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Abstract

Recently, examples of an index theory for KMS states of circle actions were discovered, [9, 13]. We
show that these examples are not isolated. Rather there is a general framework in which we use KMS
states for circle actions on a C∗-algebra A to construct Kasparov modules and semifinite spectral
triples. By using a residue construction analogous to that used in the semifinite local index formula
we associate to these triples a twisted cyclic cocycle on a dense subalgebra of A. This cocycle pairs
with the equivariant KK-theory of the mapping cone algebra for the inclusion of the fixed point
algebra of the circle action in A. The pairing is expressed in terms of spectral flow between a pair of
unbounded self adjoint operators that are Fredholm in the semifinite sense. A novel aspect of our work
is the discovery of an eta cocycle that forms a part of our twisted residue cocycle. To illustrate our
theorems we observe firstly that they incorporate the results in [9, 13] as special cases. Next we use
the Araki-Woods IIIλ representations of the Fermion algebra to show that there are examples which
are not Cuntz-Krieger systems.

1. Introduction

1.1. Background. This paper presents an extension of noncommutative geometry and index theory
to the purely infinite or type III case, that is, where we are looking at situations in which there are
no faithful traces and we wish to replace them by KMS states. It exploits some ideas from semifinite
noncommutative geometry, a recent extension of the standard type I theory of Connes [14] which was
begun in [5]. Our main reference for the analytic part of these ideas is [7], however there is more
background in [4, 10, 11, 12].

We build on two interesting examples. In [9, 13] it was discovered that there exist refined invariants of
the Cuntz algebra and the algebra SUq(2) which arise from KMS states. In the former case there is a
canonical circle action (the gauge action) and a unique associated KMS state whose GNS representation
is type III while in the latter case the Haar state satisfies the KMS condition with respect to a circle
action. It was shown that certain unitaries in matrix algebras over the Cuntz algebras and SUq(2)
can be used to form a new type of K-group. This group then pairs with twisted cyclic cocycles to
produce real valued invariants. In [9] this construction was termed ‘modular index theory’. Not all
unitaries in these algebras define elements of the new K-group; only those satisfying a side condition
formulated in terms of the modular group of the KMS state. These index pairings have not been seen
before because they use in an essential way the semifinite index theory from [7, 11, 12].

The nature of this modular theory in these examples is mysterious. The objective of this paper is to
put the examples into a general framework so that, rather than being isolated phenomena, the modular
index pairings in [9, 13] can be seen to arise from a more fundamental principle. The germ of the
idea comes from [8] where it was observed that the examples of semifinite noncommutative geometries
discovered in [28] lead to classes in the KK-theory of a mapping cone algebra. What we find in this
paper is a more general framework that uses equivariant KK-theory of mapping cone algebras. The
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constructions we employ arise very naturally for a broad class of C∗-algebras admitting states (or
weights) that are KMS for circle actions. We remark that although we do not discuss examples of
the case where we start with a weight on a C∗-algebra here, we know from work in progress with M.
Marcolli that such examples exist and are of considerable independent interest.

1.2. Summary of results. Our basic data consists of a C∗-algebra A, together with a strongly
continuous action of the circle T by ∗-automorphisms σ : T→ Aut(A). We let F denote the fixed point
subalgebra Aσ of A, Φ the conditional expectation

A 3 a 7→ 1
2π

∫
T
σt(a)dt ∈ F,

and set Ak = {a ∈ A | σt(a) = eikta}. For the more algebraic part of this paper (Section 2) we
make a ‘spectral subspace assumption’ (SSA) that the ideals Fk = AkA

∗
k are complemented in F .

This generalises the notion of full spectral subspaces. When we deal with purely analytic formulae
in subsequent Sections we can drop this SSA. On the analytic side we assume there is a (possibly
unbounded) semifinite, norm lower semicontinuous, faithful, positive functional φ : A → C satisfying
the KMSβ condition for the circle action σ and β 6= 0.

Associated to the pair (A, σ) there is an unbounded Kasparov module (AXF ,D) constructed as fol-
lows. Define the F -valued scalar product (a|b)R = Φ(a∗b) and AXF as the corresponding C∗-module
completion of A. Then D is the generator of the action of σ on AXF induced by the action of σ on A.
The pair (AXF ,D) defines a class [D] := [(AXF ,D)] ∈ KKT

1 (A,F ).

Let M = M(F,A) denote the mapping cone of the inclusion F ⊂ A. The mapping cone extension

0→ C0(R, A) ι→M
ev→ F → 0

gives us an exact sequence in equivariant KK-theory, part of which is

KKT
0 (M,F ) ι∗→ KKT

1 (A,F ) δ→ KKT
1 (F, F ).

Since D commutes with the left action of F , we have δ[D] = 0, and so by exactness, there is a class
[D̂] ∈ KKT

0 (M,F ) with ι∗[D̂] = [D]. In the text we will give an explicit construction of such a
KK-class [D̂] using the results of [8].

The cycles [D] and [D̂] define, via the Kasparov product, two index maps:

KT
1 (A) IndexD−−−−→ KT

0 (F ) and KT
0 (M)

IndexD̂−−−−→ KT
0 (F ).

compatible with ι∗ : KT
1 (A)→ KT

0 (M).

We shall also introduce a closely related homomorphism into the representation ring of T:

sf : KT
0 (M)→ R[χ, χ−1],

which we call the ‘equivariant spectral flow’. We will explain how the constructions of a modular
index pairing for the Cuntz algebras and SUq(2) obtained previously in [9, 13] can be explained
(and generalized) in terms of IndexD̂ and sf together with the map τ∗ : K0(F ) → R induced by the
trace τ = φ|F and the evaluation at χ = e−β map R[χ, χ−1] → R (Theorem 4.11). Furthermore, the
modular index pairing can be computed quite explicitly for a certain subgroup of KT

0 (M) using an
analytic formula for semifinite spectral flow (Theorem 5.6).

As a new example we discuss the case of Araki-Woods factors which are obtained from KMS states
for the gauge action on the Fermion algebra.
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1.3. The theorems. For the reader’s convenience we give details of the results here. Let Hφ =
L2(A, φ), let πφ : A→ B(Hφ) denote the GNS representation and N the commutant of Jφπφ(F )Jφ in
B(Hφ). Then N is a semifinite von Neumann algebra and A ' πφ(A) ⊂ N with a positive, faithful,
semifinite trace Trφ (see Lemma 3.2). Let also D denote the (self-adjoint) extension of the operator
D introduced above to Hφ. Let Φk be the projection onto the kth spectral subspace of D for each
k ∈ Z. Finally, set P = χ[0,∞)(D). Denote by A the algebra consisting of finite sums of σ-homogeneous
elements in the domain dom(φ) of φ. We also put F = A ∩ F = dom(τ), where τ = φ|F .

We denote the unitization of our algebras by a superscripted .̃ Every class in KT
0 (M) has a represen-

tative v such that v ∈ (A∼ ⊗B(HU ))σ⊗AdU , vv∗ and v∗v are in F∼ ⊗B(HU ), and vv∗ = v∗v modulo
F⊗B(HU ), where U : T→ B(HU ) is a finite dimensional unitary representation (Lemma 3.6). Hence-
forth we restrict to such v. Then we define the equivariant spectral flow as follows. Denote by χn the
one-dimensional representation t 7→ eint and write the representation ring of T over R as R[χ, χ−1].
Let Qn : H⊗HU → H⊗HU be the projection onto the χn-homogeneous component and let

sfn(v) = (Trφ⊗Tr)((v∗v − vv∗)Qn(P ⊗ 1)) ∈ R.

We show that sfn(v) = 0 for all but a finite number of n ∈ Z and introduce the T-equivariant spectral
flow sf on KT

0 (M)) with values in R[χ, χ−1] defined on the class [v] of v by

sf([v]) =
∑
n∈Z

sfn(v)χn.

LetKI(M) be the subgroup ofKT
0 (M) generated by partial isometries whose homogeneous components

are partial isometries.

Theorem 1.1. If the spectral subspace assumption is satisfied, the equivariant spectral flow coincides
with the composition

KT
0 (M)

− IndexD̂−−−−−−→ KT
0 (F ) = K0(F )[χ, χ−1] τ∗−→ R[χ, χ−1],

where τ∗ denotes the homomorphism K0(F )→ R defined by the trace τ . For elements of KI(M) this
was done explicitly in [8].

It is natural to ask whether there is an analytic spectral flow formula that computes the equivariant
spectral flow. There is an immediate obstacle, seen in examples: (1 + D2)−

1
2 is almost never finitely

summable with respect to Trφ. To obtain a spectral triple we use the method of [9]. We construct on
N a faithful semifinite normal weight φD ≡ Trφ(e−βD/2 · e−βD/2) such that

• the modular automorphism group σφD of φD is implemented by a one parameter unitary group
whose generator is D and, moreover, σφDt |A = σ−βt for all t ∈ R,

• φD restricts to a faithful normal semifinite trace on the fixed point algebraM of σφD , D is affiliated
to M, and [D, a] extends to a bounded operator (in N ) for all a in a dense subalgebra of A,

• for all f ∈ F ∩ dom(φ) and all λ in the resolvent set of D, the operator f(λ− D)−1 belongs to the
ideal K(M, φD) of compact operators in M relative to φD.

The problem now is that since A is not contained in M, we do not have an immediate definition of
a spectral flow for partial isometries in A. This has led to the definition of a new group K1(A, σ) [9],
which is closely related to KI(M). Namely, a partial isometry v ∈ A (or in matrices over A) is called
modular if [D, v] is bounded and vQv∗ ∈ M = N σ for every spectral projection of D. There is a
semigroup K1(A, σ) defined as the homotopy classes of modular partial isometries in Mat∞(A∼) =
∪n Matn(A∼). Via the Grothendieck construction we will henceforth use the same notation for the
corresponding group. The main reason to define this group is that for modular partial isometries v,
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(Pvv∗, vPv∗) is a Fredholm pair in the semifinite sense [3] in (M, φD) and hence there is a well-defined
analytic spectral flow along the path t 7→ (1 − t)(2Pvv∗ − 1) + t(2vPv∗ − 1), t ∈ [0, 1]. This is equal
(see [3], Section 6) to the semifinite spectral flow sfφD(vv∗D, vDv∗) along the linear path joining vv∗D
to vDv∗.

Let v ∈ A be a modular partial isometry. Then it can be shown that the decomposition v =
∑
vk, vk ∈

Ak is finite and every vk is a partial isometry. We can consider vk as an operator Hφ[k]→ Hφ, where
Hφ[k] coincides with Hφ as a space, but the representation of T is tensored by χk. Then vk defines a
class �vk� in KT

0 (M). There is thus a well defined homomorphism T : K1(A, σ)→ KI(M) given by
v 7→

∑
k �vk� .

In Section 4 we obtain the following relationship between the equivariant spectral flow sf with respect
to Trφ and sfφD(vv∗D, vDv∗).

Theorem 1.2. The spectral flow sfφD(vv∗D, vDv∗) for modular partial isometries is the composition
of the maps

K1(A, σ) T−→ KT
0 (M)

sf−→ R[χ, χ−1]
Ev(e−β)−−−−−→ R,

where Ev(e−β) is the evaluation at χ = e−β.

In Section 5 we turn to the question of providing a direct analytic formula for sfφD(vv∗D, vDv∗).

Theorem 1.3. Let v ∈ A be a modular partial isometry. Then sfφD(vv∗D, vDv∗) is given by

Resr=1/2

(
r 7→ φD(v[D, v∗](1 +D2)−r) +

1
2

∫ ∞
1

φD((σ−iβ(v∗)v − vv∗)D(1 + sD2)−r)s−1/2ds

)
.

In previous papers [9, 13] it was clear from the numerical values computed for the spectral flow for
particular choices of modular partial isometries v that the mapping cone K-theory was playing a role.
The preceding two theorems explain exactly these previously somewhat mysterious numerical values.

The above spectral flow formula turns out to be related to twisted cyclic cohomology as follows.
Ignoring eta correction terms one can argue by analogy with the standard case of tracial weights (see
[7]) to define a T-equivariant Chern character computing the equivariant spectral flow using a Dixmier
functional Trφ,ω by

φ1(g; a0, a1) =
1
2

Trφ,ω(ga0[D, a1]),

where g is an element of a group algebra of T. In Section 5 we can make the definition of Trφ,ω precise
using a residue formula and also define a twisted cocycle φ1 where we choose g = e−β considered as
an element of the complexification of T. Namely, we have:

Theorem 1.4. (i) If (A, φ, σ) has full spectral subspaces then for all a0, a1,∈ A the residue

φ1(a0, a1) := Resr=1/2 φD(a0[D, a1](1 +D2)−r)

exists and equals φ(a0[D, a1]). It defines a twisted cyclic cocycle on A with twisting σ−iβ, and for any
modular partial isometry v

sfφD(vv∗, vDv∗) = φ1(v, v∗).

(ii) For general circle actions, the bilinear functional on A given by

ψr(a0, a1) = φD(a0[D, a1](1 +D2)−r) +
1
2

∫ ∞
1

φD((σ−iβ(a1)a0 − a0a1)D(1 + sD2)−r)s−1/2ds

depends holomorphically on r for <(r) > 1/2 and modulo functions which are holomorphic for <(r) > 0
is a function valued σ−iβ-twisted (b, B)-cocycle.
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We have encountered a similar situation in [27]. There the SUq(2)-equivariant Chern character of the
Dirac operator on the quantum sphere was evaluated at a special element ρ ∈ Uq(su2) and produced
an explicitly computable twisted cyclic cocycle. In our current situation the evaluation at g = e−β

is needed to improve summability whereas there the purpose was somewhat opposite: the evaluation
at ρ prevented the dimension drop and produced a 2+-summable spectral triple in the twisted sense
instead of a 0+-summable one. In both cases however we see that twisted cohomology appears as an
analytically manageable part of an equivariant cohomology.

We make the observation that our constructions and resulting index theorems are not related to the
approach of Connes and Moscovici in [15].

2. The construction of equivariant KK classes from a circle action

2.1. A Kasparov module from a circle action. Let A be a C∗-algebra, σ : T→ Aut(A) a strongly
continuous action of the circle. It will be convenient to consider σ as a 2π-periodic one-parameter
group of automorphisms. We denote by F the fixed point algebra {a ∈ A | σt(a) = a ∀t ∈ R}. Since
T is a compact group, the map

Φ: A→ F, Φ(a) =
1

2π

∫ 2π

0
σt(a)dt

is a faithful conditional expectation. Next define an F -valued inner product on A by (a|b)R := Φ(a∗b).
The properties of Φ allow us to see that this is a (pre)-C∗-inner product on A, and so we may
complete A in the topology determined by the norm ‖a‖2X = ‖(a|a)R‖F to obtain a C∗-module, for
the right action of F .

Definition 2.1. We let X = A be the C∗-module completion of A with inner product (·|·)R.

The circle action is defined on the dense subspace A ⊂ X and extends to a unitary action on X. The
F -module Xis a full F -module for the right inner product. For k ∈ Z, denote the eigenspaces of the
action σ by

Ak = {a ∈ A : σt(a) = eikta for all t ∈ R}.
Then F = A0, which guarantees the fullness of X over F . Also A is a Z-graded algebra in an obvious
way, A−k = (Ak)∗ and in particular, each Ak is an F -module. Note that the norm on Ak defined by
the above inner product coincides with the C∗-norm. We denote by Xk the space Ak considered as
a closed submodule of X. For k ∈ Z we set Fk = AkA

∗
k. Some of our results using KK-theoretic

constructions require the following assumption.

Definition 2.2. The action σ on A satisfies the Spectral Subspace Assumption (SSA) if Fk is a
complemented ideal in F for every k ∈ Z. Equivalently, the representation πk : F → EndF (Xk) given
by left multiplication satisfies πk(F ) = πk(Fk) (then kerπk is the complementary ideal to Fk).

There is a special case of this assumption which is well known, namely A is said to have full spectral
subspaces if Fk = F for all k ∈ Z. The gauge action on the Cuntz algebras On provides examples
where fullness holds. The quantum group SUq(2) with its Haar state and associated circle action is
an example of an algebra satisfying the SSA but not having full spectral subspaces [13].

Lemma 2.3. If A1A∗1 = A∗1A1 = A0, the modules Xk and Xk are full for all k ∈ Z.

Proof. Observe that as A1A
∗
1 ⊂ A0, we have A1 = A0A1. So if A0 = A∗1A1, by induction we get

A0 = (Ak1)∗Ak1 for k ≥ 1. Since Ak1 ⊂ Ak, we conclude that Xk is full. Similarly, if k ≤ −1 then
(A∗1)−k ⊂ Ak, so A0 = A1A∗1 implies that Xk is full. �
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Note that as A0Ak is dense in Ak, we always have FA = A and similarly AF = A (this also follows
from the existence of a σ-invariant approximate unit in A). As there are many examples of circle
actions which are not full but satisfy the SSA we will develop the theory in this generality in the
present Section.

Next we remark that the general theory of C∗-modules (or Hilbert modules) is discussed in many
places and we will use [26, 33]. For a right C∗-B-module Y , we let EndB(Y ) be the C∗-algebra (for
the operator norm) of adjointable endomorphisms, End0

B(Y ) the ideal of compact endomorphisms,
which is the completion of the finite rank endomorphisms: End00

B (Y ). The latter is generated by the
rank one endomorphisms Θx,y, x, y ∈ Y , defined by Θx,yz = x(y|z)R, z ∈ Y .

For each k ∈ Z, the projection onto the k-th spectral subspace for the circle action is defined by an
operator Φk on X via

Φk(x) =
1

2π

∫ 2π

0
e−iktσt(x)dt, x ∈ X.

The range of Φk is the submodule Xk. These ranges give us the natural Z-grading of X. The operators
Φk are adjointable endomorphisms of the F -module X such that Φ∗k = Φk = Φ2

k and ΦkΦl = δk,lΦk. If
K ⊂ Z then the sum

∑
k∈K Φk converges strictly to a projection in the endomorphism algebra, [28].

In particular sum
∑

k∈Z Φk converges strictly to the identity operator on X.

The following Lemma is the key step in obtaining a Kasparov module.

Lemma 2.4. For a circle action on A the following conditions are equivalent:
(i) the action satisfies the SSA;
(ii) for all a ∈ A and k ∈ Z, the endomorphism aΦk of the right F -module X is compact.

Proof. Assume the action satisfies the SSA. If x, y ∈ Ak and z ∈ X, then

Θx,yz = xΦ(y∗z) = xΦ(y∗zk) = xy∗zk = xy∗Φkz.

Thus Θx,y = xy∗Φk. It follows that aΦk is compact for any a ∈ AkA∗k. Since AkA∗k is dense in Fk, we
see that fΦk is compact for any f ∈ Fk, and hence fΦk is compact for any f ∈ F by the SSA. But
then afΦk is compact for any f ∈ F and a ∈ A. Since AF is dense in A, we can approximate bΦk for
any b ∈ A by (compact) endomorphisms of the form afΦk.

Conversely, assume fΦk is compact for some f ∈ F , so that fΦk can be approximated by finite sums
of operators Θx,y, x, y ∈ Xk. We have seen, however, that Θx,y = xy∗Φk, and so πk(f) is in πk(Fk).
Therefore if fΦk is compact for all f ∈ F and k ∈ Z, the SSA is satisfied. �

Since we have the circle action defined on X, we may use the generator of this action to define an
unbounded operator D. We will not define or study D from the generator point of view, instead taking
a more bare-hands approach. It is easy to check that D as defined below is the generator of the circle
action. The theory of unbounded operators on C∗-modules that we require is all contained in Lance’s
book, [26, Chapters 9,10]. We quote the following definitions (adapted to our situation).

Definition 2.5. [26] Let Y be a right C∗-B-module. A densely defined unbounded operator

D : dom D ⊂ Y → Y

is a B-linear operator defined on a dense B-submodule dom D ⊂ Y . The operator D is closed if the
graph G(D) = {(x,Dx) : x ∈ dom D} is a closed submodule of Y ⊕ Y .

If D : dom D ⊂ Y → Y is densely defined and unbounded, define a submodule

dom D∗ := {y ∈ Y : ∃z ∈ Y such that ∀x ∈ dom D, (Dx|y)R = (x|z)R}.
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Then for y ∈ dom D∗ define D∗y = z. Given y ∈ dom D∗, the element z is unique, so D∗ : domD∗ → Y ,
D∗y = z is well-defined, and moreover is closed.

Definition 2.6. [26] Let Y be a right C∗-B-module. A densely defined unbounded operator D is
symmetric if for all x, y ∈ dom D we have (Dx|y)R = (x|Dy)R. A symmetric operator D is self-
adjoint if dom D = dom D∗ (and so D is necessarily closed). A densely defined unbounded operator
D is regular if D is closed, D∗ is densely defined, and 1 +D∗D has dense range.

The extra requirement of regularity is necessary in the C∗-module context for the continuous functional
calculus, and is not automatic, [26, Chapter 9]. With these definitions in hand, we return to our C∗-
module X. The following can be proved just as in [28, Proposition 4.6], or equivalently by observing
that the operator D is presented in diagonal form.

Proposition 2.7. Let X be the right C∗-F -module of Definition 2.1. Define XD ⊂ X to be the linear
space

XD = {x =
∑
k∈Z

xk ∈ X : ‖
∑
k∈Z

k2(xk|xk)R‖ <∞}.

For x =
∑

k∈Z xk ∈ XD define Dx =
∑

k∈Z kxk. Then D : XD → X is a self-adjoint regular operator
on X.

There is a continuous functional calculus for self-adjoint regular operators, [26, Theorem 10.9], and we
use this to obtain spectral projections for D at the C∗-module level. Let fk ∈ Cc(R) be 1 in a small
neighbourhood of k ∈ Z and zero on (−∞, k − 1/2] ∪ [k + 1/2,∞). Then it is clear that Φk = fk(D).
That is the spectral projections of D are the same as the projections onto the spectral subspaces of
the circle action.

Lemma 2.8. If the SSA holds , then for all a ∈ A, the operator a(1 +D2)−1/2 is a compact endomor-
phism of the F -module X.

Proof. Since aΦk is a compact endomorphism for all a ∈ A, and aΦk, aΦm have orthogonal initial
spaces, the sum

a(1 +D2)−1/2 =
∑
k∈Z

(1 + k2)−1/2aΦk

converges in norm to a compact endomorphism. �

Proposition 2.9. If the SSA holds, the pair (X,D) is an unbounded Kasparov module defining a class
in KK1(A,F ).

Proof. We will use the approach of [22, Section 4]. Let V = D(1 + D2)−1/2. We need to show that
various operators belong to End0

F (X). First, V −V ∗ = 0, so a(V −V ∗) is compact for all a ∈ A. Also
a(1 − V 2) = a(1 + D2)−1 which is compact from Lemma 2.8 and the boundedness of (1 + D2)−1/2.
Finally, we need to show that [V, a] is compact for all a ∈ A. First we suppose that a = am is
homogenous for the circle action. Then

[V, a] = [D, a](1 +D2)−1/2 −D(1 +D2)−1/2[(1 +D2)1/2, a](1 +D2)−1/2

= b1(1 +D2)−1/2 + V b2(1 +D2)−1/2,

where b1 = [D, a] = ma and b2 = [(1 + D2)1/2, a]. Provided that b2(1 + D2)−1/2 is a compact
endomorphism, Lemma 2.8 will show that [V, a] is compact for all homogenous a. So consider the
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action of [(1 +D2)1/2, a](1 +D2)−1/2 on x =
∑

k∈Z xk. We find∑
k∈Z

[(1 +D2)1/2, a](1 +D2)−1/2xk =
∑
k∈Z

(
(1 + (m+ k)2)1/2 − (1 + k2)1/2

)
(1 + k2)−1/2axk

=
∑
k∈Z

fm(k)aΦkx.(1)

The function
fm(k) =

(
(1 + (m+ k)2)1/2 − (1 + k2)1/2

)
(1 + k2)−1/2

goes to 0 as k → ±∞, and as the amΦk are compact with orthogonal ranges, the sum in (1) converges
in the operator norm on endomorphisms and so converges to a compact endomorphism. For a ∈ A a
finite sum of homogenous terms, we apply the above reasoning to each term in the sum to find that
[(1 +D2)1/2, a](1 +D2)−1/2 is a compact endomorphism.

Now let a ∈ A be the norm limit of a Cauchy sequence {ai}i≥0 where each ai is a finite sum of
homogenous terms. Then

‖[V, ai − aj ]‖End ≤ 2‖ai − aj‖End → 0,
so the sequence [V, ai] is also Cauchy in norm, and so the limit is compact. �

Corollary 2.10. If the SSA holds, the pair (X,D) defines a class in the equivariant KK-group
KKT

1 (A,F ).

The proof of the corollary is obvious from the constructions.

2.2. The equivariant constructions for the mapping cone algebra. From the unbounded
Kasparov A-F -module (X,D), we shall construct a new equivariant Kasparov M(F,A)-F -module
(X̂, D̂). By pairing the class of the module (X̂, D̂) with elements of KT

0 (M(F,A)) we then get a map
KT

0 (M(F,A)) → KT
0 (F ). Here M(F,A) is the mapping cone C∗-algebra for the inclusion F ↪→ A

defined by
M(F,A) = {f : [0,∞)→ A : f ∈ C0([0,∞), A), f(0) ∈ F}.

The mapping cone algebra carries the circle action coming from the circle action on A.

In [31], Putnam showed that the K0 group of M(F,A) is given by homotopy classes of partial isometries
v ∈ A∼ ⊗Matk(C) with vv∗, v∗v ∈ F∼ ⊗Matk(C). Before summarising the construction of (X̂, D̂)
from [8], we adapt Putnam’s description of the K-theory of the mapping cone to an equivariant setting.

Denote by V T(F,A) the set of σ⊗AdU invariant partial isometries v ∈ A∼⊗B(H), where U : T→ B(H)
is some finite dimensional unitary representation (which varies with v but which we denote generically
by U), such that vv∗ and v∗v belong to F∼ ⊗ B(H).

Consider the equivalence relation on V T(F,A) generated by the following two conditions: two invariant
partial isometries v1, v2 are equivalent if they are joined by a homotopy consisting of invariant partial
isometries or if they are a pair of the form v, v⊕p, where p is an invariant projection in F∼⊗B(H) for
some T-module H. For v ∈ V T(F,A) we define a projection pv in a matrix algebra over the unitization
of the mapping cone algebra M(F,A) by

pv(t) =

(
1− vv∗ + t2vv∗

1+t2
−iv t

1+t2

iv∗ t
1+t2

v∗v
1+t2

)
.

Then [pv] −
[(

1 0
0 0

)]
is an element of KT

0 (M(F,A)) (in particular pv is a σ ⊗ AdU invariant

projection, for a suitable representation U of T coming from the representation associated with v),
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and the map

v 7→ [pv]−
[(

1 0
0 0

)]
is a bijection of V T(F,A)/∼ ontoKT

0 (M(F,A)). Note that Putnam considers the non-equivariant case,
but the reader can easily check that all his proofs and constructions carry over to the T-equivariant
case. A general class in KT

0 (M(F,A)) is denoted by [v] or equivalently by [pv]− [1].

The group KT
0 (M(F,A)) is a module over the representation ring of T, which we identify with the ring

RT = R[χ, χ−1] of Laurent polynomials with real coefficients; therefore χn denotes the one-dimensional
representation t 7→ eint. For a T-module H we denote by H[n] the module with the same underlying
space but with the action tensored with χn. Now in terms of partial isometries, the RT-module
structure on KT

0 (M(F,A)) is described as follows: if v ∈ (A∼ ⊗ B(H))T then χ[v] is the class of the
partial isometry v considered as an element of (A∼ ⊗ B(H[1]))T.

The construction of (X̂, D̂) follows [8], where a C∗-algebra analogue of the Atiyah-Patodi-Singer
(APS) theory, [2], was described. We take as our starting point the equivariant Kasparov module
(X,D) coming from the circle action σ on the C∗-algebra A.

First form the space of finite sums of elementary tensors f =
∑

j fj ⊗ xj where the fj are compactly
supported smooth functions on [0,∞) and the xj ∈ X. Then complete this space using the C∗-module
norm coming from the inner product

(f |g)L2([0,∞))⊗X =
∑
i,j

∫ ∞
0

f̄i(t)gj(t)dt (xi|yj)X ,

which for convenience we write as

(f |g)L2([0,∞))⊗X :=
∫ ∞

0
(ft|gt)Xdt.

This module is the external tensor product L2([0,∞))⊗X. It carries an obvious left action of M(F,A).
We caution the reader that it is not clear that the completion of the space of finite sums of elementary
tensors is a function space. Discussion of this matter and the proof that the next definition does in
fact provide an unbounded Kasparov module can be found in [8].

Definition 2.11 ([8]). Assume the SSA is satisfied. Define a graded unbounded equivariant Kasparov
M(F,A)-F -module by

(X̂, D̂) =
((

L2([0,∞))⊗X
L2([0,∞))⊗X ⊕ Φ0X

)
,

(
0 −∂t +D

∂t +D 0

))
,

where we use APS boundary conditions in the sense that we take the initial domain of D̂ to be the finite
linear span of elementary tensors ξ such that ξ ∈ X̂ and D̂ξ ∈ X̂ with Pξ1(0) = 0, (1− P )ξ2(0) = 0,
where P = χ[0,+∞)(D) =

∑
k≥0 Φk is the non-negative spectral projection of D.

Remark. The additional copy of Φ0X (which has as inner product the restriction of the inner product
on X) allows us to use extended L2 functions as in [2, pp 58-60]. These are defined by considering
functions f that are finite sums of elementary tensors

∑
j fj ⊗ xj where the fj are functions on [0,∞)

with a limit fj(∞) as t→∞. Then f has a limit at infinity and we restrict our attention to those f
such that f −f(∞) is in L2([0,∞))⊗X and Df(∞) = 0. The inner product in the second component
is then

(f |f) =
∫ ∞

0
(f(t)− f(∞)|f(t)− f(∞))Xdt+ (f(∞)|f(∞))X .
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The Kasparov module (X̂, D̂) is equivariant using the circle action on A, which is trivial in the ‘R’-
direction. It thus defines an element ofKKT

0 (M(F,A), F ). By pairing it with elements ofKT
0 (M(F,A))

we get a homomorphism IndexD̂ : KT
0 (M(F,A))→ KT

0 (F ).

Theorem 2.12 ([8]). Assume the SSA is satisfied. Let U : T→ B(H) be a finite dimensional unitary
representation and v ∈ A∼⊗B(H) a σ⊗AdU invariant partial isometry with v∗v and vv∗ projections
in F∼ ⊗ B(H). Assume that the σ ⊗ ι homogeneous components of v are partial isometries. Then we
have

IndexD̂

(
[pv]−

[(
1 0
0 0

)])
= − Index ((P ⊗ 1)v(P ⊗ 1) : v∗v(P ⊗ 1)X ⊗H → vv∗(P ⊗ 1)X ⊗H) ∈ KT

0 (F ).

The proof is exactly the same as the non-equivariant result of [8], except that one must check that the
kernel and cokernel projections are indeed invariant, which is immediate from the equivariance of the
Kasparov module.

Remarks.

(i) In [8] we could not state the (nonequivariant version of the) above theorem for every element in
K0(M(F,A)), but only those with particular commutation relations with spectral projections of D.
The additional assumption on v in the above formulation is enough to get those relations satisfied.
Indeed, if v ∈ A∼ ⊗B(H) is homogenous then v[D⊗ 1, v∗] = kvv∗ for some k ∈ Z, and this commutes
with D ⊗ 1.

(ii) One may also try to describe the class [D̂] in the following way. First realise the class [D] as an
extension

0→ K⊗ F → E
ρ←→ A→ 0

with ρ the completely positive splitting given by a → PaP , for a ∈ A, and P = χ[0,∞)(D). As P
commutes with F , ρ is an injective homomorphism when restricted to F , and so gives us a copy of F
inside E. From this we may deduce the exactness of the sequence

0→ K⊗ SF →M(F,E)
ρ̃←→M(F,A)→ 0,

where M(F,E), M(F,A) denote the mapping cones of the respective inclusions. Corresponding to
this extension is a class

[D̃] ∈ KKT
1 (M(F,A),SF ) = KKT

1 (SM(F,A), F ) = KKT
0 (M(F,A), F ).

There is some evidence that the class [D̃] coincides with the class of [D̂].

The theorem gives us two important tools. The first is that the pairing of (X̂, D̂) is given by the
Kasparov product and so enjoys all the usual functorial properties. The second is that we can compute
the index pairing of the theorem by considering Toeplitz type operators (P ⊗ 1)v(P ⊗ 1), for which
the computation is much simpler. These tools use only the circle action. Next we exploit the KMS
weight φ.

3. The equivariant spectral flow

3.1. The induced trace. A KMS weight provides some analytic tools that we now explain.

Definition 3.1. A weight φ on a C∗-algebra A is (σ, β)-KMS weight (KMSβ weight for short) if φ is
a semifinite, norm lower semicontinuous, σ-invariant weight such that φ(aa∗) = φ(σiβ/2(a)∗σiβ/2(a))
for all a ∈ dom(σiβ/2).
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Here dom(σiβ/2) consists of all elements a ∈ A such that t 7→ σt(a) extends to a continuous function
from 0 ≤ =(t) ≤ β/2 which is analytic in the open strip. We will assume throughout the rest of the
paper that φ is a faithful KMSβ weight on A. Introduce the notation

dom(φ)+ = {a ∈ A+ : φ(a) <∞}, dom(φ)1/2 = {a ∈ A : a∗a ∈ dom(φ)+},

dom(φ) = span{dom(φ)+} = (dom(φ)1/2)∗dom(φ)1/2,

and extend φ to a linear functional on dom(φ). Recall that we defined a conditional expectation
Φ: A → F . We let τ be the faithful norm lower semicontinuous semifinite trace on F given by φ|F .
Then φ = τ ◦ Φ, as φ is assumed to be σ-invariant.

The GNS construction yields a Hilbert spaceH := Hφ, and a map Λ: dom(φ)1/2 → H with dense image
and 〈Λ(a),Λ(b)〉 = φ(a∗b), where 〈·, ·〉 is the inner product. In fact, Λ(dom(φ)1/2 ∩ (dom(φ)1/2)∗) is a
left Hilbert algebra. The algebra A is represented on H as left multiplication operators, aΛ(b) = Λ(ab),
and the weight φ extends to a normal semifinite faithful weight on the von Neumann algebra π(A)′′.
We have σφt = σ−βt on A, [23].

We now construct a semifinite von Neumann algebra from a given faithful KMS state or weight φ on A.
We need results from [25] at this point. Namely consider the space Hτ of the GNS-representation of
the trace τ on F ; then H can be identified with X ⊗F Hτ via the map a⊗Λτ (f) 7→ Λφ(af). It follows
that the action of A on H extends to a representation of EndF (X) on H.

Lemma 3.2. We let N = End(X)′′ ⊂ B(H), then there is a faithful normal semifinite trace Trφ on N
such that Trφ(Θξ,ξ) = τ((ξ|ξ)R) for all ξ ∈ X.

Proof. Consider first the case when X ∼= H ⊗ F as a right Hilbert F -module, where H is a Hilbert
space. Then H ∼= H ⊗Hτ , N ∼= B(H)⊗̄F ′′ and the trace Trφ is simply Tr⊗ τ . We can then conclude
that Trφ exists if X is only a direct summand of H⊗F . This is the case when X is countably generated
(in particular, when A is separable) by Kasparov’s stabilization theorem, with H = `2(N). In general
to construct Trφ we can argue as follows.

The commutant of N can be identified with the commutant of F in B(Hτ ), that is, with the von
Neumann algebra generated by elements f ∈ F acting on the right. To put it differently,

(2) N ′ = (JFJ)′′,

where J is the modular conjugation defined by φ and F acts on the left. Define a trace τ ′ on (JFJ)′′

by τ ′(Jf∗J) = τ(f). At this moment we need to recall the notion of spatial derivative, see [34].

Assume we are given faithful normal semifinite weights ψ on N and ρ on N ′. A vector ξ ∈ H is called
ρ-bounded if the map Λρ(x) 7→ xξ, x ∈ dom(ρ)1/2, extends to a bounded map Rξ : Hρ → H. As Rξ is
an N ′-module map, the operator RξR∗ξ belongs to N . The quadratic form

{ξ ∈ H | ξ is ρ-bounded, ψ(RξR∗ξ) <∞} 3 ξ 7→ q(ξ) := ψ(RξR∗ξ)

is closable and hence defines a positive self-adjoint operator ∆(ψ/ρ) such that q(ξ) = ‖∆(ψ/ρ)1/2ξ‖2.
The main property of spatial derivatives is that for any fixed ρ the map ψ 7→ ∆(ψ/ρ) gives a one-
to-one correspondence between faithful normal semifinite weights ψ on N and nonsingular positive
self-adjoint operators ∆ such that ∆itx∆−it = σρ−t(x) for x ∈ N ′.

The spatial derivative now gives us the definition of a trace Trφ on N = End(X)′′ by requiring
∆(Trφ/τ ′) = 1. It is not difficult to check, see [25, Section 3], that for ξ ∈ X we indeed have
Trφ(Θξ,ξ) = τ((ξ|ξ)R). �
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The restriction of Trφ to EndF (X) is a strictly lower semicontinuous strictly semifinite trace, see e.g.
[25, Section 3]. In addition we notice that as Θx,x = xx∗Φ0 and τ(xx∗) = τ(x∗x) for x ∈ F , we can
conclude that

(3) Trφ(fΦ0) = τ(f)

for f ∈ F+. Identities (2)-(3) mean that N is being given by the basic von Neumann algebra con-
struction associated with the conditional expectation Φ: A′′ → F ′′, while Trφ is the canonical trace
on N defined by the trace τ on F ′′, [30].

Lemma 3.3. Let A, σ, φ, F = Aσ be as above. For all f ∈ F , f ≥ 0 and k ∈ Z, k 6= 0, we have

Trφ(fΦk) ≤ ekβτ(f),

and equality holds if A has full spectral subspaces.

Proof. Consider first f = xx∗, x ∈ Ak. Then fΦk = Θx,x and hence

Trφ(fΦk) = φ(x∗x) = ekβφ(xx∗) = ekβτ(f).

Therefore Trφ(fΦk) = ekβτ(f) if f is a finite sum of elements of the form xx∗, x ∈ Ak. Since both
Trφ(·Φk) and τ are lower semicontinuous traces on F , we conclude that, as AkA∗k is a dense ideal
in Fk, Trφ(fΦk) = τ(f) for any f ∈ Fk, f ≥ 0. Thus if Fk = F for all k ∈ Z we get equality for all
f ≥ 0 and k.

In the more general situation consider the ideal Fk = AkA
∗
k in F . Choose an approximate unit {ψλ}λ

for Fk. Since AkA∗kAk is dense in Ak, we have ψλx → x for any x ∈ Xk. Hence ψλfψλ converges
strongly to the action of f on Xk for any f ∈ F . Since Trφ is strictly lower semicontinuous, for f ≥ 0
we therefore get

Trφ(fΦk) ≤ lim inf
λ

Trφ(ψλfψλΦk) = lim inf
λ

ekβτ(ψλfψλ) = lim inf
λ

ekβτ(f1/2ψ2
λf

1/2) ≤ ekβτ(f).

�

Remark. As the proof shows we do not need compactness of the spectral projections Φk, only the
strong convergence of ψλfψλ to f on Xk and strict lower semicontinuity of Trφ. If the SSA holds then
ψλfψλ → f on Xk in norm.

3.2. The spectral flow. Our reference for Breuer-Fredholm theory and semifinite spectral flow is [3].
We recall from Section 6 of that paper that if N is a semifinite von Neumann algebra with faithful
normal semifinite trace τ and D1, D2 are closed self-adjoint operators affiliated with N which differ
by a bounded operator and whose spectral projections P1 = χ[0,+∞)(D1) and P2 = χ[0,+∞)(D2) are
such that the operator P1P2 ∈ P1NP2 is Breuer-Fredholm, then the spectral flow is defined by

sf(D1,D2) = Indexτ (P1P2).

In the case when P1 and P2 are finite we clearly have sf(D1,D2) = τ(P2)− τ(P1).

Now let A, H, N be as in the previous Subsection. The unbounded operator D on X, introduced
in Subsection 2.1, extends to a closed self-adjoint operator on H, which we still denote by D. Put
σt(x) = eitDxe−itD for x ∈ N . The action of T on X extends to a unitary representation of T on
H, namely, t 7→ eitD. We want to define a map from KT

0 (M(F,A), F ) to the representation ring
of the circle which we will call the equivariant spectral flow. Roughly speaking it will compute the
spectral flow between the operators vv∗(D⊗1) and v(D⊗1)v∗ on invariant subspaces for the T-action.
However, if φ is a weight, even the restriction of the above operators to an invariant subspace may not
be enough to get a well-defined spectral flow. So we have to pay attention to domain issues.



TWISTED CYCLIC THEORY, EQUIVARIANT KK THEORY AND KMS STATES. 13

Lemma 3.4. Let A be a C∗-algebra and φ a weight on A as above. For every n ∈ N the dense
subalgebra Matn(dom(φ)∼) of Matn(A∼) is closed under the holomorphic functional calculus.

Proof. In order to prove the Lemma it suffices to show that if Γ is a closed smooth curve in C,
a ∈ Matn(dom(φ)∼) has spectrum (as an element of Matn(A∼)) which does not intersect Γ then for any
continuous function f : Γ→ C the integral

∫
Γ f(z)(z−a)−1|dz| defines an element in Matn(dom(φ)∼).

Let b ∈ Matn(C) be such that c := a − b ∈ Matn(dom(φ)). Then the spectrum of b is contained in
that of a, so we just have to show that∫

Γ
f(z)

(
(z − a)−1 −

(
z − b)−1

)
|dz| ∈ Matn(dom(φ)).

For this observe that if [0, 1] 3 t 7→ at, bt ∈ dom(φ)1/2 are two continuous maps such that the functions
t 7→ φ(a∗tat), φ(b∗t bt) are bounded, then

∫ 1
0 a
∗
t btdt ∈ dom(φ). Indeed, by the polarization identity it is

enough to consider the case at = bt, and then the claim follows from lower semicontinuity. Observe also
that for d ∈ Matn(A) we have d ∈ Matn(dom(φ)1/2) if and only if (φ⊗Tr)(d∗d) <∞. Denote by G the
class of continuous functions Γ→ Matn(A) which are finite sums of functions of the form z 7→ d∗zez such
that dz, ez ∈ Matn(A) depend continuously on z and the functions z 7→ (φ⊗Tr)(d∗zdz), (φ⊗Tr)(e∗zez)
are bounded. The integral of any function in G defines an element of Matn(dom(φ)). Therefore it
suffices to show that the function z 7→ (z − a)−1 −

(
z − b)−1 is in G.

The class G contains constant Matn(dom(φ))-valued functions and is stable under multiplication (from
either side) by continuous Matn(C)-valued functions. In particular, the function

z 7→ cz := c(z − b)−1

is in G. Furthermore, if f1, f2 ∈ G and f : Γ→ Matn(A∼) is continuous then f1ff2 ∈ G. The identities

(z − a)−1 −
(
z − b)−1 = (z − b)−1

(
(1− cz)−1 − 1

)
= (z − b)−1

(
cz + cz(1− cz)−1cz

)
show then that (z − a)−1 −

(
z − b)−1 is indeed in G. �

Observe next that if U : T→ B(HU ) is a finite dimensional unitary representation then any σ⊗AdU
invariant element is a finite sum of homogeneous components with respect to σ ⊗ ι. So to deal with
equivariant K-theory of A the following algebra is enough.

Definition 3.5. Denote by A the algebra consisting of finite sums of σ-homogeneous elements in the
domain dom(φ) of φ. We also put F = A ∩ F = dom(τ).

We next turn to equivariant K-theory of the mapping cone.

Lemma 3.6. Every class in KT
0 (M(F,A)) has a representative v such that v ∈ (A∼⊗B(HU ))σ⊗AdU ,

vv∗ and v∗v are in F∼⊗B(HU ), and vv∗ = v∗v modulo F ⊗B(HU ), where U : T→ B(HU ) is a finite
dimensional unitary representation.

Proof. By Lemma 3.4 and Putnam’s description of K-theory of the mapping cone [31] we first conclude
that every class has a representative v such that v ∈ (A∼⊗B(HU ))σ⊗AdU and vv∗, v∗v ∈ F∼⊗B(HU ).
The images of the projections vv∗ and v∗v in B(HU )AdU under the isomorphism

(F∼ ⊗ B(HU ))/(F ⊗ B(HU )) ∼= B(HU )

are equivalent, so there exists a σ ⊗ AdU -invariant unitary u ∈ F∼ ⊗ B(HU ) such that uvv∗u = v∗v
modulo F ⊗ B(HU ). It remains to recall [31] that the classes of v and uv coincide, so that uv is the
required representative. �
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We are now ready to define the equivariant spectral flow. First consider homogeneous subspaces. Let
U and v be as in the above Lemma. Let Ψn : HU → HU , resp. Qn : H ⊗ HU → H ⊗ HU , be the
projection onto the χn-homogeneous component, so that Qn =

∑
k Φn−k ⊗Ψk. We then define

sfn(v) = (Trφ⊗Tr)((v∗v − vv∗)Qn(P ⊗ 1)) ∈ R,

where P = χ[0,+∞)(D) =
∑

k≥0 Φk. Observe that this quantity is finite by Lemma 3.3, since v∗v−vv∗ ∈
F ⊗ B(HU ) by assumption and dimHU is finite.

Lemma 3.7. The value sfn(v) depends only on the class of v in KT
0 (M(F,A)).

Proof. Denote by τ̃ the normal semifinite trace (Trφ⊗Tr)(·Qn(P ⊗1)) on N σ⊗B(HU )AdU . It suffices
to show that if vt ∈ A∼ ⊗ B(HU ), t ∈ (0, 1), is a continuous path of partial isometries satisfying the
properties in the formulation of Lemma 3.3, then τ̃(v0v

∗
0 − v∗0v0) = τ̃(v1v

∗
1 − v∗1v1). Since the images

of the projections vtv∗t in B(HU ) are equivalent, we can find a continuous path of σ ⊗AdU -invariant
unitaries ut ∈ F∼ ⊗B(HU ) such that v0v

∗
0 = utvtv

∗
t ut modulo F ⊗B(HU ). Replacing vt by utvtu∗t we

may therefore assume that the projections vtv∗t coincide modulo F ⊗B(HU ). Then it suffices to check
that if pt ∈ F∼ ⊗ B(HU )AdU , t ∈ (0, 1), is a continuous path of projections which coincide modulo
F ⊗B(HU ) then τ̃(p0 − p1) = 0. We may assume that ‖p0 − p1‖ < 1. Consider the invertible element
w = p0p1 + (1 − p0)(1 − p1) ∈ F∼ ⊗ B(HU )AdU . Then p0 = wp1w

−1 and w − 1 ∈ F ⊗ B(HU )AdU .
Hence

τ̃(p0 − p1) = τ̃((w − 1)p1w
−1) + τ̃(p1(w−1 − 1)) = τ̃(p1w

−1(w − 1)) + τ̃(p1(w−1 − 1)) = 0.

�

Thus we get a well-defined map sfn : KT
0 (M(F,A))→ R.

Lemma 3.8. For every [v] ∈ KT
0 (M(F,A)) we have sfn([v]) = 0 for all but a finite number of n ∈ Z.

Proof. In the notation before Lemma 3.7, we have Ψk = 0 for |k| large enough. It follows that
Qn(P ⊗ 1) = 0 for all n ∈ Z small enough and Qn(P ⊗ 1) = Qn for n sufficiently large. Therefore
it suffices to check that for the normal semifinite trace τ̃ = (Trφ⊗Tr)(·Qn) on (N ⊗ B(HU ))σ⊗AdU

we have τ̃(vv∗ − v∗v) = 0. This is true since by assumption v − w belongs to the domain of τ̃ for an
element w ∈ C⊗ B(HU )AdU such that w∗w = ww∗. �

Definition 3.9. The T-equivariant spectral flow is the map sf : KT
0 (M(F,A))→ R[χ, χ−1] defined by

sf([v]) =
∑
n∈Z

sfn([v])χn.

By Theorem 2.12 and definition of the induced trace we may conclude that if the SSA is satisfied then
the equivariant spectral flow coincides with the composition

KT
0 (M(F,A))

− IndexD̂−−−−−−→ KT
0 (F ) = K0(F )[χ, χ−1] τ∗−→ R[χ, χ−1],

at least on the elements represented by σ ⊗ ι homogeneous isometries v; here τ∗ denotes the homo-
morphism K0(F ) → R defined by the trace τ . We shall return to this in more detail in the next
Section.
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4. Modular index pairing

4.1. Modular K1. In the previous Section we defined an equivariant spectral flow which assigns to
an invariant partial isometry v ∈ A∼ ⊗ B(HU ) a Laurent polynomial in χ. Being evaluated at χ = 1
this polynomial gives a suitably defined spectral flow from vv∗(D ⊗ 1) to v(D ⊗ 1)v∗ with respect
to Trφ ⊗ Tr. We would like to obtain an analytic formula for this spectral flow. Such formulas are
available under certain summability assumptions, but as Lemma 3.3 shows, even when φ is a state, the
operator |D|−p is not summable in general for any p > 0. The same Lemma suggests, however, that
to improve summability it would suffice to assign the weight e−nβ to every projection Φn. Effectively
this means that we evaluate the equivariant spectral flow at χ = e−β. This was done from a different
point of view in [9], where notions of a modular K1 group and a modular pairing were introduced.
Our considerations allow us to relate the results of [9] to more conventional constructions.

The following definition is essentially from [9], slightly modified and extended to adapt to our current
considerations.

Definition 4.1. A partial isometry in A∼ is modular if vσt(v∗) and v∗σt(v) are in (A∼)σ for all
t ∈ R. By a modular partial isometry over A we mean a modular partial isometry in Matn(A∼) =
A∼ ⊗Matn(C) for some n ∈ N with respect to the action σ ⊗ ι.

In [9] only modular unitaries were considered. Observe that every modular partial isometry v over A
defines a modular unitary by

uv =
(

1− v∗v v∗

v 1− vv∗
)
.

Define the modular K1 group as follows.

Definition 4.2. Let K1(A, σ) be the abelian group with one generator [v] for each partial isometry v
over A satisfying the modular condition and with the following relations:

1) [v] = 0 if v is over F,
2) [v] + [w] = [v ⊕ w],
3) if vt, t ∈ [0, 1], is a continuous path of modular partial isometries in Matn(A∼)

then [v0] = [v1].

Remarks. It is easy to show that v ⊕ w ∼ w ⊕ v, see [9], however the inverse of [v] is not [v∗] in
general. Equivalently, even though uv is a self-adjoint unitary and hence is homotopic to the identity,
such a homotopy cannot always be chosen to consist of modular unitaries.

Observe that σ-homogeneous partial isometries are modular. It turns out that they generate the whole
group K1(A, σ). We need some preparation to prove this.

Lemma 4.3. A unitary u ∈ A∼ is modular if and only if there exists a self-adjoint element a ∈ F∼
such that uau∗ ∈ F∼ and σt(u) = ueita for t ∈ R.

Proof. Put ut = u∗σt(u). Then

ut+s = u∗σt+s(u) = u∗σt(u)σt(u∗σs(u)) = utus.

Thus {ut}t is a norm-continuous one-parameter group of unitary operators in F∼. Hence there exists
a self-adjoint element a ∈ F∼ such that ut = eita. Therefore

σt(u) = ueita = eituau
∗
u.

Since u is modular, the second equality implies that uau∗ ∈ F∼. The converse is obvious. �
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For an element x ∈ Matn(A∼) we denote by xk the spectral component of x with respect to σ ⊗ ι, so
(σt ⊗ ι)(xk) = eiktxk.

Lemma 4.4. A partial isometry v ∈ Matn(A∼) is modular if and only if the elements vk are partial
isometries which are zero for all but a finite number of k’s and the source projections v∗kvk, k ∈ Z, as
well as the range projections vkv∗k, k ∈ Z, are mutually orthogonal.

Proof. Consider the modular unitary u = uv. If σt(u) = ueita with a as in Lemma 4.3 (but now
a ∈ Mat2n(F∼)), then u = ue2πia. Hence the spectrum of a is a finite subset of Z. Let pk be the
spectral projection of a corresponding to k ∈ Z. Then uk = upk, and hence the partial isometries uk
have mutually orthogonal sources and ranges. We clearly have

u0 =
(

1− v∗v v∗0
v0 1− vv∗

)
, uk =

(
0 v∗−k
vk 0

)
for k 6= 0.

This implies that vk = 0 for all but a finite number of k, and the elements vk, k 6= 0, are partial
isometries with mutually orthogonal sources and ranges. Consider w =

∑
k 6=0 vk. Then w is a partial

isometry and ww∗ =
∑

k 6=0 vkv
∗
k, w

∗w =
∑

k 6=0 v
∗
kvk. Since

v∗v = v∗0v0 + w∗w +
∑
k 6=0

(v∗0vk + v∗kv0)

is invariant, we get v∗v = v∗0v0 + w∗w. Since v∗v and w∗w are projections, it follows that v∗0v0 is
a projection orthogonal to w∗w. In other words, v0 is a partial isometry with the source projection
orthogonal to v∗kvk, k 6= 0. Similarly one checks that the projections v0v

∗
0 and vkv

∗
k, k 6= 0, are

orthogonal.

The converse statement is straightforward. �

Corollary 4.5. The group K1(A, σ) is generated by the classes of homogeneous partial isometries.

Proof. It suffices to observe that if v and w are modular partial isometries such that v∗vw∗w =

vv∗ww∗ = 0, then [v + w] = [v] + [w]. Indeed, if Rt =
(

cos t sin t
− sin t cos t

)
, then

vt =
((

1− ww∗ 0
0 1− ww∗

)
+Rtww

∗
)(

v + w 0
0 0

)((
1− w∗w 0

0 1− w∗w

)
+R−tw

∗w

)
,

0 ≤ t ≤ π/2, is a modular homotopy from
(
v + w 0

0 0

)
to
(
v 0
0 w

)
. �

We next want to relate the group K1(A, σ) to KT
0 (M(F,A)).

Recall that if K is a finite dimensional Hilbert space considered with the trivial T-module structure,
we denote by K[n] the same space with the representation t 7→ eint. Assume v ∈ A∼ ⊗ B(K) is a
partial isometry such that v ∈ A∼n ⊗ B(K), so (σt ⊗ ι)(v) = eintv, then the partial isometry

wv =
(

0 v
0 0

)
∈ A∼ ⊗ B(K ⊕K[n])

is T-invariant, so it defines an element of KT
0 (M(F,A)). Sometimes we shall denote the class [wv] ∈

KT
0 (M(F,A)) by �v�. Note that if n = 0 and so v itself represents an element of KT

0 (M(F,A)),
there is no ambiguity in this notation as(

0 v
0 0

)
is homotopic to

(
v 0
0 0

)
,
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and moreover, the class of v can easily be shown to be zero, see [31, Lemma 2.2(v)].

Proposition 4.6. The map
v 7→

∑
k

�vk�∈ KT
0 (M(F,A))

defined on modular partial isometries gives a homomorphism T : K1(A, σ)→ KT
0 (M(F,A)).

Proof. Since homotopic elements have homotopic spectral components, it is clear that the images of
homotopic modular partial isometries coincide. It follows that we have a well-defined homomorphism
T : K1(A, σ)→ KT

0 (M(F,A)); in fact, for each k the map [u] 7→�uk� is a homomorphism. �

This homomorphism makes it clear why −[v] 6= [v∗] in K1(A, σ) in general. Indeed, observe first that
in the group KT

0 (M(F,A)) we do have −[w] = [w∗], basically because uw is an invariant self-adjoint
unitary, hence there is a homotopy from uw to 1 consisting of invariant unitaries. In particular, for
homogeneous v as above we have −[wv] = [w∗v]. The class w∗v is represented by(

0 v∗

0 0

)
∈ A∼ ⊗ B(K[n]⊕K), while wv∗ =

(
0 v∗

0 0

)
∈ A∼ ⊗ B(K ⊕K[−n]).

Therefore [w∗v] = χn[wv∗ ]. In other words, − � v�= χn � v∗�, so that T (−[v]) = χnT ([v∗]).
Equivalently, we have

T ([uv]) =�v� +�v∗�= (1− χ−n)�v� .

4.2. Modular index. Recall that in Subsection 3.1 we constructed a semifinite von Neumann algebra
N = End(X)′′ ⊂ B(H), a faithful semifinite normal trace Trφ and an operator D =

∑
k∈Z kΦk on H.

We now define a new weight on N .

Definition 4.7. Consider the operator e−βD =
∑

k∈Z e
−kβΦk. For S ∈ N+ define

φD(S) = Trφ(e−βD/2Se−βD/2).

Since e−βD is strictly positive and affiliated to N , φD is a faithful semifinite normal weight. Since
Trφ is a trace, the modular group of φD is given by σφDt (·) = e−itβD · eitβD. The restriction of σφDt
to A coincides with σ−βt. While φD is not a trace on N , it is clearly a semifinite normal trace on the
invariant subalgebra M := N σ. The following Lemma captures the main reason for defining φD.

Lemma 4.8. With A, σ, φ as above, we have f(1 +D2)−1/2 ∈ L(1,∞)(M, φD) if f ∈ F = dom(φ)∩F .

Proof. This follows immediately from Lemma 3.3, since φD(fΦk) ≤ φ(f) for f ≥ 0. �

We will call the data (A,H,D,N , φD) the modular spectral triple for (A, σ, φ). It provides us
with a way to compute the spectral flow from vv∗D and vDv∗ with respect to the trace φD on M
for appropriate partial isometries in A. The next Lemma justifies our definition of modular partial
isometries.

Lemma 4.9. Let v ∈ Matn(A∼) be a partial isometry such that vv∗, v∗v ∈ Matn(F∼). Then we have
v(Q⊗ 1)v∗, v∗(Q⊗ 1)v ∈ Matn(M) for every spectral projection Q of D if and only if v is modular.

Proof. Replacing v by uv we may assume that v is unitary. Next, suppose first that v is modular.
Write σ̃ for σt ⊗ ι and Q̃ for Q ⊗ 1. Since M = N σ, we need to show that vQ̃v∗ is σ̃-invariant. We
have

σ̃(vQv∗) = σ̃(v)Q̃σ̃(v∗) = vv∗σ̃(v)Q̃σ̃(v∗) = vQ̃v∗σ̃(v)σ̃(v∗) = vQ̃v∗.
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A similar argument shows that v∗Q̃v is invariant.

On the other hand, if
vQ̃v∗ = σ̃(vQ̃v∗) = σ̃(v)Q̃σ̃(v∗),

then v∗σ̃(v) commutes with Q̃ = Q⊗1. If this is true for every spectral projection Q of the generator D
of σ, then v∗σ̃(v) is (σ ⊗ ι)-invariant. Similarly vσ̃(v∗) is invariant. Hence v is modular. �

Next we show that the spectral flow is indeed well-defined for modular partial isometries.

Lemma 4.10. For a modular partial isometry v ∈ A∼ ⊗ B(K) consider the projections

P1 = χ[0,+∞)(vv
∗(D ⊗ 1)) and P2 = χ[0,+∞)(v(D ⊗ 1)v∗).

Then the operator P1P2 ∈ P1(M⊗B(K))P2 is Breuer-Fredholm and

sfφD⊗Tr(vv∗(D ⊗ 1), v(D ⊗ 1)v∗)

=
∑
k<0

∑
k≤n<0

e−βn(Trφ⊗Tr)(vkv∗k(Φn ⊗ 1))−
∑
k>0

∑
0≤n<k

e−βn(Trφ⊗Tr)(vkv∗k(Φn ⊗ 1)).

Proof. By Lemma 4.4 the element v is a finite sum of its homogeneous components vk which are partial
isometries with mutually orthogonal sources and ranges. The operators vv∗(D ⊗ 1) and v(D ⊗ 1)v∗

commute with vkv
∗
k and

vkv
∗
kvv
∗(D ⊗ 1) = vkv

∗
k(D ⊗ 1), vkv

∗
kv(D ⊗ 1)v∗ = vk(D ⊗ 1)v∗k.

This shows that without loss of generality we may assume that v is homogeneous, say v = vk. Fur-
thermore, for k = 0 the operators coincide, so we just have to consider the case k 6= 0.

Let P = χ[0,+∞)(D) =
∑

n≥0 Φn. Since vv∗ and v∗v commute with D, we have

P1 = 1− vv∗ + vv∗(P ⊗ 1) and P2 = 1− vv∗ + v(P ⊗ 1)v∗.

But using homogeneity we can actually say much more and easily express these projections in terms
of vv∗ and Φn. Namely, as v(Φn ⊗ 1) = (Φn+k ⊗ 1)v, we have

(4) v(P ⊗ 1)v∗ =
∑
n≥k

vv∗(Φn ⊗ 1).

With this information it is easy to show that P1P2 is Breuer-Fredholm, since this is implied by P1−P2

being compact in M⊗B(K). However from Equation (4) we have

P1 − P2 =
k−1∑
n=0

vv∗(Φn ⊗ 1), k > 0, P1 − P2 = −
−1∑
n=k

vv∗(Φn ⊗ 1), k < 0.

To finish the proof it therefore remains to show that for every n the projection vv∗(Φn ⊗ 1) has finite
trace with respect to φD ⊗ Tr. By the same argument as in the proof of Lemma 3.3 we have

(φD ⊗ Tr)(vv∗(Φn ⊗ 1)) = e−βn(Trφ⊗Tr)(vv∗(Φn ⊗ 1)) ≤ (τ ⊗ Tr)(vv∗).

Notice now that v ∈ A ⊗ B(K), since v = vk is homogeneous with k 6= 0. Hence the projection
vv∗ ∈ F ⊗ B(K) is in the domain of the semifinite trace τ ⊗ Tr on F ⊗ B(K), since the latter domain
contains the Pedersen ideal and, in particular, every projection. �

Observe that the above proof shows that if v is a modular partial isometry then v − v0 ∈ A ⊗ B(K).
Notice also that if we have a continuous path of modular partial isometries then the corresponding
projections P1 and P2 also form norm-continuous paths. It follows that the map

v 7→ sfφD⊗Tr(vv∗(D ⊗ 1), v(D ⊗ 1)v∗)
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defines a homomorphism K1(A, σ) → R; this of course also follows from the explicit expression for
the spectral flow. We call this homomorphism the modular index and denote it by IndexφD . The
following theorem compares IndexφD with the equivariant spectral flow.

Theorem 4.11. The modular index map IndexφD : K1(A, σ)→ R is the composition of the maps

K1(A, σ) T−→ KT
0 (M(F,A))

sf−→ R[χ, χ−1]
Ev(e−β)−−−−−→ R,

where Ev(e−β) is the evaluation at χ = e−β. If the SSA is satisfied then, equivalently, IndexφD is the
composition

K1(A, σ)
[v] 7→

P
k�vk�−−−−−−−−−→ KT

0 (M(F,A))
− IndexD̂−−−−−−→ KT

0 (F ) = K0(F )[χ, χ−1] τ∗−→ R[χ, χ−1]
Ev(e−β)−−−−−→ R.

Proof. This is a matter of bookkeeping. Let v = vk ∈ A⊗B(K) be a homogeneous partial isometry, k 6=

0. Recall that�v� is represented by wv =
(

0 v
0 0

)
∈ B(K⊕K[k]). To compute sf([wv]) first observe

that the projection Qn onto the χn-homogeneous component of H ⊗ (K ⊕ K[k]) is
(

Φn 0
0 Φn−k

)
.

Therefore

sf([wv]) =
∑
n

(Trφ⊗Tr)((w∗vwv − wvw∗v)Qn(P ⊗ 1))χn

=
∑
n

(Trφ⊗Tr)(v∗v(Φn−kP ⊗ 1)− vv∗(ΦnP ⊗ 1))χn.

The projection v∗v(Φn−k ⊗ 1) = v∗(Φn ⊗ 1)v is equivalent to the projection vv∗(Φn ⊗ 1). It follows
that the nth summand in the above expression is nonzero only when n− k and n have different signs.
More precisely, for k < 0 we get∑

k≤n<0

(Trφ⊗Tr)(v∗v(Φn−k ⊗ 1))χn =
∑

k≤n<0

(Trφ⊗Tr)(vv∗(Φn ⊗ 1))χn,

and for k > 0 we get

−
∑

0≤n<k
(Trφ⊗Tr)(vv∗(Φn ⊗ 1))χn.

For χ = e−β these expressions coincide with those in Lemma 4.10. �

5. The analytic index from spectral flow

5.1. A spectral flow formula. Our method of computing numerical invariants from KMS states
exploits semifinite spectral flow and so we need to review the spectral flow formula of [6]. There
are two versions of this formula in the unbounded setting, one for θ-summable spectral triples, and
the other for finitely summable triples. It is the latter that we will want to use. First we quote [6,
Corollary 8.11].

Proposition 5.1. Let (A,H,D0) be an odd unbounded θ-summable semifinite spectral triple relative
to (M, τ), where τ is a faithful semifinite normal trace on M. For any ε > 0 we define a one-form
αε on the affine space M0 = D0 +Msa by

αε(A) =
√
ε

π
τ(Ae−εD

2
)
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for D ∈ M0 and A ∈ TD(M0) = Msa (here TD(M0) is the tangent space to M0 at D). Then the
integral of αε is independent of the piecewise C1 path in M0 and if {Dt = Da + At}t∈[a,b] is any
piecewise C1 path in M0 joining Da and Db then

sf(Da,Db) =
√
ε

π

∫ b

a
τ(D′te−εD

2
t )dt+

1
2
ηε(Db)−

1
2
ηε(Da) +

1
2
τ ([ker(Db)]− [ker(Da)]) .

Here the truncated eta invariant is given for ε > 0 by

ηε(D) =
1√
π

∫ ∞
ε

τ(De−tD2
)t−1/2dt.

We want to employ this formula in a finitely summable setting, so we need to Laplace transform
the various terms appearing in the formula. In fact we were able in [13] to translate the formula in
[6] for the spectral flow into a residue type formula. The importance of such a formula lies in the
drastic simplification of computations, since we may throw away terms that are holomorphic in a
neighbourhood of the point where we take a residue.

We introduce the notation

Cr :=
√
πΓ(r − 1/2)

Γ(r)
=
∫ ∞
−∞

(1 + x2)−rdx.

Observe that Cr is analytic for <(r) > 1/2 and has an analytic continuation to a neighbourhood of
1/2 where it has a simple pole (cf [11]) with residue equal to 1.

Lemma 5.2. Let D be a self-adjoint operator on the Hilbert space H, affiliated to the semifinite von
Neumann algebra M. Suppose that for a fixed faithful, normal, semifinite trace τ on M we have

(1 +D2)−1/2 ∈ L(p,∞)(M, τ), p ≥ 1.

Then the Laplace transform of ηε(D), the eta invariant of D, is given by 1
Cr
ηD(r) where

ηD(r) =
∫ ∞

1
τ(D(1 + sD2)−r)s−1/2ds, <(r) > 1/2 + p/2.

Proof. We need to Laplace transform the ‘θ summable formula’ for the truncated η invariant:

ηε(D) =
1√
π

∫ ∞
ε

τ(De−tD2
)t−1/2dt.

This integral converges for all ε > 0. First we rewrite the formula as

ηε(D) =
√
ε√
π

∫ ∞
1

τ(De−εsD2
)s−1/2ds.

Using

1 =
1

Γ(r − 1/2)

∫ ∞
0

εr−3/2e−εdε

for <(r) > p/2 + 1/2, the Laplace transform of ηε(D) is
1
Cr
ηD(r) =

1√
πΓ(r − 1/2)

∫ ∞
0

εr−1e−ε
∫ ∞

1
τ(De−εsD2

)s−1/2dsdε

=
1√

πΓ(r − 1/2)

∫ ∞
1

s−1/2τ(D
∫ ∞

0
εr−1e−ε(1+sD2)dε)ds

=
Γ(r)√

πΓ(r − 1/2)

∫ ∞
1

s−1/2τ(D(1 + sD2)−r)ds.(5)

�
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For our final formula we restrict to p = 1, which is the case of interest in this paper.

Proposition 5.3. Let Da be a self-adjoint densely defined unbounded operator on the Hilbert space H,
affiliated to the semifinite von Neumann algebraM. Suppose that for a fixed faithful, normal, semifinite
trace τ on M we have (1 + D2

a)
−1/2 ∈ L(1,∞)(M, τ). Let Db differ from Da by a bounded self adjoint

operator in M. Then for any piecewise C1 path {Dt = Da +At}, t ∈ [a, b] in M0 = Da +Msa joining
Da and Db, the spectral flow sfτ (Da,Db) is given by the formula

Resr=1/2Crsfτ (Da,Db) = Resr=1/2

(∫ b

a
τ(Ḋt(1 +D2

t )
−r)dt+

1
2

(ηDb(r)− ηDa(r))
)

+
1
2

(τ(PkerDb)− τ(PkerDa)) ,(6)

where ηD(r) :=
∫∞

1 τ(D(1 + sD2)−r)s−1/2ds, <(r) > 1. The meaning of (6) is that the function of r
on the right hand side has a meromorphic continuation to a neighbourhood of r = 1/2 with a simple
pole at r = 1/2 where we take the residue.

Proof. We apply the Laplace transform to the general spectral flow formula. The computation of the
Laplace transform of the eta invariants is above, and the Laplace transform of the other integral is in
[6]. The existence of the residue follows from the equality, for <(r) large,

Crsfτ (Da,Db) =
∫ b

a
τ(Ḋt(1 +D2

t )
−r)dt+

1
2

(ηDb(r)− ηDa(r)) + Cr
1
2

(τ(PkerDb)− ψ(PkerDa))

which shows that the sum of the integral and the eta terms has a meromorphic continuation as
claimed. �

This is the formula for spectral flow we will employ in the sequel.

5.2. An index formula for modular partial isometries. Having obtained a well-defined analytic
index pairing, we now emulate the methods of [11] to obtain a ‘local index formula’ to compute
this analytic pairing. Let v ∈ A∼ be a modular partial isometry. Recall that (as we observed after
Lemma 4.10) we automatically have vk ∈ A for k 6= 0. Furthermore, the same Lemma shows that v0

does not contribute to the spectral flow. In other words, we have the following.

Lemma 5.4. Given the modular spectral triple for (A, σ, φ), let v ∈ A∼ be a modular partial isometry
so that p = vv∗− v0v

∗
0 ∈ F , where v0 ∈ A0 is the σ-invariant part of v. Then p commutes with D and

vDv∗, and
sfφD(vv∗D, vDv∗) = sfφD,p(pD, pvDv

∗),

where φD,p = φD|pMp is the trace on pMp.

In our previous examples of the Cuntz algebra and SUq(2) we showed that the operator (1+D2)−1/2 lies
in L(1,∞)(M, φD). However in general, by Lemma 4.8, we only have f(1 + D2)−1/2 ∈ L(1,∞)(M, φD)
for f ∈ F = F ∩ dom(φ). Thanks to the Lemma above this is sufficient for our purposes, since
p(1 +D2)−1/2 is in L(1,∞)(pMp, φD,p), and we are justified in using our spectral flow formula.

We apply Proposition 5.3 to the path Dt = pD + tpv[D, v∗] = pD + tv[D, v∗] of operators affiliated
with pMp.

Lemma 5.5. We have φD,p(PkerD0)− φD,p(PkerD1) = 0.
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Proof. Since we cut down by the projection p, we may assume that v0 = 0 and so v ∈ A and vv∗ = p.
Then PkerD0 = vv∗Φ0 and PkerD1 = vΦ0v

∗. As φD(fΦ0) = φ(f) for f ∈ F by Equation (3), we have

φD(vv∗Φ0 − vΦ0v
∗) = φD((σ−iβ(v∗)v − vv∗)Φ0) = φ(σ−iβ(v∗)v − vv∗) = 0.

�

Thus the kernel correction terms vanish for modular partial isometries. Next we obtain a residue
formula for the spectral flow:

Theorem 5.6. Given the modular spectral triple for (A, σ, φ) let v ∈ A∼ be a modular partial isometry.
Then sfφD(vv∗D, vDv∗) is given by

Resr=1/2

(
r 7→ φD(v[D, v∗](1 +D2)−r) +

1
2

∫ ∞
1

φD((σ−iβ(v∗)v − vv∗)D(1 + sD2)−r)s−1/2ds

)
.

Proof. We apply Proposition 5.3 to the path Dt = pD+ tv[D, v∗]. Thus by Lemma 5.4 and Lemma 5.5
we get

sfφD(vv∗D, vDv∗) = Resr=1/2

(∫ 1

0
φD(v[D, v∗](1 +D2

t )
−r)dt+

1
2

(ηD1(r)− ηD0(r))
)
.

First we observe that by [5, Proposition 10, Appendix B], the difference

(1 + (D + tv[D, v∗])2)−r − (1 +D2)−r

is (uniformly) trace class in the corner pMp for r ≥ 1/2. Hence in the spectral flow formula above we
may exploit analyticity in r for <(r) > 1/2 as in [11] (we are working in the semifinite algebra pMp
with trace φD|pMp) to write∫ 1

0
φD(v[D, v∗](1 + (D + tv[D, v∗])2)−r)dt = φD(v[D, v∗](1 +D2)−r) + remainder.

The remainder is finite at r = 1/2, and in fact by [11], holomorphic at r = 1/2.

Next consider the eta terms. We have, for <(r) > 1,

ηD1(r) =
∫ ∞

1
φD(pvDv∗(1 + s(vDv∗)2)−r)s−1/2ds

=
∫ ∞

1
φD(pvD(1 + sD2)−rv∗)s−1/2ds

=
∫ ∞

1
φD(σ−iβ(v∗)pvD(1 + sD2)−r)s−1/2ds

and

ηD0(r) =
∫ ∞

1
φD(pD(1 + sD2)−r)s−1/2ds.

Using that σ−iβ(v∗)pv = σ−iβ(v∗)v− v∗0v0 and p = vv∗ − v0v
∗
0, we see that to finish the proof we have

to check that
φD((v∗0v0 − v0v

∗
0)D(1 + sD2)−r) = 0.

This is true since φD(· D(1 + sD2)−r) is a trace on M (note that if we considered partial isometries
in a matrix algebra over A∼ we would have to require in addition that v∗0v0 − v0v

∗
0 is an element

over F). �

Finally, when the circle action has full spectral subspaces, the eta corrections also vanish.
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Corollary 5.7. Assume the circle action σ has full spectral subspaces. Then for every modular partial
isometry v ∈ A∼ we have

sfφD(vv∗D, vDv∗) = Resr=1/2 φD(v[D, v∗](1 +D2)−r)dt.

Proof. Consider the modular partial isometry w = v − v0. Then w ∈ A, so we can apply the previous
Theorem. Since the spectral flow corresponding to v and w coincide and v[D, v∗] = w[D, w∗], all we
have to do is to show that the eta term defined by w vanishes. By the assumption of full spectral
subspaces we have

φD((σ−iβ(w∗)w − ww∗)Φk) = φ(σ−iβ(w∗)w − ww∗) = 0,

for all k ∈ Z, and as

φD((σ−iβ(w∗)w − ww∗)D(1 + sD2)−r) =
∑
k∈Z

φD((σ−iβ(w∗)w − ww∗)Φk)k(1 + sk2)−r,

the eta term is indeed zero. �

5.3. Twisted cyclic cocycles. This subsection is motivated by the observation of [9] that when there
are no eta or kernel correction terms we can define a functional on A⊗A by

(a0, a1) 7→ ω- lim
s→∞

1
s
φD(a0[D, a1](1 +D2)−1/s−1/2)

which is, at least formally, a twisted (by σ−iβ) cyclic cocycle. However we saw in [13] that in the case
of SUq(2) the eta corrections created a subtle difficulty in that individually they do not have the same
holomorphy properties as the term in the previous equation and that only by combining them do we
obtain something we can understand in cohomological terms. Thus we set, for a0, a1 ∈ A,

ηrD(a0, a1) =
1
2

∫ ∞
1

φD((σ−iβ(a1)a0 − a0a1)D(1 + sD2)−r)s−1/2ds.

This is well-defined for <(r) > 1, and as we shall see later, extends analytically to <(r) > 1/2. When
we pair with a modular partial isometry we necessarily have (r − 1/2)ηrD(v, v∗) bounded, since the
sum of the eta term and φD(v[D, v∗](1 +D2)−r) has a simple pole by Proposition 5.3.

Throughout this Section, bσ, Bσ denote the twisted Hochschild and Connes coboundary operators in
twisted cyclic theory, [24]. The twisting will always come from the regular automorphism σ := σ−iβ =
σφDi of A (recall that an algebra automorphism σ is regular if σ(a)∗ = σ−1(a∗), [24]).

In order to be able to describe the index pairing of Theorem 5.6 as the pairing of a twisted bσ, Bσ

cocycle with the modular K1 group, we need to address the analytic difficulties we have just described.
This is done in the next Lemma.

Lemma 5.8. For a0, a1 ∈ A, let

ψr(a0, a1) = φD(a0[D, a1](1 +D2)−r) + ηrD(a0, a1).

Then for a0, a1, a2 ∈ A the functions r 7→ φD(a0[D, a1](1 +D2)−r) and r 7→ ηrD(a0, a1) are analytic for
<(r) > 1/2, while r 7→ (bσψr)(a0, a1, a2) is analytic for <(r) > 0.

Proof. Recall that the algebra A consists of finite sums of homogeneous elements in the domain of φ.
Therefore we may assume that a0, a1, a2 are homogeneous. Consider the conditional expectation
Ψ: N → N σ, Ψ(x) =

∑
n ΦnxΦn. Then φD = φD ◦ Ψ. It follows that if a0 ∈ Ak and a1 ∈ Am then

φD(a0[D, a1](1 +D2)−r) = 0 unless k = −m, and in the latter case we have

φD(a0[D, a1](1 +D2)−r) =
∑
n∈Z

sn
(1 + n2)r

,
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where sn = mφD(a0a1Φn). By Lemma 4.8 the sequence {sn}n is bounded. Hence the function
φD(a0[D, a1](1 +D2)−r) is analytic for <(r) > 1/2.

Consider now ηr(a0, a1). If a0 ∈ Ak and a1 ∈ Am then ηr(a0, a1) = 0 unless k = −m. In the latter
case put sn = φD(a0a1Φn). Notice that

φD(σ(a1)a0Φn) = φD(a0Φna1) = φD(a0a1Φn−m) = sn−m.

The sequence {sn}n is bounded. Assume m ≥ 0. Then for <(r) > 1 we have∫ ∞
1

φD((σ(a1)a0 − a0a1)D(1 + sD2)−r)s−1/2ds =
∑
n∈Z

∫ ∞
1

(sn−m − sn)n
(1 + sn2)r

s−1/2ds

which we may write as

2
∑
n>0

(sn−m − sn)
∫ ∞
n

dt

(1 + t2)r
− 2

∑
n<0

(sn−m − sn)
∫ ∞
−n

dt

(1 + t2)r

= 2
0∑

n=−m+1

sn

∫ ∞
n+m

dt

(1 + t2)r
− 2

∑
n>0

sn

∫ n+m

n

dt

(1 + t2)r

+ 2
−1∑

n=−m
sn

∫ ∞
−n

dt

(1 + t2)r
− 2

∑
n<−m

sn

∫ −n
−n−m

dt

(1 + t2)r
.

The above series of functions analytic on <(r) > 1/2 converge uniformly on <(r) > 1/2 + ε for every
ε > 0. A similar argument works for m ≤ 0. Hence the function r 7→ ηr(a0, a1) extends analytically
to <(r) > 1/2.

Turning to bσψr, first notice that bσηrD = 0, since r 7→ bσηrD is analytic for <(r) > 1/2 and ηrD = bσθrD
for <(r) > 1, where

θrD(a0) = −1
2

∫ ∞
1

φD(a0D(1 + sD2)−r)s−1/2ds.

It follows that (bσψr)(a0, a1, a2) is given by

φD(a0a1[D, a2](1 +D2)−r − φD(a0[D, a1a2](1 +D2)−r) + φD(σ(a2)a0[D, a1](1 +D2)−r)

= −φD(a0[D, a1]a2(1 +D2)−r) + φD(σ(a2)a0[D, a1](1 +D2)−r).

If a0 ∈ Ak, a1 ∈ Al and a2 ∈ Am, then the above expression is zero unless k+ l+m = 0. In the latter
case put sn = l φD(a0a1a2Φn). Then a computation similar to that for ηr yields, for <(r) > 1/2,

(bσψr)(a0, a1, a2) =
∑
n∈Z

sn((1 + (n+m)2)−r − (1 + n2)−r)

=
∑
n∈Z

sn(1 + n2)−r
((

1 +
2mn+m2

1 + n2

)−r
− 1

)
Using that if Ω is a compact subset of <(r) > 0 then |(1+x)−r−1| ≤ C |x| for some C > 0, sufficiently
small x and all r ∈ Ω, we see that the above series converges uniformly on Ω. Hence (bσψr)(a0, a1, a2)
extends analytically to <(r) > 0. �

The following result links our analytic constructions to twisted cyclic theory.
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Proposition 5.9. Given the modular spectral triple for (A, σ, φ) define a bilinear functional on A with
values in the functions holomorphic for <(r) > 1 by

a0, a1 7→
(
r 7→

(
φD(a0[D, a1](1 +D2)−r) +

1
2

∫ ∞
1

φD((σ(a1)a0 − a0a1)D(1 + sD2)−r)s−1/2ds

))
This functional continues analytically to <(r) > 1/2 and is a twisted b, B-cocycle modulo functions
holomorphic for <(r) > 0. The twisting is given by the regular automorphism σ := σ−iβ = σφDi .

Remark. If φ is a state then the domain of the cocycle of the Proposition is much larger, but to
prove this requires more work.

Proof. As before, for <(r) > 1 we define the functional ψr by the formula

ψr(a0, a1) = φD(a0[D, a1](1 +D2)−r) +
1
2

∫ ∞
1

φD((σ(a1)a0 − a0a1)D(1 + sD2)−r)s−1/2ds,

and then extend ψr analytically to <(r) > 1/2, which is possible by Lemma 5.8. Then (Bσψr)(a0) =
ψr(1, a0) and for <(r) > 1 is given by

(Bσψr)(a0) = φD([D, a0](1 +D2)−r) +
1
2

∫ ∞
1

φD((σ(a0)− a0)D(1 + sD2)−r)s−1/2ds.

The first term vanishes since Ψ([D, a0]) = 0 for any a0 ∈ A, while the second terms vanishes by
σt-invariance of φD. That bσψr is analytic for <(r) > 0 was proved in the last Lemma. �

Corollary 5.10. If the circle action has full spectral subspaces then for all a0, a1 ∈ A the residue

φ1(a0, a1) := Resr=1/2 φD(a0[D, a1](1 +D2)−r)

exists and equals φ(a0[D, a1]). It defines a twisted cyclic cocycle on A, and for any modular partial
isometry v ∈ A

sfφD(vv∗D, vDv∗) = φ1(v, v∗) = φ(v[D, v∗]).

Proof. Under the full spectral subspaces assumption we have φD(fΦn) = φ(f) for f ∈ F , whence

φD(a0[D, a1](1 +D2)−r) = φD(Ψ(a0[D, a1])(1 +D2)−r) = φ(a0[D, a1])
∑
n∈Z

1
(1 + n2)r

.

This shows that the residue exists and equals φ(a0[D, a1]). That it defines a twisted cyclic cocycle
follows from the proof of Proposition 5.9. That φ1(v, v∗) computes the spectral flow follows from
Corollary 5.7. �

Remark. It is of course easy to see directly that φ(a0[D, a1]) is a twisted cyclic cocycle, while the
fact that it computes the spectral flow agrees with Lemma 4.10.

Finally, we have the following reformulation of Lemma 4.8 as an analogue of the result of A. Connes
on continuity (in ω) of the Dixmier trace on pseudodifferential operators on a compact manifold in
the KMS-weight context.

Proposition 5.11. Given the modular spectral triple for (A, σ, φ) and a Dixmier functional (see
Section 3 of [7]), ω ∈ (L∞(R))∗, define φD,ω : A+ → [0,∞] by

φD,ω(a) = ω- lim
r→∞

1
r
φD(Ψ(a)(1 +D2)−1/2−1/2r),

where Ψ: N → M is the φD-preserving conditional expectation. Then φD,ω(a) ≤ 2φ(a) for any
a ∈ A+ ∩ dom(φ), with equality if A has full spectral subspaces. In particular, when the circle action
has full spectral subspaces, φD,ω(a) is independent of ω.
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Proof. Recall that Ψ(x) =
∑

n∈Z ΦnxΦn. Observe also that ΦnaΦn = Φ(a)Φn. Hence for a ∈ A+,

φD(ΦnaΦn) = φD(Φ(a)Φn) ≤ φ(Φ(a)) = φ(a)

by Lemma 4.8, with equality if A has full spectral subspaces. This shows that

φD,ω(a) = ω- lim
r→∞

1
r

∑
n∈Z

φD(ΦnaΦn)(1 + n2)−1/2−1/2r

exists and when A has full spectral subspaces

φD,ω(a) = lim
r→∞

φ(a)
r

∑
n∈Z

(1 + n2)−1/2−1/2r = 2φ(a).

�

6. Examples

Our first two examples are covered in detail in [9, 13] so we will only present a summary here.

Example 1. For the algebra On (with generators S1, . . . , Sn) we write Sα for the product Sµ1 . . . Sµk
and k = |α|. We take the usual gauge action σ, and the unique KMS state φ for this circle action.

In the Cuntz algebra case we have full spectral subspaces. Due to the absence of eta terms, the analytic
formula is the easiest to apply, so we can compute the pairing with SαS

∗
β using the residue cocycle,

Corollary 5.10, and get

sf(SαS∗αD, SαS∗βDSβS∗α) = (|β| − |α|) 1
n|α|

.

Example 2. For SUq(2) we used the graph algebra description of Hong and Szymanski, [18], and we
use the notation and computations from [13]. There we introduced a new set of generators Tk, T̃k, Un
for this algebra. The generators Tk and T̃k are non-trivial homogenous partial isometries for the
modular group of the Haar state, h, which is a KMS− log q2 state.

For SUq(2) there are eta correction terms. Given the explicit computations in [13] and the description
of the fixed point algebra as the unitization of an infinite direct sum of copies of C(S1) (that is the
C∗-algebra of the one point compactification of an infinite union of circles of radius q2k, k ≥ 0) it is
not hard to see that our SSA is satisfied for SUq(2).

The presence of the eta corrections makes the analytic computation of spectral flow from the twisted
cocycle harder (it can still be done explicitly as in [13]). Instead we employ the factorisation through
the KK-pairing. Taking the value of the trace Trφ(T ∗kTkΦj) = q2(|j|+1) from [13] we have

sfφD(T ∗kTkD, T ∗kDTk) = Ev(elog q2) ◦ τ∗

 −1∑
j=−k

[T ∗kTkΦj ]χj

 =
−1∑
j=−k

Trφ(T ∗kTkΦj)q2j = kq2.

The point of this example is that there are naturally occurring examples satisfying the SSA but without
full spectral subspaces.

Example 3: the Araki-Woods factors. We will follow the treatment of the Araki-Woods factors
in Pedersen [29], Subsection 8.12 and the subsequent discussion. We let A be the Fermion algebra,
that is the C∗-inductive limit of the matrix algebras Mat2n(C) which is the n-fold tensor product of
the matrix algebra of 2× 2 matrices Mat2(C).
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For 0 < λ < 1/2 let

hn = ⊗nk=1

(
2(1− λ) 0

0 2λ

)
Let φ be the tracial state on A (given by the tensor product of the normalised traces on Mat2(C)) and
define

φλ(x) = φ(hnx), x ∈ Mat2m(C), m ≤ n.
Then φλ is a state on Mat2m(C) and is independent of n. By continuity it extends to a state on A.
Consider the automorphism group defined by Adh−itn . It is not hard to see that φλ satisfies the KMS
condition with respect to Adh−itn at 1 for this group or equivalently at β = ln 1−λ

λ for the gauge action
σt = Adh−it/βn . Everything extends by continuity to A. Then the GNS representation corresponding
to φλ generates a type IIIλ′ factor, where λ′ = λ/(1− λ) (for a proof see [29] 8.15.13).

The simplest way to see the we have full spectral subspaces for the circle action σ is to replace this
version of the Fermion algebra by the isomorphic copy given by annihilation and creation operators,
see e.g. [17].

To describe the isomorphism, we let σj , j = 1, 2, 3 be the Pauli matrices in their usual representation:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
−1 0
0 1

)
.

Then the isomorphism is given by defining aj = σ3 ⊗ . . . σ3 ⊗ (σ1 + iσ2)/2, where the last term is in
the j-th tensorial factor. Then the aj , j ∈ N, and their adjoints a∗j satisfy the usual relations of the
C∗-algebra of the canonical anticommutation relations (i.e. the Fermion algebra):

aja
∗
k + a∗kaj = δjk, ajak + akaj = 0.

The gauge invariant algebra is generated by monomials in the aj , a∗k which have equal numbers of
creation and annihilation operators. Clearly A1 is generated by monomials with one more creation
operator than annihilation operator. From the anticommutation relations above it is now clear that
A∗1A1 and A1A

∗
1 are dense in the gauge invariant subalgebra. So we have full spectral subspaces. Thus

the main results of the paper apply to this example.

Modular partial isometries are easy to find, since each aj is an homogenous partial isometry in A1.
For a single aj we can employ the twisted cyclic cocycle to get the index

sfφD(aja∗jD, ajDa∗j ) = −φ(aja∗j ) = −λ = −(1 + eβ)−1.

Similarly if we have the partial isometry v formed by taking the product of n distinct aj ’s we obtain

sfφD(vv∗D, vDv∗) = −n(1 + eβ)−n.

In [9] we made the observation that for modular unitaries uv, sfφD(D, uvDu∗v) is just Araki’s relative
entropy [1] of the two KMS weights φD and φD ◦ Aduv. In this example of the Fermion algebra
we see that the relative entropy depends on two physical parameters, the inverse temperature β and
the modulus of the charge n carried by the product of Fermion annihilation or creation operators
appearing in v.
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