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Abstract. We present an ab initio approach to integration theory for nonunital spectral
triples. This is done without reference to local units and in the full generality of semifinite
noncommutative geometry. The main result is an equality between the Dixmier trace and
generalised residue of the zeta function and heat kernel of suitable operators. We also examine
definitions for integrable bounded elements of a spectral triple based on zeta function, heat
kernel and Dixmier trace techniques. We show that zeta functions and heat kernels yield
equivalent notions of integrability, which imply Dixmier traceability.

1. introduction

It is known by Connes’ trace theorem, [13], that for a compact Riemannian manifold M of
dimension p, there is an intimate connection between the residue of the zeta function of the
Laplacian at its first singularity, the Dixmier trace, and (via the Wodzicki residue) integration
theory of functions with respect to the standard measure. More precisely, we let ∆ be a Laplace
type operator acting on sections of a vector bundle and f ∈ C∞(M) be a smooth function
acting by multiplication on smooth sections. Then ∆ extends to an essentially self-adjoint
operator with compact resolvent on L2-sections and the multiplication operator Mf extends
to a bounded operator. Then if G := (1 + ∆)−p/2, the operator MfG has singular numbers
µn = O( 1

n
), and the Dixmier trace of this operator is equal to (up to a constant depending only

on the dimension p) the integral of f over M with respect to the measure in M given by the
Riemannian volume form. The residue of the zeta function Tr(MfG

s) at s = 1 and the limit of
t− dim(M)/2 Tr(Mfe

−t∆) when t→ 0+, also coincide (up to a constant) with the integral of f .

More recently in [25,26] it has been shown that for f ∈ L1(M) we can define the zeta function
Tr(Gs/2MfG

s/2) for s > 1 and that the (generalised or ω) residue at s = 1 is equal to the integral
of f over M , while the Dixmier trace of G1/2MfG

1/2 does not exist for all f in L1(M). Related
results which indicate the difficulties of noncommutative integration are that the Dixmier trace
of MfG exists if and only if f ∈ L2(M). In summary, the generalised residue of the zeta function
exists in greater generality than the Dixmier trace, and recovers integration on the manifold.
When the Dixmier trace also exists, it agrees with the zeta residue (up to a constant).

When the manifold is not compact the situation is much less clear. Moreover the analogous
noncommutative integration theory (for nonunital pre-C∗-algebras) has not been developed
from first principles, rather, an assumption is made about the existence of a system of local
units for the algebra, [36,37]. This is a plausible assumption given that there is a local structure
on a noncompact manifold M and while it allows one to prove results analogous to the unital
case [20,36,37], such as relating the zeta function, Dixmier trace and Wodzicki residue in that
setting it is clearly an unsatisfactory basis for a general framework.
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We rectify this situation in this paper motivated by the fundamental question: what is the
appropriate noncommutative integral for nonunital spectral triples? We establish here a theory
of integration, integrability and spectral dimension in the nonunital case and show that in this
framework we are able to relate the zeta residue to the Dixmier trace. Importantly, we will
couch our results, and choose proofs, that go through for the general framework of semifinite
spectral triples.

Now we summarise the main results of this paper. Let N be a semifinite von Neumann algebra
with fixed faithful normal semifinite trace τ . In [9] we introduced a family of ideals that we
denoted by Zp := Zp(N , τ). These ideals are naturally defined by the asymptotics of the zeta
function s 7→ τ(T s) as s converges from above to the infimum of values for which this trace
is finite. As a consequence of our analysis we found that Z1 coincides with the (dual to the)
Macaev ideal for which it has become standard in noncommutative geometry to use the notation
L1,∞. In this paper we will use the notation Zp even in the case p = 1 for consistency.

Now, the problem that arises for noncommutative and nonunital integration is that we are
dealing with products of operators, neither of which individually lies in Z1 but whose product
does lie in Z1. Examples show that a similar phenomenon persists in the case of noncommutative
algebras [20,31,32] and general semifinite traces. The difficulties posed by this situation for the
analysis of Schrödinger operators have been explained in detail in [40, Chapter f(X)g(−i∇)].

Given G, a positive and injective element of N , (in the spectral triple situation think of G =
(1+D2)−p/2 where p is the spectral dimension) define the following (partially defined) seminorm
on N

‖a‖ζ := sup
1≤s≤2

√
s− 1τ(aGsa∗)1/2,

and the algebra Bζ(G) of operators a ∈ N such that the norm ||a|| + ‖a‖ζ + ‖a∗‖ζ is finite.
The choice of this algebra is determined by the generalisations of the results of [7, 9] that we
obtain in Sections 4 and 5. Note that the definition of Bζ(G) means we use implicitly a Hilbert
algebra framework (described in Section 4), that is, our approach yields a noncommutative L2

theory.

Our main result, the most general result we can establish relating the zeta residue and the
Dixmier trace in the nonunital setting, is Theorem 4.13, proved in Section 4. It resolves a
question that has been under investigation for nearly ten years. We state in this introduction
a special case whose interest in the standard situation, where N is the algebra of bounded
operators on a Hilbert space H, was first observed by Alain Connes in [14].

Convergence Theorem. Assume that b ∈ Bζ(G) is self adjoint and non-negative with [G, b] ∈
Z0

1 (here Z0
1 is the closure of the trace-class operators in the norm of Z1). Then for any

ε > 0, b1+εG ∈ Z1, and if lims→1+(s− 1)τ(b1/2Gsb1/2+ε) exists, then it is equal to any Dixmier
trace τω(b1+εG) where we choose the generalised limit ω to satisfy the invariance conditions
of [9, Theorem 4.11].

In the unital case one may set ε = 0 to obtain as a corollary the main theorem in [7]. The
subtlety of the nonunital case stems firstly from the fact that we need the ‘symmetric’ version
of the limit and secondly that putting ε to zero seems impossible in general.
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Other non-unital analogues of results in [7, 9] are also proved here in Sections 4 and 5. For
example, for dilation invariant ω ∈ L∞(R) and for bounded operators a ∈ N , the existence of

the generalised ζ-residue ω− limr→∞
1
r
τ(a∗G1+ 1

r a) implies that a∗Ga ∈ Z1 and that this limit is
given by a Dixmier trace. A range of similar results shows the compatibility of the zeta residue
with the ideals Zp and Lp,∞. Another direction we pursue is to show that the heat kernel
asymptotics imply precisely the same data and exist in the same generality as the generalised
zeta residue.

There are a number of applications of our results although we will only take a few steps in
our investigation of them in this short article. First we give, in Section 7, a definition of
non-unital spectral triple encompassing those studied in [31, 32]. The algebras studied there,
graph algebras and higher rank graph algebras, do have a quasi-local structure, namely a dense
subalgebra A with local units. The local index formula reduces in these examples to computing
a residue of a single zeta function ζb(s) = τ(b(1 + D2)−s/2), b ∈ A. The operator D satisfies
b(1 +D2)−p/2 ∈ Z1 for all b ∈ A and some positive integer p. The results of this paper enable
us to use the Dixmier trace or heat kernel (as in Proposition 4.12) to compute this residue.
Our results also generalise this index formula because we no longer need to work with b ∈ A
but can allow more general b ∈ Bζ((1 +D2)−p/2).

Instances where this kind of freedom is needed include the non-unital version of the index
theorem of Phillips-Raeburn [30], which will be the subject of a separate investigation. We
remark that the careful analysis of the relationship of symmetric and asymmetric limits in our
paper is critical for the application to [30].

The special case of the Convergence Theorem that is used for smoothly summable nonunital
spectral triples (A,H,D) (and in particular for [30]) is where ε = 1. In this instance A ⊂
(Bζ)

2 and the convergence theorem that gives the index computation can be summarised as
smoothness + summability implies that for a ∈ A non-negative, lims→1+(s− 1)τ(a1/2Gsa1/2) =
τω(aG).

In these previous examples the index is given by the Hochschild class of the Chern character.
Using the results of this paper one may also study the Hochschild class of the Chern character
in the nonunital case along the lines of [8]. More importantly, this paper underlies the principle
objective, the nonunital local index formula, which we establish in [6].

A further application is to a version of Connes trace theorem for noncompact manifolds along
the lines of the main theorem of [27]. The idea is to use the methods of this paper in relating
the residues of zeta functions to a Wodzicki residue formula via the Dixmier trace and this will
be discussed elsewhere (see our last example for an indication of the class of functions to which
the trace formula would apply).

Acknowledgements. We thank A. Bikchentaev, A. Connes, N. Kalton, R. Nest and A. Sedaev
for discussions and useful references and D. Potapov for a careful reading of the manuscript.
We also thank the referee for their interesting suggestions which have improved the manuscript.
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2. The ideals Zp

We fix a semifinite von Neumann algebra N acting on a separable Hilbert space H. Fix also
a faithful, semifinite, normal trace τ : N → C. The zeta function of a positive τ -compact
operator T is given by ζ(s) = τ(T s) for s ∈ C with positive real part, on the assumption that
there exists some s0 > 0 for which the trace is finite. Note that it is then true that |τ(T s)| <∞
for all <(s) ≥ s0. Thus, the restriction of s ∈ C to positive numbers is sufficient for the sequel.

Let us consider the space Z1 introduced in [9]:

Z1 := Z1(N , τ) :=
{
T ∈ N : ‖T‖Z1 = lim sup

p↘1
(p− 1)τ(|T |p) <∞

}
.

Note that ||.||Z1 is only a seminorm. The next equality is easy to see (for details consult [9])

‖T‖Z1 = lim sup
p↘1

(p− 1)
(∫ ∞

0

µt(|T |)pdt
)1/p

= lim sup
p↘1

(p− 1)‖T‖p.

(We use the notation Lp for the Schatten ideals in (N , τ) and ‖·‖p for the Schatten norms.)

More generally, we define for p ≥ 1 the spaces Zp, the p-convexifications of Z1 [24], by

Zp(N , τ) =
{
T ∈ N : ‖T‖Zp = lim sup

q↘p

(
(q − p)τ(|T |q)

)1/q
<∞

}
.

The ideal of compact operators whose partial sums of singular values are logarithmically diver-
gent arises naturally in geometric analysis. This ideal (in the setting of general semifinite von
Neumann algebras) may be described in terms of noncommutative Marcinkiewicz spaces and
we refer to [9, 10,27] for an exposition of relevant parts of this theory. Here, we set

M1,∞(N , τ) :=
{
T ∈ N : ‖T‖1,∞ := sup

0<t<∞
log(1 + t)−1

∫ t

0

µs(T )ds <∞
}
.

We will usually take (N , τ) as fixed, and write M1,∞ instead of M1,∞(N , τ), as this will cause
no confusion. Similar comments apply to the notation for other ideals.

The Banach space (M1,∞, ‖·‖1,∞) was probably first considered by Matsaev [29]. It may be

viewed as a noncommutative analogue of a Sargent (sequence) space, see [38]. In noncom-
mutative geometry it has become customary to use the notation L1,∞ to denote the ideal M1,∞.
However we will avoid the L1,∞ notation as it clashes with the well-established notation of
quasi-normed weak L1-spaces. For a fuller treatment of the history of the space M1,∞ and
additional references, we refer the interested reader to the recent paper [33] by Pietsch.

More generally, we let Mp,∞, p ≥ 1, denote the p-convexification of the space M1,∞, defined by

(2.1) Mp,∞(N , τ) :=
{
T ∈ N : ‖T‖pp,∞ := sup

0<t<∞
log(1 + t)−1

∫ t

0

µs(|T |p)ds <∞
}
.

In our present context, it is important to observe that it follows from [9, Theorem 4.5] that
the sets M1,∞ and Z1 coincide and that ‖T‖0 ≤ e‖G‖Z1 and ‖T‖Z1 ≤ ‖T‖1,∞, where the
seminorm ‖·‖0 is the distance in the norm ‖·‖1,∞ to the subspace M0

1,∞ of M1,∞ formed by

the ‖·‖1,∞-closure of the trace ideal L1 ⊂ M1,∞. To be consistent with our Zp notation, we

also denote the latter ideal as Z0
1 . We also call Z0

p , p > 1, the norm closure of Lp in Zp. Of
course, the spaces Zp and Mp,∞ coincide. We also stress that Lp,∞, p > 1, the collection of
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τ -compact operators for which µt(T ) = O(t−1/p), are strictly included in Zp, [9]. Moreover, a
careful inspection of its proof, gives the following strengthening of Theorem 4.5 in [9]:

Theorem 2.1. The norm ‖·‖1,∞ of the Marcinkiewicz space M1,∞ is equivalent to the ζ-norm:

sup
p>1

(p− 1)‖T‖p , T ∈ N .

Another important feature of the ideals Z1 = M1,∞ is that they support singular traces. Let
M1,∞(H) denote M1,∞ when (N , τ) is given by the algebra of all bounded linear operators
equipped with standard trace. In [15], J. Dixmier constructed a non-normal semifinite trace
living on the ideal M1,∞(H) using the weight

Trω(T ) := ω
({ 1

log(1 + k)

k∑
j=1

µj(T )
}∞
k=1

)
, T ≥ 0,

associated to a translation and dilation invariant state ω on `∞(N). The seminorm ‖·‖Z1
and

all Dixmier traces Trω vanish on M0
1,∞(H) and this provides a first (albeit tenuous) connection

between Dixmier traces and zeta functions. This connection runs much deeper however, and
will be explained further in various parts of the present manuscript. To assist the reader we
clarify the construction of the ideals Zp in term of complex interpolation in the setting of
Banach-lattices. For the definition of the two functors of complex interpolation Ā[θ] (the first

method) and Ā[θ] (the second method) defined for an arbitrary Banach couple Ā = (A0, A1) we
refer to [2, pp. 88-90], [28]. In general, the two spaces Ā[θ] and Ā[θ] are not equal, but always

Ā[θ] ⊂ Ā[θ] with a norm one injection.

Proposition 2.2. Let p ∈ (1,∞). Then Zp coincides with the second complex interpolation
space (Z1,N )[1−1/p], associated to the Banach couple (Z1,N ).

Proof. It follows from the results given in [16,17] that the space (M1,∞(N , τ),N )[s], s ∈ [0, 1], co-
incides with the (fully symmetric) operator space generated by the space (M1,∞(R∗+), L∞(R∗+))[s]

on the von Neumann algebra N . From [28, Theorem 1], and the fact that M1,∞(R∗+) and

L∞(R∗+) have the Fatou property, we deduce that (M1,∞(R∗+), L∞(R∗+))[s] coincides with the
closure in M1,∞(R∗+)+L∞(R∗+) of the closed unit ball of M1,∞(R∗+)1−sL∞(R∗+)s = M1,∞(R∗+)1−s.
Combining this result with the fact that the unit ball of M1,∞(R∗+)1−s is closed with re-
spect to convergence in measure and hence also with respect to the norm convergence in
M1,∞(R∗+)+L∞(R∗+), we arrive at the equality (M1,∞(R∗+), L∞(R∗+))[s] = M1,∞(R∗+)1−s. Taking

into account the equality above, we see that (M1,∞(N , τ),N )[s] = M1,∞(N , τ)1−s. It remains to
observe that the space M(ψ)(N , τ)1−s is precisely the space Z1/(1−s)(N , τ) described in [9]. �

We introduce the ideal Z1 using the heat kernel as this is useful in discussing the similarities
and differences between Z1 and the weak L1 ideal, denoted L1,w, defined by

(2.2) L1,w := L1,w(N , τ) :=
{
T ∈ N : ∃C > 0 such that µt(T ) ≤ C/t

}
.

A quasi-norm on L1,w is given by ‖T‖1,w := inf
{
C : µt(T ) ≤ C/t

}
. Clearly L1,w ⊆ Z1, and in

fact it was shown in [9] that the inclusion is strict.
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The (multiplicative) Cesàro mean, M , on R∗+, is defined on f : R∗+ → [0,∞) by(
Mf

)
(λ) :=

1

log(λ)

∫ λ

1

f(t)
dt

t
.

By the results of [9], T ∈ Z1 if and only if MfT ∈ L∞(R∗+) and T ∈ L1,w if and only if

fT ∈ L∞(R∗+), with fT (λ) := λ−1τ(e−λ
−1|T |−1

). A natural question is whether MfT can be
unbounded while MMfT is bounded (and so on)? The following answers it negatively, and
shows that there are no higher ideals defined by the condition M◦kfT ∈ L∞(R∗+), k ≥ 2.

Lemma 2.3. Let h be a positive measurable function on (0,∞) such that MMh is bounded.
Then, Mh is bounded too.

Proof. Using the definition and integrating by parts, we deduce(
MMh

)
(x) =

1

log(x)

∫ x

1

log

(
log(x)

log(λ)

)
h(λ)

dλ

λ
.

Now for x ≥ 1, we obtain

(MMh)(x2) ≥ 1

2 log(x)

∫ x

1

log
(2 log(x)

log(λ)

)
h(λ)

dλ

λ
≥ log(2)

2 log(x)

∫ x

1

h(λ)
dλ

λ
=

log(2)

2
(Mh)(x).

Hence
(
MMh

)
(x2) ≥ log(2)

2

(
Mh

)
(x) and if MMh is bounded, so too is Mh. �

Thus we have the curious situation that if h is unbounded, either one application of the Cesàro
mean M will produce a bounded function, or if not, then successive applications of the Cesàro
mean will never produce a bounded function. Moreover, the boundedness of fT singles out the
ideal that arises in practise, namely L1,w. The use of Cesàro invariant functionals to produce
Dixmier traces has enlarged the attention of noncommutative integration theory to Z1, despite
the fact that Z1 is unnatural from the point of view of most applications.

3. Banach algebras for nonunital integration

Much of the recent motivation for noncommutative integration theories comes from spectral
triples (A,H,D,N , τ) and their use in index theory. In Section 6, we review the definitions,
but here just remind the reader that the commonest situations are when using the self-adjoint
unbounded operator D, the trace τ and suitable s, p, t ∈ R, one (or more) of the maps

a 7→ τ(a(1 +D2)−s/2), a 7→ τω(a(1 +D2)−p/2), a 7→ τ(ae−tD
2

),

provides a sensible functional on the algebra A. Here, τω is a semifinite Dixmier trace for
(N , τ). Namely, it is the linear extension of the map

T ∈ (Z1)+ 7−→ ω
([
t 7−→ 1

log(1 + t)

∫ t

0

µs(T )ds
])
,

where µs(T ) is the generalized singular number (function) of T (see [18]) and ω is a dilation
invariant state on L∞(R+). As we will explain, there are close links between these various
situations.
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Observe that for p ≥ 1, the operator (1 + D2)−p/2 is positive, injective and has norm ≤ 1.
These are the main properties we use and in the following text consider an operator G with
these properties. In Section 4 we will also need some conditions on commutators [G, a] between
G and algebra elements a. In Section 6 we will verify these conditions for suitable spectral
triples and G = (1 +D2)−p/2.

3.1. Preliminaries. With (N , τ) as above let G be a positive and injective operator in N .
Without loss of generality, we assume that G ≤ 1. We make neither τ -compactness nor summa-
bility hypotheses on G itself. Instead we consider that a natural condition of integrability for
a ∈ N , relative to G, would be to ask that

(3.1) aGs ∈ L1 , ∀s > 1.

If we consider a ≥ 0 then the condition (3.1) is equivalent to

(3.2) Gsa ∈ L1 , ∀s > 1,

since L1 is a ∗-ideal. For a ≥ 0 satisfying these equivalent conditions, it is shown by Bikchentaev
in [3], that a also satisfies the equivalent conditions

(3.3) Gs/2aGs/2 ∈ L1 ⇐⇒ a1/2Gsa1/2 ∈ L1.

That is (3.1)⇔(3.2)⇒(3.3), so integrability of a ≥ 0 implies square integrability of a1/2. The
implication (3.3)⇒(3.2) fails by examples in [4]. There is also a counterexample if we replace L1

with Z1 [4]. This introduces a serious difficulty because the symmetric forms in (3.3), are what
we need in applications [30]. In fact functionals on N of the form N+ 3 a 7→ τ(Gs/2aGs/2), s >
1, are weights. When we determine the domain, it will not be an ideal, but rather a Hilbert
algebra. Here we will avoid Hilbert algebras as we need only a Banach algebra completion.
Nevertheless we make use of some Hilbert algebra ideas and this explains in part the ‘square
summable’ flavor of some of our hypotheses and results.

3.2. Banach Algebras from the zeta-function and heat-kernel.

Definition 3.1. Given G, a positive and injective element of N , define the two families of
(possibly infinite) bilinear functionals on N

ζ(a, b; s) := τ
(
aGsb

)
, g(a, b;λ) :=

1

λ
τ
(
ae−λ

−1G−1

b
)
, a, b ∈ N .

Then, introduce the following (partially defined) seminorms on N

‖a‖ζ := sup
1≤s≤2

√
s− 1ζ(a∗, a; s)1/2 , ‖a‖HK :=

∥∥Mg(a∗, a; ·)
∥∥1/2

∞ ,

where M denotes the Cesàro mean of the multiplicative group R∗+.

Note that since 〈a, b〉ζ,s := ζ(a∗, b, s) and 〈a, b〉HK,λ := g(a∗, b;λ) are inner products, it follows
at once that ‖·‖ζ and ‖·‖HK are positively homogeneous and satisfy the triangle inequality. But

they are also injective maps. Indeed, if for instance, ‖a‖ζ = 0, then by the faithfulness of τ ,
we deduce that 0 = a∗Gsa = |Gs/2a|2 and thus Gs/2a = 0 too. Then, from the injectivity of
G, we get that a = 0. A similar result holds for ‖a‖HK. This shows that ‖·‖ζ and ‖·‖HK are
true norms, not only seminorms. The finiteness of such seminorms is closely related to the zeta
function and heat kernel characterizations of the ideal Zp in the unital case, [9].
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Definition 3.2. Let Bζ(G) (respectively BHK(G)) be the normed subset of N relative to the
norm ‖a‖ζ + ‖a∗‖ζ + ‖a‖ (respectively ‖a‖HK + ‖a∗‖HK + ‖a‖). When no confusion can occur,
we write Bζ and BHK instead of Bζ(G) and BHK(G).

Proposition 3.3. The sets Bζ(G) and BHK(G) are Banach ∗-algebras.

Proof of Proposition 3.3. It is clear that Bζ and BHK are normed linear spaces with symmetric
norms. Let us first show that they are sub-multiplicative. For f : R → R positive, we
have: τ

(
(ab)∗f(G)ab

)
≤ ‖b‖2‖a∗f(G)a‖1 = ‖b‖2τ

(
a∗f(G)a

)
. This clearly entails that ‖ab‖ζ ≤

‖b‖‖a‖ζ and ‖(ab)∗‖ζ ≤ ‖a‖‖b∗‖ζ , and thus

‖ab‖ζ + ‖(ab)∗‖ζ + ‖ab‖ ≤ ‖b‖‖a‖ζ + ‖a‖‖b∗‖ζ + ‖a‖‖b‖
≤
(
‖a‖ζ + ‖a∗‖ζ + ‖a‖

)(
‖b‖ζ + ‖b∗‖ζ + ‖b‖

)
.

For the completeness, let (Tk)k≥1 be a Cauchy sequence in Bζ . Then (Tk)k≥1 converges in norm,
and so there exists T ∈ N such that Tk → T in N . By the second triangle inequality we have∣∣ ‖Tn‖ζ − ‖Tm‖ζ ∣∣ ≤ ‖Tn − Tm‖ζ , so we see that the numerical sequence (‖Tk‖ζ)k≥1 possesses a
limit. Now since T ∗k G

s Tk → T ∗Gs T , for all s > 1 in norm, it also converges in measure, and
so we may apply the Fatou Lemma, [18, Theorem 3.5 (i)], to deduce that for all s ∈ (1, 2]:

(s− 1)τ
(
T ∗Gs T

)
≤ lim inf

k→∞
(s− 1)τ

(
T ∗k G

s Tk
)
≤ lim inf

k→∞
‖Tk‖2

ζ = lim
k→∞
‖Tk‖2

ζ ,

which entails that ‖T‖ζ ≤ limk→∞ ‖Tk‖ζ . As the same conclusion holds for T ∗ in place of
T , we have T ∈ Bζ . Finally, fix ε > 0 and choose N large enough so that ‖Tn − Tm‖ζ ≤ ε
for all n, m > N . Applying the Fatou Lemma to the sequence (Tk)k≥1, gives ‖T − Tm‖ζ ≤
lim infk→∞ ‖Tk − Tm‖ζ ≤ ε. Hence Tk → T in the topology of Bζ . The arguments for BHK are
similar. �

The algebras Bζ , BHK need not be uniformly closed, nor weakly closed, nor be ideals (even
one-sided) in N . We now prove that these two notions of ‘square integrability’ in fact coincide.

Lemma 3.4. The norms ‖·‖ζ and ‖·‖HK are equivalent.

Proof. Fix any a ∈ N with ‖a‖ζ <∞. We need to show that the associated function g(a∗, a; ·)
has bounded Cesàro mean. Using Fubini’s Theorem to justify the inversion of the trace and
the integral, we obtain(

Mg(a∗, a; ·)
)
(x) =

1

log x
τ
(
a∗Ge−x

−1G−1

a
)
− 1

log x
τ
(
a∗Ge−G

−1

a
)
≤ 1

log x
τ
(
a∗Ge−x

−1G−1

a
)
.

Now, making the change of variable x = e1/ε (i.e. ε = s − 1) in the previous expression, we
obtain, for 0 < ε < 1,∣∣(Mg(a∗, a; ·)

)
(e1/ε)

∣∣ ≤ ετ
(
a∗Ge−e

−1/εG−1

a
)
≤ ετ

(
a∗G1+εa

)∥∥G−εe−e−1/εG−1∥∥.
But the function x 7→ xεe−e

−1/εx has its maximum at x = εe1/ε, where its value is eεεe−ε ≤ e.
Thus,

∣∣(Mg(a∗, a; ·)
)
(e1/ε)

∣∣ ≤ e ε τ
(
a∗G1+εa

)
= e ε ζ(a∗, a; 1 + ε), which concludes the proof of

the first inclusion.

To show that ‖·‖ζ ≤ C ‖·‖HK, we will use the Mellin transform. Fix any a ∈ N with finite

HK-norm. We have, writing again ε = s − 1, G1+ε = Γ(1 + ε)−1 ∫∞
0
tε e−tG

−1
dt. Disregarding
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the bounded pre-factor Γ(1 + ε)−1 before the integral, we first decompose the integral into two

pieces:
∫∞

0
=
∫ 1

0
+
∫∞

1
, to write a∗G1+εa as a sum of two operators. For the second we obtain

τ
(∫ ∞

1

tε a∗e−tG
−1

a dt
)
≤
∫ ∞

1

tε τ
(
a∗ e−G

−1

a
)∥∥e−(t−1)G−1∥∥ dt = g(a∗, a; 1)

∫ ∞
1

tε e−(t−1)‖G‖−1

dt,

and the latter is smaller that a constant C1, independent of ε ∈ [0, 1]. For the first term, we can
exchange the trace and the integral because of the finite range of the integration. This reads,

τ
(∫ 1

0

tε a∗e−tG
−1

a dt
)

=

∫ 1

0

tε τ
(
a∗e−tG

−1

a
)
dt =

∫ ∞
1

λ−1−ε g(a∗, a;λ) dλ.

Now, we make use of the following change of variable: 0 ≤ y(λ) :=
∫ λ

1
g(a∗, a;σ) dσ

σ
, a mono-

tonically increasing function of λ. Observing that y(λ) =
(
Mg(a∗, a; ·)

)
(λ) log(λ), there exists

a positive constant C2, such that y(λ) ≤ C2 log(λ), and thus λ−ε ≤ e−εC
−1
2 y. This implies that

τ
(∫ 1

0

tε a∗e−tG
−1

a dt
)
≤
∫ ∞

0

e−εC
−1
2 y dy = ε−1C2.

Gathering these estimates together proves that ε τ
(
a∗G1+εa

)
≤ εC1 + C2, and thus the set{

(s− 1)ζ
(
a∗, a; s

)
: 1 ≤ s ≤ 2

}
is bounded and so ‖a‖ζ <∞. �

Applying this result to the unital case, i.e. when G alone belongs to Z1, and combining it with
Theorem 2.1, we obtain an interesting fact.

Corollary 3.5. The two norms

T ∈ Z1 7−→ sup
s>1

(s− 1)τ(|T |s) and T ∈ Z1 7−→ sup
λ>0

1

log(λ)

∫ λ

1

µ−2τ
(
e−µ

−1|T |−1)
dµ,

are equivalent to ‖ · ‖1,∞.

Consider the exponentiation semigroup Ps, s > 0, acting on L∞((0,∞)) by

(Psx)(t) = x(ts), t > 0.

A generalised limit ω ∈ L∞(R)∗+ is said to be exponentiation invariant if ω ◦ Ps = ω for every
s > 0. The existence of such generalised limits follows from an invariant form of the Hahn-
Banach theorem. Moreover, it was proved in [7, Theorem 1.5] that there exists a generalised
limit ω which is both exponentiation invariant and M−invariant.

Given an exponentiation invariant generalised limit ω, we define the dilation invariant functional
ω̃ on R∗+, by ω̃(f) := ω(f ◦ log) for f ∈ L∞((R)).

We use the notation ω− limt→∞ f(t) instead of ω(f). The next result shows that the ω̃-residue
of the zeta function ζ(a∗, a; ·) coincides with the ω-limit of the Cesàro mean of the heat-trace
function g(a∗, a; ·). This generalises to the non-unital setting one of the main theorems of [7].

Proposition 3.6. If a ∈ Bζ and ω is an exponentiation invariant generalised limit, then

ω − lim
λ→∞

M
(
g(a∗, a; ·)

)
(λ) = ω̃ − lim

r→∞

1

r
ζ
(
a∗, a; 1 + 1

r

)
,
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and if the ordinary limit of the right hand side above exists, then the ordinary limit of the left
hand side exists too and they coincide. If moreover ω is M-invariant and g(a∗, a; ·) is bounded
then

ω − lim
λ→∞

g(a∗, a;λ) = ω̃ − lim
r→∞

1

r
ζ
(
a∗, a; 1 + 1

r

)
.

Proof. The second assertion (i.e. when ω is M -invariant and g is bounded) is an immediate
corollary of the first assertion. To prove the first assertion, observe that in the course of the
proof of Lemma 3.4, we have shown that∥∥∥a∗G1+ 1

r a− (Γ(1 +
1

r
))−1

∫ 1

0

t
1
r a∗e−tG

−1

a dt
∥∥∥

1
≤ g(a∗, a; 1)

∫ ∞
1

t
1
r e−(t−1)‖G‖−1

dt.

Since
∫∞

1
t

1
r e−(t−1)‖G‖−1

dt = O(1) as r →∞ we find

lim
r→∞

1

r

[
τ
(
a∗G1+ 1

r a
)
− (Γ(1 +

1

r
))−1

∫ 1

0

t
1
r τ
(
a∗e−tG

−1

a
)
dt
]

= 0,(3.4)

and so setting ω̃(f) = ω(f ◦ log) we obtain

ω̃ − lim
r→∞

1

r
τ
(
a∗G1+ 1

r a
)

= ω̃ − lim
r→∞

1

rΓ(1 + 1
r
)

∫ 1

0

t
1
r τ
(
a∗e−tG

−1

a
)
dt.

Substituting t = e−µ, a little computation shows that

(3.5)

∫ 1

0

t
1
r τ
(
a∗e−tG

−1

a
)
dt =

∫ ∞
0

e−
µ
r dβ(µ) where β(µ) =

∫ µ

0

e−ντ
(
a∗e−e

−νG−1

a
)
dν.

We now wish to use the weak-∗ Karamata Theorem [7, Theorem 2.2], and need to check the
various hypotheses. First, ω is an exponentiation invariant mean on R, so ω̃ is a dilation
invariant mean on R∗+. Next, β is positive, increasing and continuous on R+, and satisfies

β(0) = 0. Finally, we need to check that
∫∞

0
e−

µ
r dβ(µ) is finite for any r > 0. But this follows

immediately from the first equality in Equation (3.5). Hence, the weak-∗ Karamata Theorem
gives us

ω̃ − lim
r→∞

1

r

∫ ∞
0

e−
µ
r dβ(µ) = ω̃ − lim

µ→∞

β(µ)

µ
.

But
β(µ)

µ
=

1

µ

∫ eµ

1

λ−2τ
(
a∗e−λ

−1G−1

a
)
dλ =

(
Mg(a∗, a; ·)

)
(eµ),

from which the result follows, since

ω̃ − lim
r→∞

1

r
τ
(
aG1+ 1

r a
)

= ω̃ − lim
µ→∞

(
Mg(a, a; ·)

)
◦ exp(µ) = ω − lim

µ→∞

(
Mg(a, a;µ)

)
.

Last, if limr→∞
1
r
τ
(
aG1+ 1

r a
)

exists, then limr→∞
1
r

∫∞
0
e−

µ
r dβ(µ) exists too by (3.4) (and co-

incide with the former) and by the ordinary Karamata Theorem (see the remark right af-

ter [7, Theorem 2.2]) gives that limµ→∞
β(µ)
µ

exists (and coincide with the former), which finally

entails that limλ→∞M
(
g(a∗, a; ·)

)
(λ) exists (and coincide with the former). �

To conclude this discussion, we give some useful stability properties of Bζ .
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Lemma 3.7. i) If a ∈ Bζ and f ∈ L∞(R), then af(G) ∈ Bζ, and when a∗ = a, af(a) ∈ Bζ.
ii) If 0 ≤ a, b ∈ N are such that a ∈ Bζ and b2 ≤ a2, then b ∈ Bζ.
iii) If a ∈ Bζ, then |a|, |a∗| ∈ Bζ.

Proof. The ideal property of the trace-norm implies τ
(
f̄(G)a∗Gsaf(G)

)
≤ ‖f‖2

∞τ
(
a∗Gsa

)
, and

from the operator inequality af(G)Gsf̄(G)a∗ ≤ ‖f‖2
∞aG

sa∗, we obtain the first part of i). The
second part of i) is even more immediate. To prove ii), note that from the trace property
(3.3), we have τ

(
bGsb

)
= τ

(
Gs/2b2Gs/2

)
≤ τ

(
Gs/2a2Gs/2

)
= τ

(
aGsa

)
. Finally, to obtain iii),

let u|a| and v|a∗| be the polar decomposition of a and a∗. Then of course, |a| = u∗a = a∗u and
|a∗| = v∗a∗ = av. Thus, τ

(
|a|Gs|a|

)
= τ

(
u∗aGsa∗u

)
= τ

(
aGsa∗

)
. The proof for |a∗| is entirely

similar. �

3.3. Relations between Bζ(G), Zp and Lp,∞.

Proposition 3.8. If a, b ∈ Bζ(G), then bGa ∈ Z1. Moreover, when b = a∗, we have the
following partial-trace estimate:

σt
(
a∗Ga

)
:=

∫ t

0

µs
(
a∗Ga

)
ds ≤

∥∥a∗ e−G−1

a
∥∥

1
+ ‖a‖2 + ‖Mg(a∗, a; ·)‖∞ log(1 + t).

Proof. By [12, Lemma 2.3]1 we have a Cauchy-Schwarz type inequality on Z1. More precisely,
for a, b, G as in the statement,

‖bGa‖1,∞ ≤ ‖|bG1/2|2‖1/2
1,∞‖|G1/2a|2‖1/2

1,∞ = ‖|G1/2b∗|2‖1/2
1,∞‖|G1/2a|2‖1/2

1,∞ = ‖bGb∗‖1/2
1,∞‖a∗Ga‖

1/2
1,∞,

so we may assume without loss of generality that b = a∗. Next, we recall from [7, Lemma 3.3]
that if a ∈ N has norm ||a|| ≤M , then for any 1 ≤ s < 2, (a∗Ga)s ≤M2(s−1)a∗Gsa. Using this
inequality we have

lim sup
s→1

(s− 1)τ((a∗Ga)s) ≤ lim sup
s→1

‖a‖2(1−s)(s− 1)τ(a∗Gsa) <∞,

which shows that a ∈ Bζ ⇒ a∗Ga ∈ Z1.

To obtain the estimate of the partial trace, we use the Laplace transform to write

a∗Ga =

∫ ∞
0

a∗ e−tG
−1

a dt =
(∫ e−k

0

+

∫ 1

e−k
+

∫ ∞
1

)
a∗ e−tG

−1

a dt =: Ck +Bk + A.

First, we see that A is trace-class . Indeed since G ≤ 1, we get the operator inequality:∫∞
1
e−tG

−1
dt = Ge−G

−1 ≤ e−G
−1

, which entails that ‖A‖1 ≤ ‖a∗ e−G
−1
a‖1.

and we focus on the rest. For Ck, we have the bound ‖Ck‖ ≤ ‖a‖2 e−k. The operator Bk can
be bounded in trace-norm using

‖Bk‖1 ≤
∫ 1

e−k
τ
(
a∗ e−tG

−1

a
)
dt = ln(ek)

(
Mg(a∗, a; ·)

)
(ek) ≤ ‖Mg(a∗, a; ·)‖∞ k.

The K-functional associated to the Banach couple
(
L1,N

)
is

K(T, t;L1,N ) := inf
{
‖T1‖1 + t‖T2‖, T = T1 + T2, T1 ∈ L1, T2 ∈ N

}
.

1In this reference, an index E is missing on the right-most norm of the inequality, i.e. it should be instead
‖x∗y‖E ≤ ‖x∗x‖1/2

E ‖y∗y‖
1/2
E .
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It is known that in this case, it can be exactly evaluated to σt(T ). Thus, writing D = Ck +Bk,
we can estimate

σs(D) ≤ ‖Bk‖1 + s‖Ck‖ ≤ ‖Mg(a∗, a; ·)‖∞ k + ‖a‖2se−k.

Finally, given s ∈ (0,∞), define k ∈ R+ as k = ln(1 + s), so that we have

σs(D) ≤ ‖Mg(a∗, a; ·)‖∞ ln(1 + s) + ‖a‖2s(1 + s)−1.

Gathering these estimates together, we find the bound stated in the lemma. �

The next result refines our approach to obtain containments in Zq, q ≥ 1.

Proposition 3.9. Let δ ∈ (0, 1] and 0 ≤ a ∈ N be such that aGa ∈ Z1. Then, for any
ε ∈ (0, δ/2], aδGε ∈ Z1/ε with ‖aδGε‖1/ε,∞ ≤ ‖a‖δ−2ε‖aGa‖ε1,∞.

From Proposition 3.8, we see that the assumption aGa ∈ Z1 is satisfed for a ∈ Bζ .

Proof of Proposition 3.9. Note that the statement is equivalent to:

aGa ∈ Z1 ⇒ aδGεaδ ∈ Z1/ε, ∀ε ∈ (0, δ].

Consider the holomorphic operator valued function on the open strip S = {z ∈ C : <z ∈ (0, 1)},
given by F (z) = azGzaz. For all y ∈ R, we have F (iy) ∈ N with ‖F (iy)‖ ≤ 1. Moreover,
F (1 + iy) ∈ Z1. Indeed, by [18, Theorem 4.2, iii)] and [12, Proposition 1.1], we obtain∫ t

0

µs(F (1 + iy))ds =

∫ t

0

µs(a
1+iyG1+iya1+iy)ds ≤

∫ t

0

µs(aG
1+iya)ds

≤
∫ t

0

µs(aG
1/2)µs(G

1/2+iya)ds ≤
∫ t

0

µs(aG
1/2)µs(G

1/2a)ds =

∫ t

0

µs(aGa)ds,

and thus ‖F (1 + iy)‖1,∞ ≤ ‖aGa‖1,∞. This shows that aεGεaε belongs to the first complex
interpolation space (Z1,N )[ε] and hence belongs to (Z1,N )[ε], the second complex interpolation
space. But the latter is Z1/ε, as shown in Proposition 2.2. In summary, we have

‖aεGεaε‖1/ε,∞ = ‖F (ε)‖(Z1,N )[1−ε] ≤ ‖F (ε)‖(Z1,N )[1−ε] ≤ ‖F (0)‖1−ε‖F (1)‖ε1,∞ = ‖aGa‖ε1,∞,
and from the ideal property, we obtain the announced result. �

According to our previous considerations, the assumption that a, b ∈ Bζ is not enough to ensure
that abG belongs to Z1. On a more positive note, the intuitive result that when g(a∗, a; ·) is
already bounded, that a∗Gεa, ε ∈ (0, 1), is in the small ideal L1/ε,∞ is true.

Proposition 3.10. Let ε ∈ (0, 1) and let a ∈ N be such that the map R+ 3 λ 7→ g(a∗, a;λ) is
bounded. Then a∗Gεa ∈ L1/ε,∞, with

(3.6) µs
(
a∗Gεa

)
≤ 1

Γ(ε)

(1

ε
‖a‖2 +

1

1− ε
‖g(a∗, a; ·)‖∞

)
s−ε.

Proof. We write a∗Gεa = 1
Γ(ε)

∫∞
0
tε−1 a∗e−tG

−1
a dt, and split

∫∞
0

=
∫∞
e−k

+
∫ e−k

0
, to obtain

a∗Gεa = Bk + Ck, k ∈ R∗+. We notice that for any S ∈ N ,

‖S‖1 =

∫ ∞
0

µt(S) dt ≥
∫ s

0

µt(S) dt ≥ s µs(S).
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Then, using Fan’s inequality, we obtain

µs(Bk + Ck) ≤ µ0(Ck) + µs(Bk) ≤ ‖Ck‖+ s−1‖Bk‖1.

By spectral theory, we have first that ‖Ck‖ ≤ (εΓ(ε))−1‖a‖2e−εk. For the second part, we have

‖Bk‖1 ≤
1

Γ(ε)

∫ ∞
e−k

g
(
a∗, a; t−1

)
tε−2 dt ≤ 1

Γ(ε)
‖g(a∗, a; ·)‖∞(1− ε)−1ek(1−ε).

Thus we have

µs(Bk + Ck) ≤
1

Γ(ε)

(1

ε
‖a‖2 +

1

1− ε
‖g(a∗, a; ·)‖∞

ek

s

)
e−εk.

So, if for each s ∈ R+, we choose k = log s, we obtain the desired estimate. �

4. Zeta functions and Dixmier traces

This Section contains the main application of our previous results. We are interested in the
question, first raised in [13, Chapter 4], and further studied in considerable detail in [7,9,10,25–
27,39] in the unital case, concerning the relationship between singularities of the zeta function
and the Dixmier trace. The extension of this result to the nonunital case without appealing to
the existence of local units has interested a number of authors. The construction of our Banach
algebras Bζ was motivated by this question. The next subsection collects some general lemmas
needed later.

4.1. General facts. We first prove a result which allows us to manipulate the commutator of
fractional powers. We are indebted to Alain Connes for communicating the proof to us, which
we reproduce here for completeness.

Lemma 4.1. Let 0 ≤ A,B ∈ N be such that [A,B] ∈ S, where S denotes any symmetrically
normed (or quasi-normed) ideal of N . Denoting by Sp, p ≥ 1, the p-convexification of S, for
all α, β ∈ (0, 1], we have [Aα, Bβ] ∈ S1/αβ, with

‖[Aα, Bβ]‖S1/αβ
≤ ‖A‖α(1−β)‖B‖β(1−α)‖[A,B]‖αβS .

Proof. By homogeneity, we can assume that ‖A‖ = ‖B‖ = 1. We are going to use the Cayley
transform twice to obtain a commutator estimate from a difference estimate and then use the
BKS inequality [5]. To this end, let U be the unitary operator U := (i+B)(i−B)−1. A quick
computation shows that [A,U ] = 2i(i−B)−1[A,B](i−B)−1, which gives

U∗AU − A = U∗[A,U ] = 2i U∗(i−B)−1[A,B](i−B)−1.

Thus, we see that for all p ≥ 1, we have ‖[A,B]‖Sp ≤ ‖U∗AU − A‖Sp ≤ 2‖[A,B]‖Sp . Using
finally that (U∗AU)α = U∗AαU , ∀α > 0, and the BKS inequality ‖Xα−Y α‖S1/α

≤ ‖X −Y ‖αS,
we obtain

[A,B] ∈ S ⇔ U∗AU − A ∈ S ⇒ U∗AαU − Aα ∈ S1/α ⇔ [Aα, B] ∈ S1/α.

One concludes the proof using the same trick with the unitary V := (i+ Aα)(i− Aα)−1. �

Lemma 4.2. Let A,B ∈ N , B∗ = B, such that [A,B] ∈ S for any symmetrically normed ideal

of N and let ϕ ∈ C∞c (R). Then [A,ϕ(B)] ∈ S with ‖[A,ϕ(B)]‖S ≤ ‖ϕ̂′‖1 ‖[A,B]‖S.
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Proof. Since ϕ is a smooth compactly supported function, it is the Fourier transform of a
Schwartz function ϕ̂ and thus ϕ(B) =

∫
R ϕ̂(ξ) e−2iπξB. The result then follows from the identity

[A, e−2iπξB] = −2iπξ

∫ 1

0

e−2iπξsB [A,B] e−2iπξ(1−s)B ds. �

Stronger estimates than that given above are available from [34,35]. Finally we will need

Lemma 4.3. i) If T ∈ Z0
1 , then limε→0+ ε ‖T‖1+ε = 0.

ii) Let a ∈ Bζ and δ ∈ (0, 1]. Then the map (0, δ/2) 3 ε 7→ ‖aδGε‖1+1/ε is bounded.

Proof. The first claim follows from [9, Theorem 4.5 i)]. To prove the second part, note that
for an arbitrary T ∈ Z1, by the definition of the norm in the Marcinkiewicz space Z1, we have
µt(T ) ≺≺ ‖T‖1,∞/(1 + t). Since the Schatten spaces Lp, 1 ≤ p ≤ ∞, are fully symmetric
operator spaces we thus have ‖T‖p ≤ ‖T‖1,∞‖[t 7→ (1 + t)−1]‖p, for p > 1 that is

(4.1) ‖T‖p ≤ ‖T‖1,∞(p− 1)−1/p.

Let T := (aδG2εaδ)1/2ε. This operator belongs to Z1, because aGa ∈ Z1 by Proposition 3.8 and
thus aδG2εaδ ∈ Z1/2ε by Proposition 3.9. Applying the estimate (4.1), with p = 1 + ε, to this
operator yields

‖Gεaδ‖1+1/ε = ‖(aδG2εaδ)1/2+1/2ε‖ε/(1+ε)
1 = ‖(aδG2εaδ)1/2ε‖ε1+ε

≤ ε−
ε

1+ε‖(aδG2εaδ)1/2ε‖ε1,∞ = ε−
ε

1+ε‖aδG2εaδ‖1/2
1/2ε,∞.(4.2)

But Proposition 3.9 gives also the inequality

(4.3) ‖aδG2εaδ‖1/2ε,∞ ≤ ‖a‖2(δ−2ε)‖aGa‖2ε
1,∞ , ∀δ ∈ (0, 1] , ∀ε ∈ (0, δ/2).

Combining (4.2) with (4.3), we obtain

‖Gεaδ‖1+1/ε ≤ ε−
ε

1+ε‖aδG2εaδ‖1/2
1/2ε,∞ ≤ ε−

ε
1+ε‖a‖δ−2ε‖aGa‖ε1,∞.

This proves the claim since ε−
ε

1+ε → 1. �

4.2. Approximation schemes. As before, without loss of generality we assume that G−1 ≥ 1.
In the following, we fix 0 ≤ a ∈ N and we assume further that there exists δ > 0 with
a1−δ ∈ Bζ . We stress that while purely technical at the first glance, this extra δ-condition
turns out to be the key assumption to get an equivalence a ∈ Bζ ⇔ a∗Ga ∈ Z1. This
is explained in Section 5 where we use the factorization a = aδa1−δ intensively. We then
construct a pair of approximation processes for a in the strong topology, the first being given

by an := aPn, where Pn :=
∫ ‖a‖

1/n
dEa(λ), with

∫ ‖a‖
0

λ dEa(λ) the spectral resolution of a.

Note the operator inequality a2
n ≥ 1

n2Pn. Lemma 3.7 ii) implies then that Pn ∈ Bζ as well.

Next, for each n ∈ N, we pick 0 ≤ ϕn ∈ C∞c (R) such that, restricted to the interval [0, ‖a‖], we
have χ(1/n,‖a‖] ≤ ϕn ≤ χ(1/(n+1),‖a‖]. This immediately implies that Pn ≤ ϕn(a), ϕ2

n(a) ≤ Pn+1.
For the second limiting process we define aϕn := aϕn(a). Now, since

aδ (1− ϕn(a)) ≤ aδ (1− ϕ2
n(a)) ≤ aδ(1− Pn) =

∫ 1/n

0

λδ dEa(λ),
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we have

(4.4) ‖aδ (1− ϕn(a))‖ ≤ ‖aδ (1− ϕ2
n(a))‖ ≤ ‖aδ(1− Pn)‖ ≤ n−δ, ∀δ > 0.

Finally, from Pn ≤ ϕn(a) ≤ Pn+1, we deduce that

(4.5) 1
n
Pn ≤ an ≤ aϕn ≤ an+1 ≤ a, ϕn(a)Pn+1 = ϕn(a) , ϕn(a)Pn = Pn.

The reason why two approximations are required is as follows. The projection based method
allows the use of several operator inequalities, most notably [7, Lemma 3.3 (ii)]. If we were
then willing to assume that [Pn, G] ∈ Z0

1 , then the following proof would simplify considerably.
However, this assumption is highly implausible in the examples. So we introduce the smooth
approximation scheme, and a more complex proof, in order to obtain a result which is actually
applicable to the examples.

The following is our main technical result from which Theorem 4.13 will follow easily.

Proposition 4.4. Let 0 ≤ a ∈ N be such that there exists δ > 0 with a1−δ ∈ Bζ and [G, a1−δ] ∈
Z0

1 . Then lims↘1(s− 1)
∥∥aGsa− (aGa)s

∥∥
1

= 0.

The proof of the proposition proceeds by writing

aGsa− (aGa)s =
[
aGsa− aϕnGsaϕn

]
+
[
aϕnG

saϕn − a
(
ϕn(a)Gϕn(a)

)s
a
]

+
[
a
(
ϕn(a)Gϕn(a)

)s
a− a

(
PnGPn

)s
a
]

+
[
a
(
PnGPn

)s
a−

(
anGan

)s]
+
[(
anGan

)s − (aGa)s],
and then controlling each successive difference in this equality in the trace norm. The following
sequence of lemmas achieves this goal.

Lemma 4.5. Let 0 ≤ a ∈ N be such that there exists δ > 0 with a1−δ ∈ Bζ. Then

lim sup
s↘1

(s− 1) ‖aGsa− aϕnGsaϕn‖1 ≤
(
n−2δ + 2‖a‖δn−δ

)
‖a1−δ‖2

ζ .

Proof. Since 0 ≤ aϕn
2 ≤ a2 it follows from Lemma 3.7, ii), that aϕn ∈ Bζ and that the function

s 7→ (s− 1)τ
(
aϕnG

saϕn
)
, for s ≥ 1, is well defined and bounded. Using the equality

aϕnG
saϕn − aGsa = (1− ϕn(a))aGsa(1− ϕn(a))− aGsa(1− ϕn(a))− (1− ϕn(a))aGsa,

the result follows from ‖aδ(1− ϕn(a))‖ ≤ n−δ, by Equation (4.4). �

Lemma 4.6. Let 0 ≤ a ∈ N such that there exists δ > 0 with a1−δ ∈ Bζ. Then there exists
two constants C1, C2 > 0, uniform in n, such that

i) lim sup
s↘1

(s− 1)
∥∥(an+1Gan+1)s − (anGan)s

∥∥
1
≤ C1 n

−δ/2,

ii) lim sup
s↘1

(s− 1)
∥∥(anGan)s − (aGa)s

∥∥
1
≤ C2 n

−δ/2.
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Proof. To prove i), let An := an+1Gan+1 and Bn := anGan. Then

‖Asn −Bs
n‖1 = ‖As/2n (As/2n −Bs/2

n ) + (As/2n −Bs/2
n )Bs/2

n ‖1 ≤
(
‖As/2n ‖2 + ‖Bs/2

n ‖2

)
‖As/2n −Bs/2

n ‖2

≤
(
‖An‖s/2s + ‖Bn‖s/2s

)
‖An −Bn‖s/2s ,

by the BKS inequality since 0 < s/2 < 1. Then we use ‖An‖s ≤ ‖aGa‖s and ‖Bn‖s ≤ ‖aGa‖s,
together with

‖An −Bn‖s = ‖an+1Ga(Pn+1 − Pn)− (Pn − Pn+1)aGan‖s ≤ 2 ‖aδ(Pn+1 − Pn)‖ ‖a1−δGa‖s,
to obtain

‖Asn −Bs
n‖1 ≤ 2s/2+1 ‖a‖3δs/2 ‖aδ(Pn+1 − Pn)‖s/2 ‖a1−δGa1−δ‖ss.

This concludes the proof since (s−1)‖a1−δGa1−δ‖ss is bounded and ‖aδ(Pn+1−Pn)‖s/2 ≤ n−sδ/2.

To prove ii), one uses the same strategy applied to An = anGan and Bn = aGa. �

The following result is inspired by [7, Lemmas 3.3-3.5]:

Lemma 4.7. Let P ∈ N be a projector and 0 ≤ a ∈ Bζ such that [a, P ] = 0 and a ≥ mP , for
some m ∈ (0, 1). Then lims↘1(s− 1)

∥∥a(PGP )sa− (aPGPa)s
∥∥

1
= 0.

Proof. By [7, Lemma 3.3 i)], we have (aPGPa)s ≤ ‖a‖2(s−1) a(PGP )sa. The result follows if
we can show that

(4.6) (aPGPa)s ≥ m2(s−1) a(PGP )sa,

as we would then have

(4.7)
(
m2(s−1) − 1

)
a(PGP )sa ≤ (aPGPa)s − a(PGP )sa ≤

(
‖a‖2(s−1) − 1

)
a(PGP )sa,

and this suffices by the following reasoning. If ‖a‖ ≤ 1, then

0 ≤ a(PGP )sa− (aPGPa)s ≤
(
1−m2(s−1)

)
a(PGP )sa,

and the claim follows from the operator inequality a(PGP )sa ≤ aPGsPa, proven in [7, Lemma
3.3 i)] and from aP ∈ Bζ from Lemma 3.7. So assume ‖a‖ > 1. Then,

−
(
‖a‖2(s−1) − 1

)
a(PGP )sa ≤ a(PGP )sa− (aPGPa)s ≤

(
1−m2(s−1)

)
a(PGP )sa.

Setting

0 ≤ b =
(
‖a‖2(s−1) − 1

)
, 0 ≤ c =

(
1−m2(s−1)

)
, A = a(PGP )sa, X = a(PGP )sa− (aPGPa)s,

we have 0 ≤ X + bA ≤ (c+ b)A, and thus ‖X‖1 ≤ ‖X + bA‖1 + b‖A‖1 ≤ (c+ 2b)‖A‖1, that is

‖a(PGP )sa− (aPGPa)s
∥∥

1
≤
((

1−m2(s−1)
)

+ 2
(
‖a‖2(s−1) − 1

))
‖a(PGP )sa‖1,

which gives the result since ‖a(PGP )sa‖1 ≤ ‖aPGsPa‖1 = ‖PaGsaP‖1 ≤ ‖aGsa‖1, by [7,
Lemma 3.3 i)] again. To prove (4.6), decompose H as PH ⊕ (1 − P )H. Since [P, a] = 0, we
know that

(aPGPa)s = P (aPGPa)sP, and a(PGP )sa = Pa(PGP )saP,

and so their restrictions to (PH)⊥n are zero and so (4.6) holds on (1−P )H. Since a ≥ mP , its
restriction to PH is an invertible element of PNP and [7, Lemma 3.3 ii)] gives the result. �
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Next we prove some results involving both the projectors Pn and their smooth versions ϕn(a).

Lemma 4.8. Let 0 ≤ a ∈ N be such that there exists δ > 0 with a1−δ ∈ Bζ. Then there exists
C > 0, uniform in n, such that lim sups↘1(s− 1)

∥∥a(PnGPn)sa− a(Pn+1GPn+1)sa
∥∥

1
≤ C n−δ/2.

Proof. Write

a(PnGPn)sa− a(Pn+1GPn+1)sa =
(
a(PnGPn)sa−(anGan)s

)
+
(
(anGan)s − (an+1Gan+1)s

)
+
(
(an+1Gan+1)s − a(Pn+1GPn+1)sa

)
,

and apply Lemma 4.6 and Lemma 4.7. �

Lemma 4.9. Let 0 ≤ a ∈ N satisfy the hypotheses of Lemma 4.8. Then there exists C > 0,
uniform in n, such that lim sups↘1 (s− 1)

∥∥a(ϕn(a)Gϕn(a)
)s
a− a

(
PnGPn

)s
a
∥∥

1
≤ C n−δ/2.

Proof. By equation (4.5), we have ϕn(a) = Pn+1ϕn(a), while Pn = ϕn(a)Pn. Thus,

a
(
ϕn(a)Gϕn(a)

)s
a− a

(
PnGPn

)s
a = a

(
Pn+1ϕn(a)Gϕn(a)Pn+1

)s
a− a

(
Pnϕn(a)Gϕn(a)Pn

)s
a

=
[
a
(
Pn+1ϕn(a)Gϕn(a)Pn+1

)s
a−

(
aPn+1ϕn(a)Gϕn(a)Pn+1a

)s]
+
[(
aPn+1ϕn(a)Gϕn(a)Pn+1a

)s − (aPnϕn(a)Gϕn(a)Pna
)s]

+
[(
aPnϕn(a)Gϕn(a)Pna

)s − a(Pnϕn(a)Gϕn(a)Pn
)s
a
]
.

For the first term in parentheses, we can apply Lemma 4.7, with the modification that we
replace G there by ϕn(a)Gϕn(a), to obtain a vanishing contribution. Indeed, following line by
line the proof of Lemma 4.7 with the indicated modification, we get the operator inequalities(

m2(s−1) − 1
)
a(Pn+1ϕn(a)Gϕn(a)Pn+1)sa

≤ (aPn+1ϕn(a)Gϕn(a)Pn+1a)s − a(Pn+1ϕn(a)Gϕn(a)Pn+1)sa

≤
(
‖a‖2(s−1) − 1

)
a(Pn+1ϕn(a)Gϕn(a)Pn+1)sa.

Combining these operator inequalities with a(Pn+1ϕn(a)Gϕn(a)Pn+1)sa ≤ aGsa, we obtain

lim
s↘1

(s− 1)‖a
(
Pn+1ϕn(a)Gϕn(a)Pn+1

)s
a−

(
aPn+1ϕn(a)Gϕn(a)Pn+1a

)s‖1 = 0.

Replacing Pn+1 by Pn gives the same conclusion for the last term in parentheses.

For the middle term, we can apply Lemma 4.8 with the replacement a 7→ aϕn, to obtain the
desired trace-norm bound. Indeed, since aϕn

2 = a2ϕ2
n(a) ≤ a2, we infer from Lemma 3.7 ii) that

aϕn ∈ Bζ and since (aϕn)1−δ = a1−δϕn(a)1−δ ≤ a1−δ, we see that (aϕn)1−δ belongs to Bζ too. �

The next lemma is the critical step in the proof of Proposition 4.4.

Lemma 4.10. Let 0 ≤ a ∈ N and suppose that there exists δ > 0 with a1−δ ∈ Bζ and
[G, a1−δ] ∈ Z0

1 . Then there exists an absolute constant C > 0 such that

lim sup
s↘1

(s− 1)
∥∥aϕnGsaϕn − a(ϕn(a)Gϕn(a))sa

∥∥
1
≤ C n−δ/2.
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Proof. First, from Lemma 3.7 i), a1−δ ∈ Bζ implies a ∈ Bζ too. Then, as ϕn(a) ≤ Pn+1 ≤
(n + 1)an+1, we readily see that ϕn(a)Gϕn(a) ∈ Z1 and thus (ϕn(a)Gϕn(a))s is trace-class for
all s > 1, so that we are entitled to take the trace norm as in the statement of the lemma.
Next, for 0 ≤ A,B ∈ N , with B injective and 1 ≤ s ≤ 2, we have by [19, Lemma 1]:(

ABA)s = AB1/2
(
B1/2A2B1/2

)s−1
B1/2A.

Applying this to A = ϕn(a) and B = G (which is injective), gives

aϕnG
saϕn − a(ϕn(a)Gϕn(a))sa = aϕnG

1/2
(
Gs−1 − (G1/2ϕn(a)2G1/2)s−1

)
G1/2aϕn

= aϕnG
1/2 sin(πε)

π

∫ ∞
0

λ−ε
(
G(1 + λG)−1 −G1/2ϕn(a)2G1/2(1 + λG1/2ϕn(a)2G1/2)−1

)
dλG1/2aϕn

= aϕnG
1/2 sin(πε)

π

∫ ∞
0

λ−ε(1 + λG)−1G1/2
(
1− ϕ2

n(a)
)
G1/2(1 + λG1/2ϕn(a)2G1/2)−1dλG1/2aϕn,

where we have defined ε := s− 1 and we have used in the third equality, the identity

A(1 + λA)−1 −B(1 + λB)−1 = (1 + λA)−1(A−B)(1 + λB)−1 , 0 ≤ A,B ∈ N , λ > 0.

Hence

aϕnG
saϕn − a(ϕn(a)Gϕn(a))sa =

sin(πε)

π

∫ ∞
0

Xε,n(λ)λ−εdλ,

with Xε,n(λ) = aϕnG(1 + λG)−1
(
1− ϕ2

n(a)
)
G1/2(1 + λG1/2ϕn(a)2G1/2)−1G1/2aϕn.

Commuting 1−ϕ2
n(a) with G(1 +λG)−1 on its left, we obtain Xε,n(λ) = Yε,n(λ) +Zε,n(λ), with

Yε,n(λ) := aϕn
(
1− ϕ2

n(a)
)
G1/2(G−1 + λ)−1(1 + λG1/2ϕn(a)2G1/2)−1G1/2aϕn,

Zε,n(λ) := aϕn(1 + λG)−1
[
G,ϕ2

n(a)
]
(G−1 + λ)−1

(
1− λϕn(a)2(G−1 + λϕn(a)2)−1

)
aϕn,

where we have used the two relations

[G(1 + λG)−1,
(
1− ϕ2

n(a)
)
] = −λ−1[(1 + λG)−1, ϕ2

n(a)] = (1 + λG)−1[G,ϕ2
n(a)](1 + λG)−1,

G1/2(1 + λG1/2ϕn(a)2G1/2)−1G1/2 = (G−1 + λϕn(a)2)−1 = G(1− λϕn(a)2(G−1 + λϕn(a)2)−1).

For ‖Yε,n(λ)‖1, we use the Hölder inequality to obtain the upper bound

‖aδ/2
(
1− ϕ2

n(a)
)
‖‖a1−δ/2G(1+ε)/2‖ 2+ε

1+ε
‖G−ε/2(G−1 + λ)−1‖‖(1 + λG1/2ϕn(a)2G1/2)−1‖‖G1/2a‖2+ε

≤ n−δ/2 (1 + λ)−1+ε/2‖a1−δ/2G(1+ε)/2‖ 2+ε
1+ε
‖G1/2a‖2+ε,

where we have used equation (4.4) and obvious operator estimates. Next, from the operator
inequality, [7, Lemma 3.3 i)], (aGa)1+ε/2 ≤ ‖a‖εaG1+ε/2a, we obtain

‖G1/2a‖2+ε = ‖aGa‖1/2
1+ε/2 ≤ ‖a‖

ε/(2+ε)‖aG1+ε/2a‖(2+ε)−1

1(4.8)

≤ ‖a‖ε/(2+ε)‖a‖2/(2+ε)
ζ (2/ε)(2+ε)−1 ≤ C ε−1/2.

To evaluate ‖a1−δ/2G(1+ε)/2‖(2+ε)/(1+ε), we write

a1−δ/2G(1+ε)/2 = aδ/2G(1+ε)/2a1−δ + aδ/2
[
a1−δ, G(1+ε)/2

]
.

For the first term, we obtain

‖aδ/2G(1+ε)/2a1−δ‖(2+ε)/(1+ε) ≤ ‖aδ/2Gε/2‖1+2/ε‖G1/2a1−δ‖2+ε ≤ C ε−1/2,
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where we used that ‖aδ/2Gε/2‖1+2/ε remains bounded when ε → 0+, from Lemma 4.3 ii), and
the estimate of equation (4.8) for the second part, since a1−δ ∈ Bζ by assumption. It remains
to treat the commutator term, for which Lemma 4.1 gives us∥∥[a1−δ, G(1+ε)/2

]∥∥
(2+ε)/(1+ε)

≤ C
∥∥[a1−δ, G

]∥∥(1+ε)/2

1+ε/2
.

We conclude using Lemma 4.3 i) that ε1/2
∥∥[a1−δ, G(1+ε)/2

]∥∥
(2+ε)/(1+ε)

→ 0 when ε→ 0+. Hence,

we have shown that

‖Yε,n(λ)‖1 ≤ C n−δ/2 (1 + λ)−1+ε/2 ε−1,

and thus

lim sup
ε↘0

ε
| sin(πε)|

π

∫ ∞
0

‖Yε,n(λ)‖1 λ
−εdλ ≤ C ′n−δ/2.

It remains to treat Zε,n(λ) which we estimate in trace-norm as

‖Zε,n(λ)‖1 ≤ ‖aϕn(1 + λG)−1[G,ϕ2
n(a)]G(1 + λG)−1aϕn‖1

+ ‖aϕn(1 + λG)−1[G,ϕ2
n(a)]G(1 + λG)−1λϕ2

n(a)(G−1 + λϕn(a)2)−1aϕn‖1.

We estimate the first term by

‖a‖ ‖[G,ϕ2
n(a)]‖1+ε/2‖G1−ε/2(1 + λG)−1‖‖Gε/2a‖1+2/ε

≤ ‖a‖ ‖[G,ϕ2
n(a)]‖1+ε/2‖Gε/2a‖1+2/ε(1 + λ)−1+ε/2,

where we have used the operator inequality

G1−ε/2(1 + λG)−1 = G−ε/2(G−1 + λ)−1 ≤ (G−1 + λ)−1+ε/2 ≤ (1 + λ)−1+ε/2,

since G−1 ≥ 1. For the second term, we obtain the bound

‖a‖2
∥∥[G,ϕ2

n(a)
]∥∥

1+ε/2
‖Gε/2ϕn(a)‖1+2/ε

∥∥∥ϕn(a)λ(G−1 + λϕn(a)2)−1ϕn(a)
∥∥∥(1 + λ)−1+ε/2.

Since G−1 ≥ 1, we have the estimate (G−1 + λϕn(a)2)−1 ≤ (1 + λϕn(a)2)−1, and thus

‖ϕn(a)λ(G−1 + λϕn(a)2)−1ϕn(a)‖ ≤ ‖λϕ2
n(a)(1 + λϕn(a)2)−1‖ ≤ 1.

Using ϕn(a) ≤ n a, we obtain ‖Gε/2ϕn(a)‖1+2/ε ≤ n‖Gε/2a‖1+2/ε and so

‖Zε,n(λ)‖1 ≤ C(1 + n)
∥∥[G,ϕ2

n(a)
]∥∥

1+ε/2
‖Gε/2a‖1+2/ε(1 + λ)−1+ε/2

≤ C(1 + n)‖ϕ̂2
n
′‖1

∥∥[G, a]∥∥
1+ε/2
‖Gε/2a‖1+2/ε(1 + λ)−1+ε/2.

We have used Lemma 4.2, applied to the symmetrically normed ideal S := L1+ε, the operators
A := G, B := a ≥ 0 and the test function ϕ := ϕ2

n together with the embedding Z0
1 ⊂

Z1 ⊂ L1+ε, to obtain the last inequality. We stress that ‖ϕ̂2
n
′‖1 is not uniform in n since

ϕ2
n pointwise-converges to a step function. However, combining Theorem 3.1 from [34] with

Theorem 4 from [35], and taking into account that Z0
1 is an interpolation space for the couple

(L1,N ), we get from [G, a1−δ] ∈ Z0
1 that [G, a] ∈ Z0

1 as well. Thus, by Lemma 4.3 i), ii), we
know that ε‖[G, a]‖1+ε → 0, while ‖Gεa‖1+1/ε remains bounded when ε → 0+. This entails
that

lim sup
ε↘0

ε
| sin(πε)|

π

∫ ∞
0

‖Zε,n(λ)‖1 λ
−εdλ = 0.
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Putting everything together, we obtain the announced result:

lim sup
s↘1

(s− 1)
∥∥aϕnGsaϕn − a(ϕn(a)Gϕn(a))sa

∥∥
1

≤ lim sup
ε↘0

ε
sin(πε)

π

∫ ∞
0

(
‖Yε,n(λ)‖1 + ‖Zε,n(λ)‖1

)
λ−εdλ ≤ C ′n−δ/2. �

We are now ready to complete the proof of our main technical result.

Proof of Proposition 4.4. We write:

aGsa− (aGa)s =
[
aGsa− aϕnGsaϕn

]
+
[
aϕnG

saϕn − a
(
ϕn(a)Gϕn(a)

)s
a
]

+
[
a
(
ϕn(a)Gϕn(a)

)s
a− a

(
PnGPn

)s
a
]

+
[
a
(
PnGPn

)s
a−

(
anGan

)s]
+
[(
anGan

)s − (aGa)s].
The lim sup, s → 1+ of the trace norm of the first bracket multiplied by (s − 1), is bounded
by n−δ by Lemma 4.5, the second is bounded by n−δ/2 by Lemma 4.10, the third is bounded
by n−δ/2 by Lemma 4.9, the fourth is bounded by 0 by Lemma 4.7 and the fifth by n−δ/2 by
Lemma 4.6 ii). This implies: lim sups→1+

∥∥aGsa− (aGa)s
∥∥

1
≤ C n−δ/2, ∀n ∈ N. �

Proposition 4.4 immediately gives us

Corollary 4.11. Let 0 ≤ a ∈ N satisfy the hypotheses of Lemma 4.8 and [G, a1−δ] ∈ Z0
1 . Then

(i) lims→1+(s− 1)τ
(
aGsa

)
exists iff lims→1+(s− 1)τ

(
(aGa)s

)
exists and then they are equal;

(ii) More generally, for any Banach limits ω, we have

ω̃ − lim
s↘1

(s− 1)τ
(
aGsa

)
= ω̃ − lim

s↘1
(s− 1)τ

(
(aGa)s

)
.

4.3. Dixmier-traces computation. We now have

Proposition 4.12. Let 0 ≤ a ∈ N be such that there exists δ > 0 with a1−δ ∈ Bζ and
[G, a1−δ] ∈ Z0

1 . Then, if any one of the following limits exist they all do and all coincide

(1) limt→∞
1

log(1+t)

∫ t
0
µs(aGa)ds,

(2) limr→∞
1
r
τ((aGa)1+ 1

r ),

(3) limr→∞
1
r
ζ(a, a; 1 + 1

r
),

Furthermore, the existence of any of the above limits is equivalent to
(4) every generalized limit ω which is dilation invariant yields the same value τω(aGa) and the
latter value coincides with the value of the limits above.
Last, the existence of any of the limits (1), (2) or (3) implies the existence of, and the coinci-
dence with
(5) limλ→∞

(
Mg(a, a; ·)

)
(λ).

Proof. That the limit in (5) exists and coincide with (3) when the limit in (3) exists, follows
from Proposition 3.6. The simultaneous existence and equality of the limits in (2) and (3)
follows from Corollary 4.11. Recall now that the assumption a ∈ Bζ guarantees aGa ∈ Z1.
The assertion “(2) exists if and only if (1) exists and then they are equal” is known, it follows
e.g. by the same argument as in the proof of [7, Corollary 3.7] or by the argument given at the
beginning of the proof of [1, Theorem 2]. If (1) exists then it equals τω(aGa) by definition. �
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Remark. In [11, Theorem 7], the existence and value of the various limits in Proposition 4.12
are shown to coincide with the existence and value of limλ→∞(Mĝ)(λ) where

ĝ(λ) = λ−1τ(e−(aGa)−1λ−1

).

We have arrived at our main result, the nonunital analogue of [7, Theorem 3.8], [9, Theorem
4.11] and [26, Corollary 3.3] from which the convergence theorem of the introduction follows.

Theorem 4.13. Assume that a ∈ N is self adjoint and let a = a+ − a− be the decomposition

into the difference of nonnegative operators. Assume that there exists δ > 0 with a
1/2−δ
± ∈ Bζ,

and [G, a
1/2−δ
± ] ∈ Z0

1 . Then aG ∈ Z1, and moreover,

(i) if lims→1+(s− 1)
(
ζ(a

1/2
+ , a

1/2
+ ; s)− ζ(a

1/2
− , a

1/2
− ; s)

)
exists, then it is equal to τω(aG) (defined

at the beginning of Section 3) where ω is any dilation and exponentiation invariant state on
L∞(R+),
(ii) more generally, if ω is as in (i) and ω̃ := ω ◦ log, then

τω(aG) = ω̃ − lim
r→∞

1

r

(
ζ(a

1/2
+ , a

1/2
+ ; 1 + 1

r
)− ζ(a

1/2
− , a

1/2
− ; 1 + 1

r
)
)
.

Proof. As observed earlier, recall that a
1/2−δ
± ∈ Bζ implies a

1/2
± ∈ Bζ and [G, a

1/2−δ
± ] ∈ Z0

1

implies [G, a
1/2
± ] ∈ Z0

1 . Thus

aG = a+G− a−G = a
1/2
+ Ga

1/2
+ − a1/2

− Ga
1/2
− + a

1/2
+ [a

1/2
+ , G]− a1/2

− [a
1/2
− , G] ∈ Z1,

with τω(aG) = τω(a
1/2
+ Ga

1/2
+ )− τω(a

1/2
− Ga

1/2
− ), where ω (and latter ω̃) has been chosen as in the

proof of [9, Theorem 4.11]. We only need to prove part ii); part i) will then follow from general
facts on Banach limits. By [7, Lemma 3.2(i)], [9, Theorem 4.11], Corollary 4.11 and the remark
above, we have

τω(aG) = τω(a
1/2
+ Ga

1/2
+ )− τω(a

1/2
− Ga

1/2
− ) = ω̃ − lim

r→∞

1

r

(
τ((a

1/2
+ Ga

1/2
+ )1+ 1

r )− τ((a
1/2
− Ga

1/2
− )1+ 1

r )
)

= ω̃ − lim
r→∞

1

r

(
τ(a

1/2
+ G1+ 1

r a
1/2
+ )− τ(a

1/2
− G1+ 1

r a
1/2
− )
)
. �

By considering independently real and imaginary parts of a ∈ Bζ , we get an analogous result for
non-self-adjoint elements. Moreover, we could have stated a similar result using the Cesàro mean
of the heat-trace function instead of the zeta function because, under the same assumptions as
those of Theorem 4.13, it is true that

τω(aG) = ω − lim
λ→∞

((
Mg(a

1/2
+ , a

1/2
+ ; ·)

)
(λ)−

(
Mg(a

1/2
− , a

1/2
− ; ·)

)
(λ)
)
.

This essentially follows from Theorem 4.13 and Proposition 3.6.

The following fact provides the tracial property of the zeta residue.

Proposition 4.14. Let a ∈ Bζ be such that [G, a] ∈ Z0
1 . Then for any Dixmier trace associated

with a dilation invariant state on L∞(R+), we have

0 ≤ τω(a∗aG) = τω(aa∗G).
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Proof. By Proposition 3.8, a∗Ga, aGa∗ ∈ Z1, and since aa∗G = aGa∗ + a[a∗, G], a∗aG =
a∗Ga+ a∗[a,G], aa∗G and a∗aG belong to Z1 as well. Now, for A ∈ Z2, we have

τω(A∗A) = ω − lim
t→+∞

∫ t
0
µs(A)2ds

log(1 + t)
= ω − lim

t→+∞

∫ t
0
µs(A

∗)2ds

log(1 + t)
= τω(AA∗).

Now we do some rearranging

τω(a∗aG) = τω(a∗Ga) + τω(a∗[a,G]) = τω(a∗Ga) = τω(G1/2aa∗G1/2)

= τω(aG1/2a∗G1/2) + τω([G1/2, a]a∗G1/2) = τω(aa∗G) + τω(a[G1/2, a∗]G1/2),

as the Dixmier trace vanishes on the ideal Z0
1 , by Lemma 4.1 [G1/2, a] ∈ Z0

2 , and the fact that
Z0

2 Z2 ⊂ Z0
1 . We complete the proof by observing that

a[G1/2, a∗]G1/2 = a[G, a∗]− aG1/2[G1/2, a∗],

and that both terms on the right hand side of this last equation are in Z0
1 . �

5. The converse estimate

In the previous Section we showed that a ∈ Bζ ⇒ a∗Ga ∈ Z1. But the converse requires more
assumptions. We demonstrate this by exhibiting a counter-example. Let us introduce one more
Banach ∗-sub-algebra of N :

BZ1 = BZ1(G) :=
{
a ∈ N : ‖a∗Ga‖1,∞ + ‖aGa∗‖1,∞ + ‖a‖2 <∞

}
.

It is easy to see that in general a ∈ BZ1 6⇒ a ∈ Bζ by considering the case G = IdN . Then
BZ1 = Z2 and Bζ = L2. More realistic examples from spectral triples are also easy to produce.
A positive result in the converse direction is the following.

Proposition 5.1. Let 0 ≤ a ∈ N , be such that there exists δ > 0 with a1−δ ∈ BZ1 and
[G, a1−δ] ∈ Z0

1 . Then a ∈ Bζ.

The proof of this ‘converse’ estimate relies essentially on the following lemma.

Lemma 5.2. Let 0 ≤ a ∈ BZ1 and δ ∈ (0, 1). Then, the map ε ∈ (0, δ/2] 7→ ‖aδGε‖1+1/ε, is
bounded.

Proof. We know by assumption that aGa ∈ Z1 and thus from Proposition 3.9, we know that
for δ ∈ (0, 1), aδGε ∈ Z1/ε with ‖aδGε‖1/ε,∞ ≤ ‖a‖δ−2ε‖aGa‖ε1,∞. We conclude using the same
chain of estimates as in the proof of Lemma 4.3 ii):

‖aδGε‖1+1/ε = ‖|aδGε|1/ε‖ε1+ε ≤
(
ε−

1
1+ε‖|aδGε|1/ε‖1,∞

)ε
= ε−

ε
1+ε‖aδGε‖1/ε,∞ ≤ ε−

ε
1+ε‖a‖δ−2ε‖aGa‖ε1,∞. �

Proof of Proposition 5.1. We write aG1+εa = aδG1/2+εa1−δG1/2a + aδ[a1−δ, G1/2+ε]G1/2a, and
thus

‖aG1+εa‖1 ≤ ‖aδGε‖1+1/ε‖G1/2a1−δ‖2+2ε‖G1/2a‖2+2ε(5.1)

+ ‖a‖δ‖[a1−δ, G1/2+ε]‖2(1+ε)/(1+2ε)‖G1/2a‖2+2ε.
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From Lemma 4.1, we have for ε ≤ 1/2

(5.2) ‖[a1−δ, G1/2+ε]‖2(1+ε)/(1+2ε) ≤ ‖a‖(1−δ)(1/2−ε)‖[a1−δ, G]‖1/2+ε
1+ε .

Since [a1−δ, G] ∈ Z0
1 , we know from Lemma 4.3 i) that ‖[a1−δ, G]‖1+ε = o(ε−1). In particular,

‖[a1−δ, G]‖ε1+ε = O(1) and thus the inequality (5.2) gives ‖[a1−δ, G1/2+ε]‖2(1+ε)/(1+2ε) = o(ε−1/2).
Moreover, since a1−δGa1−δ ∈ Z1, we know from Theorem 2.1 that ‖a1−δGa1−δ‖1+ε = O(ε−1),

which gives ‖G1/2a‖2+2ε ≤ ‖a‖δ‖G1/2a1−δ‖2+2ε = ‖a‖δ‖a1−δGa1−δ‖1/2
1+1ε = O(ε−1/2). Finally, by

Lemma 5.2 we know that ‖aδGε‖1+1/ε = O(1). Putting everything together, the inequality
(5.1) gives us ‖aG1+εa‖1 = O(ε−1), that is supε>0 ε‖aG1+εa‖1 <∞, i.e. a ∈ Bζ . �

Now we can state a Z1 version of Proposition 4.4.

Proposition 5.3. Let 0 ≤ a ∈ N be such that there exists δ > 0 with a1−δ ∈ BZ1, and
[G, a1−δ] ∈ Z0

1 . Then lims→1+(s− 1)
∥∥aGsa− (aGa)s

∥∥
1

= 0.

Proof. Applying Proposition 5.1 to a1−δ/2 and δ/(2− δ), we deduce that a1−δ/2 ∈ Bζ . Combin-
ing Theorem 3.1 from [34] with Theorem 4 from [35], and taking into account that Z0

1 is an
interpolation space for the couple (L1,N ), we get from [G, a1−δ] ∈ Z0

1 that [G, a] ∈ Z0
1 as well.

Then the claim follows directly from Proposition 4.4. �

6. Nonunital Spectral Triples

We will now use the results of the previous Sections to give an a posteriori definition of a finitely
summable nonunital semifinite spectral triple (A,H,D), relative to (N , τ). A semifinite spectral
triple consists of a separable Hilbert space H carrying a faithful representation of N , together
with an essentially self-adjoint operator D affiliated with N and a (nonunital) ∗-sub-algebra A
of N such that [D, a] is bounded for all a ∈ A and a(1 +D2)−1/2 ∈ KN .

The main difference between the notions of finitely summable unital and nonunital spectral
triple is that, in the unital case, D alone is enough to characterise the spectral dimension.
However, the situation in the nonunital case is far more subtle since one needs a delicate
interplay between A and D to obtain a good definition of spectral dimension.

Corollary 6.4 and Proposition 6.6 show that our definitions are compatible with known results
from the unital case. Moreover the hypotheses are checkable in practise, and the limits are also
computable in practise: we present some classical examples to illustrate this.

Despite our previous focus on ‘L1 as the square of L2’, we now define summability for spectral
triples in an ‘L1’ fashion. The reason for this is the local index formula [6]. However here we
will quickly return, via the results of previous sections, to the L2 type description.

Definition 6.1. Let (A,H,D) be a nonunital semifinite spectral triple, relative to (N , τ). We
then let p := inf{s > 0 : for all 0 ≤ a ∈ A , τ

(
a(1 + D2)−s/2

)
< ∞}, and when it exists, we

say that (A,H,D) is finitely summable and call p the spectral dimension of the triple (A,H,D).

Remark. This definition is employed in the local index formula [6]. The use of the unsym-
metrised form of the condition amounts to making the strongest possible assumption. We stress
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the dependence on the algebra A in the previous definition. Finally, note that by [3] we obtain
a positive functional for each s > 0 since as a(1 +D2)−s/2 ∈ L1(N , τ), for a ≥ 0,

τ(a(1 +D2)−s/2) = τ((1 +D2)−s/4a(1 +D2)−s/4) ≥ 0.

If A is unital and the unit of A is also the unit of N , then this gives the usual notion of finite
summability and spectral dimension for unital spectral triples.

Definition 6.2. Let (A,H,D) be a finitely summable nonunital semifinite spectral triple, rela-
tive to (N , τ), with spectral dimension p ≥ 1. If for all a ∈ A

lim sup
s↘p

∣∣(s− p)τ(a(1 +D2)−s/2)
∣∣ <∞,

we say that (A,H,D) is Zp-summable. In this case we let Bp := Bζ((1 +D2)−p/2).

The special case of Zp-summability is the nonunital analogue of the most studied criterion in
the unital case, usually called (p,∞)-summability.

Lemma 6.3. Let (A,H,D) be a Zp-summable nonunital semifinite spectral triple, relative to
(N , τ) with A ⊂ B2

p = span{b1b2 : b1, b2 ∈ Bp}. If b1[b2, (1 + D2)−p/2] ∈ Z0
1 , ∀ b1, b2 ∈ Bp,

arising from elements of A, then a 7→ τω(a(1 +D2)−p/2) defines a positive trace on A.

Proof. We make our usual abbreviation G = (1 + D2)−p/2. With the assumption above we
have a finite sum a =

∑
i b
i
1b
i
2 and so aG =

∑
i b
i
1b
i
2G =

∑
i b
i
1[bi2, G] + bi1Gb

i
2. Since for each i,

bi1[bi2, G] ∈ Z0
1 and bi1Gb

i
2 ∈ Z1, for any Dixmier trace τω, τω(aG) =

∑
i τω(bi1Gb

i
2) is well-defined.

To see that a 7→ τω(aG) is an (unbounded) trace we employ Proposition 4.14, and we are left to
check that [a,G] ∈ Z0

1 for positive a ∈ A, which is a consequence of the Leibniz rule. Positivity
follows from [3] again since τω(aG) = τω(G1/2aG1/2) ≥ 0 for a ≥ 0. �

Corollary 6.4. Let (A,H,D) be a Zp-summable nonunital semifinite spectral triple, relative
to (N , τ). Suppose that 0 ≤ a ∈ A satisfies a = b2 for b ≥ 0 with b1−δ ⊂ Bp for some δ > 0,
and with b[b,G] ∈ Z0

1 . Then choosing ω, ω̃ as in [9, Theorem 4.11] we have

τω(aG) = ω̃ − lim
1

r
τ(bG1+ 1

r b).

Proof. This is the content of our main result Theorem 4.13. �

Our final aim is to check the validity of our assumptions in the context of spectral triples,
using smoothness of the spectral triple. As usual δ is the unbounded derivation given by
δ(T ) := [|D|, T ], T ∈ N and we note that in the definition of Bp we may use G = (1 +D2)−p/2

interchangeably with G1 = (1 + |D|)−p.

Definition 6.5. Let (A,H,D) be a Zp-summable nonunital semifinite spectral triple, relative
to (N , τ) with A ⊂ B2

p. We say (A,H,D) is smooth to order k if for all b ∈ Bp arising from

elements of A and for all 0 ≤ j ≤ k, δj(b) ∈ Bp.

Now we check that being smooth to order bpc + 1 (b·c is the integer-part function) is enough
to ensure that b1[b2, (1 +D2)−p/2] ∈ Z0

1 for b1, b2 ⊆ Bp arising from A.
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Proposition 6.6. Let (A,H,D) be a finitely summable nonunital semifinite spectral triple with
spectral dimension p, and which is smooth to order bpc + 1. Suppose moreover that A ⊂ B2

p.
Then for all b1, b2 ⊂ Bp arising from A, b1[b2, (1 + |D|)−p] is trace-class.

Proof. We may write (1 + |D|)−p = 1
2πi

∫
`
λ−p(λ − 1 − |D|)−1dλ, where ` = 1

2
+ iR. Then we

have

[(1 + |D|)−p, b2] =
1

2πi

∫
`

λ−p(λ− 1− |D|)−1[|D|, b2](λ− 1− |D|)−1dλ

= p(1 + |D|)−p−1[|D|, b2]− 1

2πi

∫
`

λ−p(λ− 1− |D|)−1[(λ− 1− |D|)−1, [|D|, b2]]dλ.

Repeat the previous resolvent trick to obtain

[(1+|D|)−p, b2] = p(1+|D|)−p−1[|D|, b2]− 1

2πi

∫
`

λ−p(λ−1−|D|)−2[|D|, [|D|, b2]](λ−1−|D|)−1dλ.

Now iterate the process and multiply on the left by b1 to obtain

b1[(1 + |D|)−p, b2] = p b1(1 + |D|)−p−1[|D|, b2]− p(p+ 1) b1(1 + |D|)−p−2[|D|, [|D|, b2]] . . .

. . .− 1

2πi

∫
`

λ−p b1(λ− 1− |D|)−bpc−1[|D|, . . . , [|D|, [|D|, b2]] · · · ](λ− 1− |D|)−1dλ,

where there are bpc + 1 commutators in the integrand. Under the smoothness assumption
δk(b2) ∈ Bp for k ≤ bpc+ 1 we may use Lemma 3.7 to argue that for each λ ∈ ` the product

b1(λ− 1− |D|)−bpc−1[|D|, . . . , [|D|, [|D|, b2]] · · · ],

is trace-class because b1(1+|D|)−bpc−1[|D|, . . . , [|D|, [|D|, b2]] · · · ] is trace-class. Simple estimates
now show that the integral converges in trace norm. The result follows. �

Examples. Take (N , τ) = (B(L2(Rp, S)),Tr), where S is the trivial spinor bundle, and Tr the
usual operator trace. We let ∂/ be the standard Dirac operator, G = (1+∂/ 2)−p/2,H = L2(Rp, S),
and A the bounded smooth integrable functions all of whose partial derivatives are bounded
and integrable. Let b ∈ L2(Rp) be the function b(x) = (1 + ‖x‖2)−p/4−ε/2, with ε > 0 fixed.
Then A 3 a = b2 satisfies the hypotheses of Corollary 6.4 and

Trω
(
b2G

)
= ω̃ − lim

r→∞

1

r
Tr
(
bG1+ 1

r b
)

=
2[p/2]Vol(Sp−1)

p(2π)p

∫
Rp

(1 + ‖x‖2)−p/2−ε dpx,

the final line following from an explicit calculation similar to that in [37, Corollary 14].

Recall that an algebra Ac has local units when, for any finite subset of elements {a1, . . . , ak}
of Ac, there exists u ∈ Ac such that uai = aiu = ai for i = 1, . . . , k. In the example above we
could take Ac to be the smooth compactly supported functions, and apply the theory in [37]
to elements of Ac. However, the local units based theories of [20, 37] can not acomodate the
integration of the function b2. Thus even in the classical case of manifolds our approach to
integration allows a wider class of functions.

Similar examples may be constructed on any complete spin manifold M of bounded geometry,
[37]. For this, consider W 1,∞, the intersection of L1-Sobolev spaces, endowed with the Fréchet
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topology associated to the countable family of norms:

‖f‖1,k :=

∫
M

|∆k/2f |(x) dvol(x),

where, ∆ denotes the scalar Laplacian on M and dvol is the Reimannian volume form. Then,
we can show with the methods developed in [6, Section 5.1.1], that the operator of point-wise
multiplication by a function in W 1,∞ acting on the L2-sections of the spinor bundle, satisfies
the assumptions of Corollary 6.4, for D/ the Dirac operator on M . From the spinor heat kernel
and its asymptotics (see [23]), we compute (with p = dimM)

lim
r→∞

1

r
Tr(f(1 +D/ 2)−(p/2)(1+1/r)) =

2

pΓ(p/2)

∫
M

f(x) a0(x) dvol(x).

Here a0 is the first coefficient in the asymptotic expansion of the heat kernel. Kordukov shows
that the coefficients are invariants depending only on the jets of the principal symbol of D/ 2.
Gilkey’s arguments, [22, page 334], then apply, since they are completely local. Hence a0 =
(4π)−p/2IdS, where S is the spinor bundle. Thus

lim
r→∞

1

r
Tr(f(1 +D/ 2)−(p/2)(1+1/r)) =

2[p/2]Vol(Sp−1)

p(2π)p

∫
M

f(x) dvol(x).

For example, on the upper half plane model of the hyperbolic plane, we have dvol(x + iy) =
y−2dx dy. Then one can check that f(x + iy) = (1 + x2)−1/2−ε(1 + y2)−εy1+ε satisfies the
hypotheses of Corollary 6.4, is integrable, and is clearly not compactly supported.

Last, we mention that the results of this paper, have been intensively used in [21, Theorem
14]. Moreover, it significantly simplifies the proof of [20, Proposition 4.17] and makes it valid
for a function algebra (for the Moyal product) larger than the Schwartz space, namely the one
considered in [6, Lemma 6.7].
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