˝K/

�
is the matrix

V D

�
0 T �

T 0

�

and @ W K1
�
C.A˝K/

�
! K0.A˝K/ is the boundary map. Note that the grading

on .A˝K/˚ .A˝K/ is given by � D
�
0 1

1 0

�
, [3, Proposition 17:5:5].

Let A, B and D be graded C �-algebras, with A and D separable and B �-
unital. The Kasparov product can be constructed using the notion of connections.
Let . 1;V1/ 2 E.D;A/ with  1 W D ! L.E1/ and let . 2;V2/ 2 E.A;B/ with
 2 W A! L.E2/. We can form the graded interior tensor product E DE1 Ő  2E2 in
the sense of [3, Chapter 14:4]. For each x 2 E1 there is a map Tx 2 L.E2;E/ such
that Tx.y/D x Ő y for all y 2E2, [16, Proposition 4:6].

Definition 7.4 An odd operator F 2 L.E/ is called a V2-connection for E1 if, for
any homogeneous x 2E1, we have

TxV2� .�1/
@xF Tx 2K.E2;E/

where @x denotes the degree of x in E1.

Now we are ready to state the most important background result. It gives a
concrete description of the product under an assumption on commutators. Later on
the C �-algebra D is going to be the complex numbers so the assumption will be
trivially satisfied.

Theorem 7.5 [3, Proposition 18:10:1] Let x D . 1;V1/ 2 E.D;A/ with V1 D V �1
and kV1k � 1. Let y D . 2;V2/ 2 E.A;B/. Let F be a V2-connection for E1. Set
E DE1 Ő  2E2,  D  1 Ő 1 W A! L.E/ and

V D V1 Ő 1C
�
.1�V 21 /

1=2 Ő 1
�
F:

If ŒV1 Ő 1; .a/� 2 K.E/ for all a 2 A, then z D . ;V / 2 E.D;B/ is operator
homotopic to the Kasparov product of x and y, i.e. Œx� Ő AŒy�D Œz� in KK.D;B/.
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To form the product in KK1 we need to be able to move the Clifford algebra
from the second coordinate to the first. This is accomplished by the following
lemma.

Lemma 7.6 Let A and B be ungraded C �-algebras. There is a group isomorphism

' WKK1.A;B˝K/DKK
�
A;.B˝K/ Ő C1

�
!KK.A Ő C1;B˝K/

such that

'Œ ;p�1 D

�
�;

�
0 2p� 1

2p� 1 0

��

where the graded 	-homomorphism � W A Ő C1! L
�
.B ˝K/˚ .B ˝K/

�
is given

by

�.a;�a/D

�
0 �i .a/

i .a/ 0

�

and

�.a;a/D

�
 .a/ 0

0  .a/

�
:

The grading on .B ˝K/˚ .B ˝K/ is given by the grading operator � D
�
0 1

1 0

�
,

[15].

7.1. Product between K1 and KK1

The starting point is a translation of Theorem 7.5 suited to handle the odd case.

Theorem 7.7 Let A, B and D be ungraded C �-algebras, with A and D separable
and B �-unital. Let Œx� be a class in KK1.D;A˝ K/. By Theorem 7.2 we can
assume that Œx� is represented by the Kasparov module

x D . 1 Ő 1;.2q� 1/ Ő "/ 2 E
�
D;.A˝K/ Ő C1

�
where  1 Ő 1 WD! L.E1/, with E1 D .A˝K/ Ő C1. By [3, Proposition 17:4:3] we
may assume that q D q� and that kqk � 1.

Let Œy� be a class in KK
�
.A˝K/ Ő C1;B

�
ŠKK1.A˝K;B/. See Lemma 7.6.

Suppose that Œy� is represented by the module

y D . 2;V2/ 2 E
�
.A˝K/ Ő C1;B

�
with  2 W .A˝K/ Ő C1! L.E2/.
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Set E D E1 Ő  2E2 and  D . 1 Ő 1/ Ő 1. Let F 2 L.E/ be a V2-connection for
E1. Define

V D�
�
cos.�q/ Ő "

�
Ő 1C

	�
sin.�q/ Ő 1

�
Ő 1


F 2 L.E/:

Suppose that h�
cos.�q/ Ő "

�
Ő 1; .d/

i
2K.E/

for all d 2D. Then . ;V / is a KasparovD-B-module which is operator homotopic
to the Kasparov product of x and y. That is Œ ;V �D Œx� Ő A˝KŒy�.

Proof: Let d 2 D. Remark that  1.d/.q2 � q/ 2 A˝K, thus modulo A˝K we
have

 1.d/cos.�q/D  1.d/
1X
kD1

.�1/k
.�q/2k

.2k/Š
C 1.d/


  1.d/

1X
kD1

.�1/k
�2k

.2k/Š
qC 1.d/

D  1.d/
�
cos.�/q� qC 1

�
D� 1.d/.2q� 1/

for all d 2D. It follows that x is a compact pertubation of

. 1 Ő 1;�cos.�q/ Ő "
�
2 E

�
D;.A˝K/ Ő C1

�
so they determine the same class in KK

�
D;.A˝K/ Ő C1

�
.

By assumption the last module fulfils the conditions of Theorem 7.5 so the
theorem is proved if 	

1�
�
cos.�q/ Ő "

�2
1=2
D sin.�q/ Ő 1

but this is clear since we supposed that kqk � 1 and q D q� so Sp.q/ � Œ�1;1�, a
fact which yields the positivity of sin.�q/ Ő 1.

Theorem 7.8 Suppose that A and B are ungraded C �-algebras, with A separable
and B �-unital. Let Œu� 2 K1.A˝K/. The isomorphism from Lemma 7.3 sends Œu�
to a class ŒMC;q�

1 2 KK1.C;A˝K/ where q D q� and kqk � 1. In particular
Œu�D Œexp.2�iq/� so without loss of generality we can assume that uD exp.2�iq/.
Let y D Œ ;p�1 2KK1.A˝K;B˝K/ and assume that  W A˝K! L.B˝K/ is
non-degenerate. Then the product Œu� Ő A˝Ky is equal to

@
h
�
�
p .u/pC .1�p/

�i
2K0.B˝K/
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where  is extended to .A˝ K/C and @ W K1
�
C.B ˝ K/

�
! K0.B ˝ K/ is the

boundary map.

Proof: Applying the isomorphism

' WKK1.A˝K;B˝K/!KK
�
.A˝K/ Ő C1;B˝K

�
from Lemma 7.6 to y we get

'y D 'Œ ;p�1 D Œ�;V2�

with V2 D
�

0 2p� 1

2p� 1 0

�
and � W .A˝K/ Ő C1! L

�
.B˝K/˚.B˝K/

�
given

by

�.a;�a/D

�
0 �i .a/

i .a/ 0

�
and �.a;a/D

�
 .a/ 0

0  .a/

�

which thus canonically represents y in KK
�
.A˝K/ Ő C1;B˝K

�
.

Recall that ŒMC;q�
1 2 KK1.C;A ˝ K/ is notation for the class Œx� 2

KK
�
C;.A˝K/ Ő C1

�
represented by the module

x D
�
MC;.2q� 1/ Ő "

�
2 E

�
C;.A˝K/ Ő C1

�
:

We are now in position to form the product z D Œu� Ő A˝Ky D Œx� Ő A˝K'y. Set
E1 D .A˝K/ Ő C1, E2 D .B ˝K/˚ .B ˝K/ and E D E1 Ő �E2. Recall that the

grading on .B˝K/˚.B˝K/DE2 is given by the grading operator � D
�
0 1

1 0

�
.

Since  is assumed to be non-degenerate, � is also non-degenerate and there is an
even unitary isomorphism

w WE1 Ő �E2 D
�
.A˝K/ Ő C1

�
Ő �
�
.B˝K/˚ .B˝K/

�
! .B˝K/˚ .B˝K/DE2

given by
w.x1 Ő �x2/D �.x1/x2 x1 2E1 ;x2 2E2:

Let x 2E1 be homogeneous. Clearly wTx D �.x/ so

wTxV2� .�1/
@xV2wTx D

�
�.x/;V2

�
2K.E2/:

Thus w�V2w 2 E is a V2-connection for E1. By Theorem 7.7 we can represent the
product z by the module .MC;V / where

V D�
�
cos.�q/ Ő "

�
Ő 1C

	�
sin.�q/ Ő 1

�
Ő 1


w�V2w 2 L.E/:
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But .MC;V /
u .MC;wV w
�/ so actually

z D ŒMC;wV w
�� 2KK.C;B˝K/

where

wVw�D��
�
cos.�q/ Ő "

�
C �

�
sin.�q/ Ő 1

�
V2

D�

�
0 �i 

�
cos.�q/

�
i 
�
cos.�q/

�
0

�
C

�
 
�
sin.�q/

�
0

0  
�
sin.�q/

��V2
D

�
0 i 

�
cos.�q/

�
C 

�
sin.�q/

�
.2p� 1/

�i 
�
cos.�q/

�
C 

�
sin.�q/

�
.2p� 1/ 0

�
2 L

�
.B˝K/˚ .B˝K/

�
:

Here � W L
�
.A˝K/ Ő C1

�
! L.B˝K/ and  W L.A˝K/! L.B˝K/ denotes the

extensions as in [16, Proposition 2:1].
Applying the isomorphism KK.C;B ˝K/ Š K0.B ˝K/ from Lemma 7.3 we

get that the product is nothing but the element

@
h
�
�
� i 

�
cos.�q/

�
C 

�
sin.�q/

�
.2p� 1/

�i
2K0.B˝K/:

Set v D i exp.i�q/D i cos.�q/� sin.�q/. The element v is a unitary in L.A˝K/
and thus homotopic to 1 so

@
h
�
�
� i 

�
cos.�q/

�
C 

�
sin.�q/

�
.2p� 1/

�i
D

@
h
�
�
� i 

�
vcos.�q/

�
C 

�
vsin.�q/

�
.2p� 1/

�i
:

Furthermore, with the same argument as in the proof of Theorem 7.7, we have

�
�
cos.�q/cos.�q/

�
D �

�
.1� 2q/.1� 2q/

�
D �.1/

so cos2.�q/ � 1 2 A˝K. Moreover sin.�q/ � 0 since q D q� and kqk � 1, so
sin.�q/ D

�
1� cos2.�q/

�1=2
2 A˝K. We thus have vcos.�q/ 2 .A˝K/C. By

assumption  .a/p�p .a/ 2 B˝K for all a 2 .A˝K/C so

�
	
� i 

�
vcos.�q/

�
C 

�
vsin.�q/

�
.2p� 1/



D �

	
� ip 

�
vcos.�q/

�
p� i.1�p/ 

�
vcos.�q/

�
.1�p/

Cp 
�
vsin.�q/

�
p� .1�p/ 

�
vsin.�q/

�
.1�p/



D �

	
p .�v2/pC .1�p/ 

�
vŒ�i cos.�q/� sin.�q/�

�
.1�p/



D �

�
p .u/pC .1�p/

�
:
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That is

z D @
h
�
�
� i 

�
cos.�q/

�
C 

�
sin.�q/

�
.2p� 1/

�i
D @

h
�
�
p .u/pC .1�p/

�i
as desired.
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