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Abstract

In [PRen] we constructed smooth (1,∞)-summable semfinite spectral triples for graph algebras with
a faithful trace, and in [PRS] we constructed (k,∞)-summable semifinite spectral triples for k-graph
algebras. In this paper we identify classes of graphs and k-graphs which satisfy a version of Connes’
conditions for noncommutative manifolds.
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1. Introduction

The object of this paper is to address the general definition of noncommutative manifolds. The phrase
‘noncommutative manifold’ is one which is still open to some degree of interpretation. Broadly speak-
ing, a noncommutative manifold is a spectral triple (A,H,D) satisfying some additional conditions,
such as those originally proposed by Connes, [C1]. However, the conditions presented in [C1] only
make sense when A is unital (that is, a compact noncommutative space). Moreover, the proof of
Connes’ spin manifold theorem in [RV] uses a modification of Connes’ conditions even in the compact
case.
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We consider the set of conditions presented in [RV], and show that there is a natural generalisation
of each to noncommutative, nonunital and semifinite spectral triples. In the process, we show that
for certain graphs and k-graphs, the spectral triples constructed in [PRen, PRS] satisfy these condi-
tions, making them reasonable candidates for the title of noncommutative manifolds. Conditions for
noncompact noncommutative manifolds have previously been considered in [R1, R2, GGISV].

We have made an effort to generalise the conditions from [RV] in as minimal and stringent a way as
possible. Nevertheless, our conditions must be regarded as provisional. Additional examples and ap-
plications are required to determine the ‘correct’ conditions characterising noncommutative manifolds.

The vast majority of examples of noncommutative manifolds in this paper come from nonunital al-
gebras (see [PRen, PRS]), so our conditions must address aspects of ‘noncompact noncommutative
manifolds.’ Moreover, most of our examples are semifinite, in that the trace employed is not the
operator trace on Hilbert space; it is a faithful normal semifinite trace on a different von Neumann
algebra. This is not to say that the C∗-algebras arising in our examples do not admit type I spectral
triples. By considering traces which reflect the geometry of the underlying graph (or k-graph), we are
naturally led to semifinite spectral triples.

For simplicity we discuss only graph algebras (i.e. algebras of 1-graphs) in detail; in a final section we
summarise the k-graph situation, since it is largely similar.

The conditions introduced in Section 3 do not employ Poincaré Duality in K-theory, but rather
the Morita equivalence condition characterising spinc structures, [P]. The equivalence of these two
conditions in the compact commutative case (in the presence of the other conditions) was proved in
[RV]. In addition, we do not consider the metric condition, since this has recently been shown to be
redundant [RV].

Acknowledgements We thank J. Varilly for useful discussions. This work was supported by the
ARC and the Danish Research Council.

2. Background on Graph C∗-Algebras and Spectral Triples

2.1. The C∗-algebras of Graphs. For a more detailed introduction to graph C∗-algebras we refer
the reader to [BPRS, KPR, R] and the references therein. A directed graph E = (E0, E1, r, s) consists
of countable sets E0 of vertices and E1 of edges, and maps r, s : E1 → E0 identifying the range and
source of each edge. The graph is row-finite if each vertex emits at most finitely many edges and locally
finite if it is row-finite and each vertex receives at most finitely many edges. We write En for the set
of paths µ = µ1µ2 · · ·µn of length |µ| := n; that is, sequences of edges µi such that r(µi) = s(µi+1) for
1 ≤ i < n. The maps r, s extend to E∗ :=

⋃
n≥0E

n in an obvious way. A loop in E is a path L ∈ E∗
with s(L) = r(L), we say that a loop L has an exit if there is v = s(Li) for some i which emits more
than one edge. If V ⊆ E0 then we write V ≥ w if there is a path µ ∈ E∗ with s(µ) ∈ V and r(µ) = w.
A sink is a vertex v ∈ E0 with s−1(v) = ∅, a source is a vertex w ∈ E0 with r−1(w) = ∅.
A Cuntz-Krieger E-family in a C∗-algebra B consists of mutually orthogonal projections {pv : v ∈ E0}
and partial isometries {Se : e ∈ E1} satisfying the Cuntz-Krieger relations

S∗eSe = pr(e) for e ∈ E1 and pv =
∑

{e:s(e)=v}

SeS
∗
e . whenever v is not a sink.

Theorem 1.2 of [KPR] shows that there is a universal C∗-algebra C∗(E) generated by a universal Cuntz-
Krieger E-family {Se, pv}. A product Sµ := Sµ1Sµ2 . . . Sµn is non-zero precisely when µ = µ1µ2 · · ·µn
is a path in En. Since the Cuntz-Krieger relations imply that the projections SeS∗e are also mutually
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orthogonal, we have S∗eSf = 0 unless e = f , and words in {Se, S∗f} collapse to products of the form
SµS

∗
ν for µ, ν ∈ E∗ satisfying r(µ) = r(ν) (cf. [KPR, Lemma 1.1]). Indeed, because the family {SµS∗ν}

is closed under multiplication and involution, we have

(1) C∗(E) = span{SµS∗ν : µ, ν ∈ E∗ and r(µ) = r(ν)}.
The algebraic relations and the density of span{SµS∗ν} in C∗(E) play a critical role.

If z ∈ S1, define γz(Se) = zSe and γz(pv) = pv. The homomorphism γ is a strongly continuous action
of S1 on C∗(E). It is called the gauge action. Because S1 is compact, averaging over γ with respect
to normalised Haar measure gives an expectation Φ of C∗(E) onto the fixed-point algebra C∗(E)γ :

Φ(a) :=
1

2π

∫
S1

γz(a) dθ for a ∈ C∗(E), z = eiθ.

The map Φ is positive, has norm 1, and is faithful in the sense that Φ(a∗a) = 0 implies a = 0.

From Equation (1), it is easy to see that a graph C∗-algebra is unital if and only if the underlying
graph is finite. When we consider infinite graphs, formulas which involve sums of projections may
contain infinite sums. To interpret these, we use strict convergence in the multiplier algebra of C∗(E).
The following is proved in [PR].

Lemma 2.1. Let E be a row-finite graph, let A be a C∗-algebra generated by a Cuntz-Krieger E-family
{Te, qv}, and let {pn} be a sequence of projections in A. If pnTµT ∗ν converges for every µ, ν ∈ E∗, then
{pn} converges strictly to a projection p ∈M(A).

To build spectral triples we will require traces. The following two results, [PRen], characterise the
‘nice’ traces on graph algebras.

Lemma 2.2. Let E be a row-finite directed graph.

(i) If C∗(E) has a faithful, semifinite trace then no loop can have an exit.

(ii) If C∗(E) has a faithful, semifinite, lower semicontinuous, gauge-invariant trace τ then τ ◦ Φ = τ
and

τ(SµS∗ν) = δµ,ντ(pr(µ)).

This result was sharpened using the notion of a graph trace, which we also require in this paper.

Definition 2.3 ([T]). If E is a row-finite directed graph, then a graph trace on E is a function
g : E0 → R+ such that for any v ∈ E0 we have

(2) g(v) =
∑
s(e)=v

g(r(e)).

Proposition 2.4. Let E be a row-finite directed graph. Then there is a one-to-one correspondence
between faithful graph traces on E and faithful, semifinite, lower semicontinuous, gauge invariant
traces on C∗(E).

Another graph theoretic concept useful for the graphs we will be dealing with is the following.

Definition 2.5. Let E be a row-finite directed graph. An end will mean a sink, a loop without exit or
an infinite path with no exits.

Lemma 2.6. Let A = C∗(E) be a graph C∗-algebra such that no loop in the locally finite graph E has
an exit. Then,

K0(C∗(E)) = Z#ends, K1(C∗(E)) = Z#loops.

In particular, K∗(C∗(E)) is finitely generated if there are finitely many ends in E.
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2.2. Semifinite Spectral Triples. We begin with some semifinite versions of standard definitions
and results. Let τ be a fixed faithful, normal, semifinite trace on the von Neumann algebra N . Let KN
be the τ -compact operators in N (that is the norm closed ideal generated by the projections E ∈ N
with τ(E) <∞).

Definition 2.7. A semifinite spectral triple (A,H,D) consists of a Hilbert space H, a ∗-algebra A ⊂ N
where N is a semifinite von Neumann algebra acting on H, and a densely defined unbounded self-
adjoint operator D affiliated to N such that

1) [D, a] is densely defined and extends to a bounded operator in N for all a ∈ A, and

2) a(λ−D)−1 ∈ KN for all λ 6∈ R and all a ∈ A.

The triple is said to be even if there is Γ ∈ N such that Γ∗ = Γ, Γ2 = 1, aΓ = Γa for all a ∈ A and
DΓ + ΓD = 0. Otherwise it is odd.

Definition 2.8. A semifinite spectral triple (A,H,D) is QCk for k ≥ 1 (Q for quantum) if for all
a ∈ A the operators a and [D, a] are in the domain of δk, where δ(T ) = [|D|, T ] is the partial derivation
on N defined by |D|. We say that (A,H,D) is QC∞ if it is QCk for all k ≥ 1.

Note. The notation is meant to be analogous to the classical case, but we introduce the Q so that there
is no confusion between quantum differentiability of a ∈ A and classical differentiability of functions.

Remarks concerning derivations and commutators. By partial derivation we mean that δ is
defined on some subalgebra of N which need not be (weakly) dense in N . More precisely, dom δ =
{T ∈ N : δ(T ) is bounded}. We also note that if T ∈ N , one can show that [|D|, T ] is bounded if and
only if [(1 + D2)1/2, T ] is bounded, by using the functional calculus to show that |D| − (1 + D2)1/2

extends to a bounded operator in N . In fact, writing |D|1 = (1+D2)1/2 and δ1(T ) = [|D|1, T ] we have

dom δn = dom δn1 for all n.

We also observe that if T ∈ N and [D, T ] is bounded, then [D, T ] ∈ N . Similar comments apply to
[|D|, T ], [(1 +D2)1/2, T ]. The proofs of these statements can be found in [CPRS2].

Definition 2.9. A ∗-algebra A is smooth if it is Fréchet and ∗-isomorphic to a proper dense subalgebra
i(A) of a C∗-algebra A which is stable under the holomorphic functional calculus.

Thus saying that A is smooth means that A is Fréchet and a pre-C∗-algebra. Asking for i(A) to be
a proper dense subalgebra of A immediately implies that the Fréchet topology of A is finer than the
C∗-topology of A (since Fréchet means locally convex, metrizable and complete.)

It has been shown that if A is smooth in A then Mn(A) is smooth in Mn(A), [GVF, S]. This ensures
that the K-theories of A and A are isomorphic, the isomorphism being induced by the inclusion map.

Stability under the holomorphic functional calculus extends to nonunital algebras, since the spectrum
of an element in a nonunital algebra is defined to be the spectrum of this element in the ‘one-point’
unitization, though we must of course restrict to functions satisfying f(0) = 0. Likewise, the definition
of a Fréchet algebra does not require a unit. The point of contact between smooth algebras and QC∞

spectral triples is the following Lemma, proved in [R1].

Lemma 2.10. If (A,H,D) is a QC∞ spectral triple, then (Aδ,H,D) is also a QC∞ spectral triple,
where Aδ is the completion of A in the locally convex topology determined by the seminorms

qn,i(a) =‖ δndi(a) ‖, n ≥ 0, i = 0, 1,

where d(a) = [D, a]. Moreover, Aδ is a smooth algebra.
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We call the topology on A determined by the seminorms qni of Lemma 2.10 the δ-topology.

Whilst smoothness does not depend on whether A is unital or not, many analytical problems arise
because of the lack of a unit. As in [R1, R2, GGISV], we make two definitions to address these issues.

Definition 2.11. An algebra A has local units if for every finite subset of elements {ai}ni=1 ⊂ A, there
exists φ ∈ A such that for each i

φai = aiφ = ai.

Definition 2.12. Let A be a Fréchet algebra and Ac ⊆ A be a dense subalgebra with local units. Then
we call A a quasi-local algebra (when Ac is understood.) If Ac is a dense ideal with local units, we call
Ac ⊂ A local.

Quasi-local algebras have an approximate unit {φn}n≥1 ⊂ Ac such that φn+1φn = φn, [R1].

Example For a graph C∗-algebra A = C∗(E), Equation (1) shows that

Ac = span{SµS∗ν : µ, ν ∈ E∗ and r(µ) = r(ν)}

is a dense subalgebra. It has local units because

pvSµS
∗
ν =

{
SµS

∗
ν v = s(µ)

0 otherwise .

Similar comments apply to right multiplication by ps(ν). By summing the source and range projections
(without repetitions) of all SµiS

∗
νi appearing in a finite sum

a =
∑
i

cµi,νiSµiS
∗
νi

we obtain a local unit for a ∈ Ac. By repeating this process for any finite collection of such a ∈ Ac we
see that Ac has local units.

We also require that when we have a spectral triple the operator D is compatible with the quasi-local
structure of the algebra, in the following sense.

Definition 2.13. If (A,H,D) is a spectral triple, then we define CD(A) to be the algebra generated by
A and [D,A].

Definition 2.14. A local spectral triple (A,H,D) is a spectral triple with A quasi-local such that there
exists an approximate unit {φn} ⊂ Ac for A satisfying

CD(Ac) =
⋃
n

CD(A)n,

where

CD(A)n = {ω ∈ CD(A) : φnω = ωφn = ω}.

Remark A local spectral triple has a local approximate unit {φn}n≥1 ⊂ Ac such that φn+1φn =
φnφn+1 = φn and φn+1[D, φn] = [D, φn]φn+1 = [D, φn], [R2]. This is the crucial property we require
to prove most of our summability results, to which we now turn.
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2.3. Summability. In the following, let N be a semifinite von Neumann algebra with faithful normal
trace τ . Recall from [FK] that if S ∈ N , the t-th generalized singular value of S for each real t > 0 is
given by

µt(S) = inf{||SE|| : E is a projection in N with τ(1− E) ≤ t}.

The ideal L1(N ) consists of those operators T ∈ N such that ‖T‖1 := τ(|T |) <∞ where |T | =
√
T ∗T .

In the Type I setting this is the usual trace class ideal. We will simply write L1 for this ideal in order
to simplify the notation, and denote the norm on L1 by ‖ · ‖1. An alternative definition in terms of
singular values is that T ∈ L1 if ‖T‖1 :=

∫∞
0 µt(T )dt <∞.

Note that in the case where N 6= B(H), L1 is not complete in this norm but it is complete in the norm
||.||1 + ||.||∞. (where ||.||∞ is the uniform norm). Another important ideal for us is the domain of the
Dixmier trace:

L(1,∞)(N ) =
{
T ∈ N : ‖T‖

L(1,∞)
:= sup

t>0

1
log(1 + t)

∫ t

0
µs(T )ds <∞

}
.

We will suppress the (N ) in our notation for these ideals, as N will always be clear from context.
The reader should note that L(1,∞) is often taken to mean an ideal in the algebra Ñ of τ -measurable
operators affiliated to N . Our notation is however consistent with that of [C] in the special case
N = B(H). With this convention the ideal of τ -compact operators, K(N ), consists of those T ∈ N
(as opposed to Ñ ) such that

µ∞(T ) := lim
t→∞

µt(T ) = 0.

Definition 2.15. A semifinite local spectral triple is (1,∞)-summable if

a(D − λ)−1 ∈ L(1,∞) for all a ∈ Ac, λ ∈ C \R.

Remark If A is unital, kerD is τ -finite dimensional. Note that the summability requirements are only
for a ∈ Ac. We do not assume that elements of the algebra A are all integrable in the nonunital case.
Strictly speaking, this definition describes local (1,∞)-summability, however we use the terminology
(1,∞)-summable to be consistent with the unital case.

We need to briefly discuss the Dixmier trace, but fortunately we will usually be applying it in reason-
ably simple situations. For more information on semifinite Dixmier traces, see [CPS2]. For T ∈ L(1,∞),
T ≥ 0, the function

FT : t→ 1
log(1 + t)

∫ t

0
µs(T )ds

is bounded. For certain generalised limits ω ∈ L∞(R+
∗ )∗, we obtain a positive functional on L(1,∞) by

setting
τω(T ) = ω(FT ).

This is the Dixmier trace associated to the semifinite normal trace τ , denoted τω, and we extend it to
all of L(1,∞) by linearity, where of course it is a trace. The Dixmier trace τω is defined on the ideal
L(1,∞), and vanishes on the ideal of trace class operators. Whenever the function FT has a limit at
infinity, all Dixmier traces return the value of the limit. We denote the common value of all Dixmier
traces on measurable operators by −

∫
. So if T ∈ L(1,∞) is measurable, for any allowed functional

ω ∈ L∞(R+
∗ )∗ we have

τω(T ) = ω(FT ) = −
∫
T.
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Example Let D = 1
i
d
dθ act on L2(S1). Then it is well known that the spectrum of D consists of

eigenvalues {n ∈ Z}, each with multiplicity one. So, using the standard operator trace, Trace, the
function F(1+D2)−1/2 is

1
log 2N

N∑
n=−N

(1 + n2)−1/2

and this is bounded. Hence (1 +D2)−1/2 ∈ L(1,∞) and

(3) Traceω((1 +D2)−1/2) = −
∫

(1 +D2)−1/2 = 2.

In [R1, R2] we proved numerous properties of local algebras. The introduction of quasi-local algebras
in [GGISV] led us to review the validity of many of these results for quasi-local algebras. Most of the
summability results of [R2] are valid in the quasi-local setting. In addition, the summability results of
[R2] are also valid for general semifinite spectral triples since they rely only on properties of the ideals
L(p,∞), p ≥ 1, [C, CPS2], and the trace property. We quote the version of the summability results
from [R2] that we require below.

Proposition 2.16 ([R2]). Let (A,H,D) be a QC∞, local (1,∞)-summable semifinite spectral triple
relative to (N , τ). Let T ∈ N satisfy Tφ = φT = T for some φ ∈ Ac. Then

T (1 +D2)−1/2 ∈ L(1,∞).

For Re(s) > 1, T (1 +D2)−s/2 is trace class. If the limit

(4) lim
s→1/2+

(s− 1/2)τ(T (1 +D2)−s) exists, then it is equal to
1
2
−
∫
T (1 +D2)−1/2.

In addition, for any Dixmier trace τω, the function a 7→ τω(a(1 +D2)−1/2) defines a trace on Ac ⊂ A.

2.4. The Gauge Spectral Triple for a Graph C∗-Algebra. In this section we summarise the
construction of a Kasparov module and a semifinite spectral triple for locally finite directed graphs
with no sources. This material is based on [PRen]. We begin by constructing a Kasparov module.

For E a row finite directed graph, we set A = C∗(E), F = C∗(E)γ , the fixed point algebra for the
S1 gauge action. The algebras Ac, Fc are defined as the finite linear span of the generators. Right
multiplication makes A into a right F -module, and similarly Ac is a right module over Fc. We define
an F -valued inner product (·|·)R on both these modules by

(a|b)R := Φ(a∗b),

where Φ is the expectation A→ F . Completing A in the norm ‖x‖2X := ‖(x|x)R‖F = ‖Φ(x∗x)‖F gives
us a right C∗-F -module denoted X. The algebra A acting by multiplication on the left of X provides
a representation of A as adjointable operators on X. We let Xc be the copy of Ac ⊂ X. For each
k ∈ Z, define an adjointable endomorphism Φk on X by

(5) Φk(x) =
1

2π

∫
S1

z−kγz(x)dθ, z = eiθ, x ∈ X, so Φk(SαS∗β) =
{
SαS

∗
β |α| − |β| = k

0 |α| − |β| 6= k
.

Proposition 2.17 ([PRen]). Let X be the right C∗-F -module defined above. Let

XD = {x ∈ X :
∑
k∈Z

k2(xk|xk) <∞},

and define D : XD → X by D
∑

k∈Z xk =
∑

k∈Z kxk. Then D is closed, self-adjoint and regular.
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Theorem 2.18. Suppose that the graph E is locally finite and has no sources. Let V = D(1+D2)−1/2.
Then (X,V ) is an odd Kasparov module for A-F and so defines an element of KK1(A,F ).

To construct a semifinite spectral triple, we suppose that our graph C∗-algebra also has a faithful
gauge invariant trace τ : A→ C. Using τ , we define a C-valued inner product 〈·, ·〉 on Xc by

〈x, y〉 := τ((x|y)R) = τ(Φ(x∗y)) = τ(x∗y),

the last equality following from the gauge invariance of τ . Denote the Hilbert space completion of Xc

by H = L2(X, τ). The operator D extends to a self-adjoint operator on H, [PRen, Lemma 5.5], and
for all a ∈ Ac the commutator [D, a] extends to a bounded operator on H.

Lemma 2.19. The algebra Ac and the linear space [D, Ac] are contained in the smooth domain of the
derivation δ where for T ∈ B(H), δ(T ) = [|D|, T ]. So the completion of Ac in the δ-topology, which we
denote by A, is a Fréchet pre-C∗-algebra. Moreover A is a quasi-local algebra with dense subalgebra
Ac, and CD(Ac) ⊂ CD(A) is also quasi-local.

The last piece of information we require is the von Neumann algebra and trace which give us a
semifinite spectral triple. Let End00

F (Xc) be the finite rank endomorphisms of the pre-C∗-module Xc.

Proposition 2.20. Let N = (End00
F (Xc))′′. Then there exists a faithful, normal, semifinite trace

τ̃ : N → C such that for all rank one endomorphisms Θx,y of Xc we have

τ̃(Θx,y) = τ((y|x)R), x, y ∈ Xc.

Moreover, for all a ∈ A and λ ∈ C \R the operator a(λ−D)−1 lies in KN .

Hence we obtain a semifinite spectral triple. However, more is true.

Theorem 2.21. Let E be a locally finite graph with no sources, and let τ be a faithful, semifinite, norm
lower-semicontinuous, gauge invariant trace on C∗(E). Then (A,H,D) is a QC∞ (1,∞)-summable
odd local semifinite spectral triple (relative to (N , τ̃)). For all a ∈ A the operator a(1 +D2)−1/2 is not
trace class. For any v ∈ E0 which does not connect to a sink we have

τ̃ω(pv(1 +D2)−1/2) = 2τ(pv),

where τ̃ω is any Dixmier trace associated to τ̃ .

The main point is that for v ∈ E0 such that v does not connect to a sink, and for k ∈ Z we have

τ̃(pvΦk) = τ(pv).

This is the spectral triple we will be working with for the rest of the paper, and we refer to it as
the gauge spectral triple of the directed graph E (or algebra C∗(E)). We remind the reader that the
existence of this spectral triple depends only on the graph E being locally finite with no sources, and
the existence of a faithful, semifinite, gauge invariant, norm lower-semicontinuous trace τ : A → C.
The latter is a nontrivial condition.

3. Conditions for Locally Compact Semifinite Manifolds

We now review in turn the conditions for noncommutative manifolds as presented in [RV]. We will
consider natural generalisations of these conditions to the semifinite and nonunital setting and consider
when the gauge spectral triple satisfies these generalisations.
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We will present each condition as stated for the type I and unital case, where (N , τ) = (B(H),Trace)
and (1 +D2)−1/2 ∈ K(H), and then present the necessary modification of the condition, if it requires
modification.

When dealing with these generalisations we will suppose that (A,H,D) is a local semifinite spectral
triple relative to N , τ̃ . We will not suppose that A is unital, but will suppose that Ac ⊂ A gives us a
quasi-local algebra.

When considering the conditions as applied to graph algebras, we will suppose that E is a locally finite
directed graph with no sources and possessing a faithful graph trace g. We will let (A,H,D) be the
gauge spectral triple of E described in the previous section.

The conditions are somewhat interdependent, and we have found it is difficult to present them in
a logical fashion. It seems that this difficulty is greatly eased if we assume at the outset that the
Hilbert space H carries commuting representations π : A → B(H) and πop : Aop → B(H). The former
representation actually has π(A) ⊂ N ⊂ B(H), but we do not assume this for the latter representation.
We will explicitly state this bimodule requirement again when we look at the first order condition, but
it will be apparent that several of our conditions require a bimodule structure for their statement. In
all the following, we identify a ∈ A with π(a) ∈ N unless stated otherwise.

3.1. The Analytic Conditions.

Old Condition 1 (Dimension). The type I unital spectral triple (A,H,D) is (p,∞)-summable for a
fixed positive integer p, for which Traceω((1 +D2)−p/2) > 0 for all Dixmier limits ω.

To generalise this condition we evidently need to replace the operator trace, Trace, by the trace
τ̃ : N → C which determines the compactness and summability requirements of our spectral triple.
We also need to restate the requirement, since in general for a nonunital spectral triple, even type I, we
will not have (1 +D2)−p/2 ∈ L(1,∞), [R2]. So we have a simultaneous generalisation to the nonunital
and semifinite case.

New Condition 1 (Semifinite Nonunital Dimension). The local semifinite spectral triple (A,H,D)
is (p,∞)-summable for a fixed positive integer p, for which τ̃ω(a(1 + D2)−p/2) > 0 for all ω and all
0 6= a ∈ Ac with a ≥ 0.

Remark. In the type I setting, we also have the condition of Absolute Continuity which states: For
all nonzero a ∈ A with a ≥ 0, and for any ω-limit, the following Dixmier trace is positive:

Traceω(a(1 +D2)−p/2) > 0.

This is half of Connes’ finiteness and absolute continuity condition, [C1, GVF], the other half being
finiteness discussed in Section 3.3 below; see also [RV]. Here we have demanded positivity only for
positive elements of Ac, but this extends to positive elements of A, provided we allow the value +∞. Of
course our reformulation of the dimension condition already subsumes a semifinite version of absolute
continuity, so the natural generalisation of the absolute continuity condition is already satisfied by
our gauge spectral triples. This shows that even in the unital case it makes sense to combine the
dimension and absolute continuity conditions, as mentioned in [RV].

Thus our formulation of the conditions has rendered the absolute continuity condition redundant.

This generalisation of the dimension condition is satisfied by the gauge spectral triple of a directed
graph with p = 1. Provided the graph E has no sinks this follows from Theorem 2.21 since the Dixmier
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trace of a∗a, 0 6= a ∈ Ac, is given by τ̃ω(a∗a(1 +D2)−1/2) = 2τ(a∗a) > 0. Even if the graph has sinks,
the proof of Theorem 2.21 in [PRen] shows that we still have positivity.

Old Condition 2 (Regularity). The spectral triple (A,H,D) is QC∞. Without loss of generality, we
assume that A is complete in the δ-topology and so is a Fréchet pre-C∗-algebra.

It follows from Lemma 2.19 that this condition is satisfied with no need to modify it at all.

New Condition 2 (Regularity). The spectral triple (A,H,D) is QC∞. Without loss of generality,
we assume that A is complete in the δ-topology and so is a Fréchet pre-C∗-algebra.

3.2. The Orientation and Closedness Conditions. This section examines the orientation and
finiteness conditions. The orientability condition for spectral triples with unital algebra A is

Old Condition 3 (Orientability). Let p be the metric dimension of (A,H,D). We require that the
spectral triple be even, with Z2-grading Γ, if and only if p is even. For convenience, we take Γ = IdH
when p is odd. We say the spectral triple (A,H,D) is orientable if there exists a Hochschild p-cycle

(6a) c =
n∑

α=1

a0
α ⊗ bopα ⊗ a1

α ⊗ · · · ⊗ apα ∈ Zp(A,A⊗Aop)

whose Hochschild class [c] ∈ HHp(A)⊗Aop may be called the “orientation” of (A,H,D), such that

(6b) πD(c) :=
∑
α

a0
αb
op
α [D, a1

α] . . . [D, apα] = Γ.

Here A⊗Aop is a bimodule for A via

a · (x⊗ yop) = ax⊗ yop, (x⊗ yop) · a = xa⊗ yop, a, x, y ∈ A.

Now, typically, we have a nonunital algebra, and require a different formulation. We adopt the attitude
that we should have a locally finite but possibly infinite cycle, as would be the case for a volume form
on a noncompact manifold.

New Condition 3 (Nonunital Orientability). Let p be the metric dimension of (A,H,D). We require
that the spectral triple be even, with Z2-grading Γ, if and only if p is even. For convenience, we take
Γ = IdH when p is odd. We say the spectral triple (A,H,D) is orientable if there exists a Hochschild
p-cycle

(7a) c =
∞∑
α=1

a0
α ⊗ bopα ⊗ a1

α ⊗ · · · ⊗ apα

whose Hochschild class [c] may be called the “orientation” of (A,H,D), such that

(7b) πD(c) :=
∑
α

a0
αb
op
α [D, a1

α] . . . [D, apα] = Γ

where the sum in (7b) converges strongly.

Remark We have deliberately omitted any mention of the homology groups that c should belong to,
there being many possibilities and few examples to guide us. We offer one possible candidate, without
examining the subject in detail.

Let Cn(Ac, Ac ⊗ Aopc ) be the linear space of algebraic Hochschild n-chains for Ac. Suppose A is the
completion of Ac in the topology determined by the seminorms qk, let {qk}k∈Nn be a corresponding
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family of seminorms on Cn(Ac, Ac⊗Aopc ) and let {φj} be a local approximate unit for A, [R1]. Define
C∞n (A,A⊗Aop) to be the completion of Cn(Ac, Ac ⊗Aopc ) for the topology determined by the family
of seminorms

qk,j(a0 ⊗ bop ⊗ a1 ⊗ · · · ⊗ an) := qk(φja0 ⊗ (φjb)op ⊗ φja1 ⊗ · · · ⊗ φjan).

This should be viewed as similar to uniform convergence of all derivatives on compacta, and so anal-
ogous to a C∞ topology. Ultimately more nonunital examples are required to clarify this issue; for
more comments see [GGISV, R1, R2]. We leave these homological questions for future investigation.

For the case of graph algebras, we consider the sum over all edges in the graph

(8) c =
∑
e∈E1

S∗e ⊗ Se.

Before worrying about the convergence of this sum (in the multiplier algebra), we apply the Hochschild
boundary b to find

b(c) =
∑
e

(S∗eSe − SeS∗e ) =
∑
e

pr(e) −
∑

v not sink

pv,

where we have used the Cuntz-Krieger relation to obtain the second sum on the right-hand side. Thus
if there are no sinks, the second sum on the right-hand side converges to the identity (in the multiplier
algebra or the ‘one-point’ unitization).

The first sum on the right-hand side contains each vertex projection pv with multiplicity equal to the
number of edges entering it, which we denote by |v|1. Thus

b(c) =
∑

v∈E0, v not sink

(|v|1pv − pv) +
∑

v a sink

|v|1pv.

In particular, if each vertex has precisely one edge entering it, and no vertex is a sink, b(c) = 0. We
say that such a graph E has no sinks, and satisfies the single entry condition.

Observe that the single entry condition (together with the requirement that no loop has an exit) rules
out loops except for the case where the (connected) graph comprises a single loop. The C∗-algebra of
a graph consisting of a simple loop on n vertices is isomorphic to Mn(C(S1)). For a one-edge loop,
the Hochschild cycle c is z−1⊗ z, the usual volume form for the circle. The single entry condition also
rules out sources, so unless our (connected) graph comprises a single loop, it is an infinite directed
tree with no sources or sinks, in which case the C∗-algebra is AF [KPR].

If E satisfies the single entry condition then we claim that
∑
S∗e ⊗ Se converges to a partial isometry

in the multiplier algebra of C∗(E) ⊗ C∗(E). Let Xe = S∗e ⊗ Se then it is clear that Xe is a partial
isometry in C∗(E)⊗ C∗(E) with

XeX
∗
e = (S∗e ⊗ Se)(Se ⊗ S∗e ) = Pr(e) ⊗ SeS∗e

X∗eXe = (Se ⊗ S∗e )(S∗e ⊗ Se) = SeS
∗
e ⊗ Pr(e).

By the relations in C∗(E) the SeS∗e are mutually orthogonal, and then by the single entry hypothesis
the Pr(e) are too. Hence the Xe have mutually orthogonal ranges, and a standard argument (see [PR2,
Lemma 1.1] or [BPRS, Lemma 1.1]) finishes off the claim.

Using the single-entry condition, we see that the Hochschild cycle defined in (8) is represented by

(9) πD(c) =
∑
e

S∗e [D, Se] =
∑
e

S∗eSe =
∑
e

pr(e) = IdH,
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showing that the new condition of orientation is satisfied for this cycle. The sums in (9) converge in
the strict topology as an operator on the C∗-module X, and also converge strongly on H.

It may well be possible that there is a Hochschild cycle for a more general family of graphs, and we
are not claiming that the above conditions are necessary for the orientability condition to hold, only
sufficient.

From now on we suppose that E has no sinks and satisfies the single entry condition. As
noted above, it follows that the algebra C∗(E) is then AF unless it is Mn(C(S1)). In the AF case, E
is a directed tree. We record the following Lemma describing the fixed-point algebra of the directed
tree examples.

Lemma 3.1. Suppose that E is a directed tree with no sinks satisfying the single entry condition and
having finitely many ends. Then F is an abelian algebra, isomorphic to the continuous functions on
the infinite path space E∞ of E. Letting N denote the number of ends, each f ∈ Fc can be represented
as

f =
∑
v∈E0

N∑
n=1

cv,nSv,nS
∗
v,n, cv,n ∈ C

where (v, n) denotes a path with source v and range in the n-th tail. The C∗-norm of such an f is
‖f‖2F = sup |cv,n|2.

Proof. The assertion that F ∼= C0(E∞) follows from [KPRR]. To see that it is possible to write f ∈ Fc
in the above form, consider a path α with range r(α) a vertex emitting one edge e. Then

SαeS
∗
αe = SαSeS

∗
eS
∗
α = Sαps(e)S

∗
α = Sαpr(α)S

∗
α = SαS

∗
α.

So any SαS∗α is equal to SβS∗β where β is an extension of α not passing through a vertex emitting more
than one edge. If α is a path with range a vertex emitting, say, k edges, e1, . . . , ek, then

SαS
∗
α = Sαpr(α)S

∗
α =

k∑
i=1

SαSeiS
∗
eiS
∗
α,

and this can be subsequently extended until the next vertices emitting more than one edge. This
process terminates after finitely many steps because there are finitely many ends. The Sv,nS∗v,n are
mutually orthogonal, so

f∗f =
∑
v

∑
n

|cv,n|2Sv,nS∗v,n,

and ‖f‖2F = sup |cv,n|2. �

The next condition is closedness, which, in its original form, is basically Stoke’s theorem for the
Dixmier trace applied to elements of A ⊗ Aop. The original formulation for (p,∞)-summable triples
using the operator trace Trace is

Old Condition 4 (Closedness). The (p,∞)-summable spectral triple (A,H,D) is closed if for any
a1, . . . , ap ∈ A ⊗ Aop, the operator Γ [D, a1] · · · [D, ap](1 + D2)−p/2 has vanishing Dixmier trace; thus,
for any Dixmier trace Traceω,

(10) Traceω
(
Γ [D, a1] · · · [D, ap](1 +D2)−p/2

)
= 0.
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Remark By setting φ(a0, . . . , ap) := Traceω
(
Γ a0 [D, a1] · · · [D, ap](1 + D2)−p/2

)
, the equation (10)

may be rewritten [C, VI.2] as B0φ = 0, where B0 is defined on (k + 1)-linear functionals by

(B0φ)(a1, . . . , ak) := φ(1, a1, . . . , ak) + (−1)kφ(a1, . . . , ak, 1).

To see the utility of this condition, we introduce some notation so that we can quote Lemma 3 of [C,
VI.4.γ]. Let Ω∗(A) be the universal differential algebra of A, [C, II.1.α]. Then πD : Ω∗(A) → CD(A)
defined by πD(a0δa1 . . . δan) = a0[D, a1] · · · [D, an] is a ∗-algebra representation. Denote by Λ∗D(A)
the graded differential algebra we obtain by quotienting CD(A) by the differential ideal πD(δ(kerπD)),
where δ is the universal derivation on Ω∗(A). We denote by d the derivation on Λ∗D(A). See [C, Chap
VI] for more information. Finally, let Zk(A,A∗) denote the Hochschild cocycles.

Lemma 3.2. Let (A,H,D) be (p,∞)-summable and satisfy Old Condition 5 (first order). Then for
each k = 0, 1, . . . , p and η ∈ ΩkA, a Hochschild cocycle Cη ∈ Zp−k(Aop, (Aop)∗) is defined by

Cη(a0, . . . , ap−k) := Traceω
(
ΓπD(η) a0 [D, a1] . . . [D, ap−k] (1 +D2)−p/2

)
, a0, . . . , ap−k ∈ Aop.

Moreover, if Old Condition 4 (closedness) also holds, then Cη depends only on the class of πD(η) in
ΛkDA, and

B0Cη = (−1)k Cdη. �

Thus the first order condition together with closedness give us tools to study the Hochschild and cyclic
homology of the algebra A. More information can be found in [C, VI.4.γ].

The difficulty we face is that we have a Dixmier trace defined on N ⊃ A which we can not apply to
A⊗Aop. As we discuss in the next section, we do not believe having a spectral triple for A⊗Aop is of
central importance. Nevertheless, the utility of Lemma 3.2 is greatly reduced by our new formulation.

New Condition 4 (Semifinite Closedness). The (p,∞)-summable local semifinite spectral triple
(A,H,D) is closed if for any Dixmier trace τ̃ω we have

(11) τ̃ω
(
Γ [D, a1] · · · [D, ap](1 +D2)−p/2

)
= 0

for all a1, . . . , ap ∈ A.

It would seem that this formulation does not give us tools to study the Hochschild and cyclic cohomol-
ogy of A as in the type I case described above, [C, VI.4.γ]. More examples are required to understand
the proper extension of this condition to the semifinite setting.

For the gauge spectral triple of a graph algebra and generator SµS∗ν ∈ A, [PRen, Theorem 5.8],

τ̃ω([D, SµS∗ν ](1 +D2)−1/2) = (|µ| − |ν|)τ̃ω(SµS∗ν(1 +D2)−1/2)

= 2(|µ| − |ν|)τ(SµS∗ν).

The gauge invariance of the trace says that τ(SµS∗ν) is non-zero only if |µ| = |ν|, whence the whole
expression always vanishes. Hence the new closedness condition holds for the gauge spectral triple.

3.3. The Bimodule Conditions. This section is concerned with the relation between the bimodule
structure of the Hilbert space and the spectral triple.

First we have the first order condition which specifies the bimodule structure. In the original type I
setting we have
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Old Condition 5 (First Order). There are commuting representations π : A → B(H) and πop :
Aop → B(H) of the opposite algebra Aop (or equivalently, an antirepresentation of A). Writing a for
π(a), and bop for πop(b), we ask that [a, bop] = 0. In addition, the bounded operators in [D,A] commute
with Aop; in other words,

(12) [[D, a], bop] = 0 for all a, b ∈ A.

In the type I setting the first order condition gives us a spectral triple for A⊗Aop, but we believe this
is not essential, and just an artefact of the type I setting. Rather we focus on the fact that in the type
I setting the algebra CD(A) is contained in the endomorphism algebra of the right A module H∞.

The finiteness condition (below) asks that H∞ =
⋂
m≥1 dom Dm be a finite projective (right) A

module. The first order condition then says that CD(A) ⊆ EndRA(H∞), where R is for right. One
would expect this finite projective condition to be symmetric in some sense, but this is an extra
requirement. If H∞ is also a finite projective left A-module, then CD(Aop) ⊆ EndLA(H∞), L for left.
Typically however, these two algebras of endomorphisms, one left and one right, will not commute
with each other. They do for the gauge spectral triple of a graph algebra, but this is a one-dimensional
phenomenon (see also [GGISV]).

A moment’s thought shows that regarding the (sections of the) spinor bundle of a spin manifold M
as a C∞(M) bimodule, the two collections of endomorphisms we obtain do not commute, since both
algebras of endomorphisms are the same Clifford algebra.

These arguments, together with the proof of the reconstruction theorem in [RV], show that the most
important aspect of the first order condition is that the algebra CD(A) acts as endomorphisms of a
noncommutative bundle, and that the ‘symbol’ of D is such an endomorphism.

Moreover, in the semifinite setting we begin with a representation π : A → N ⊂ B(H). The von
Neumann algebra N is thus required to contain A and the spectral projections of D, and these are
the only requirements. So typically, πop(Aop) 6⊂ N , and this is the case for the gauge spectral triple.
In particular, Aop need not lie in the domain of the trace we employ, and even supposing we have a
version of the first order condition, we will not obtain a spectral triple for A⊗Aop.
We therefore change the first-order condition only very slightly as follows:

New Condition 5 (Semifinite First Order). There are commuting representations π : A → N and
πop : Aop → B(H) of the opposite algebra Aop. Writing a for π(a), and bop for πop(b), we ask that
[a, bop] = 0. In addition, the bounded operators in [D,A] commute with Aop; in other words,

(13) [[D, a], bop] = 0 for all a, b ∈ A.

For the gauge spectral triple of a directed graph, the Hilbert space naturally carries commuting
representations of A and Aop. The first order condition

[[D,A],Aop] = 0

follows since [D,A] ⊂ A, and the left and right actions of A on the Hilbert space commute.

The condition of finiteness in the unital case is

Old Condition 6 (Finiteness). The dense subspace of H which is the smooth domain of D,

H∞ :=
⋂
m≥1

dom Dm

is a finitely generated projective right A-module.
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Thus H∞ ' qAm where q ∈ Mm(A) is an idempotent. Without loss of generality, we may suppose
q = q∗ also, so that, without further hypotheses, H∞ carries an A-valued Hermitian pairing, namely,
that given by (ξ, η)′ :=

∑
j,k a

∗
jqjkbk when ξ = (

∑
j qijaj)

m
i=1, η = (

∑
k qikbk)

m
i=1.

In the nonunital case, this is necessarily more subtle as the elements of H∞ = ∩mdomDm must also
satisfy integrability conditions. In [R1], the notion of smooth module was introduced for nonunital
algebras which are local. As we are dealing with quasi-local algebras, most of the results on smooth
modules in [R1] are not applicable.

We take the attitude that:

Point 1) H∞ should be a continuous A-module,
Point 2) H∞ should embed continuously as a dense subspace in the C∗-A-module XA = H∞,
Point 3) X should be the completion of qAN for some N and some projection q in MN (Ab) where Ab
is a unitization of A,
Point 4) the Hermitian product H∞ 3 x, y → (x|y) should have range in A (acting on the right).

Point 1) is implied by the condition of regularity.

Proof. For x ∈ H∞ and a ∈ A we have

‖Dn(xa)‖H = ‖|D|n(xa)‖H =
∥∥∥ n∑
j=0

(
n
j

)
δn−j(aop)|D|j(x)

∥∥∥
H

≤
n∑
j=0

(
n
j

)
‖δn−j(aop)‖ ‖|D|j(x)‖H.(14)

The continuity of the action of A on H∞ now follows easily. �

Point 2 above is included to ensure that we can recover the ‘module of continuous sections vanishing
at infinity’ from H∞, and it is a nontrivial condition as we shall see. Once we have a continuous
embedding, the image will be dense for our graph algebra examples, since Ac ⊂ H∞.

Once we can recover the module X, we demand that it be ‘finitely generated and projective’ in the
sense of 3): see also [R1, Theorem 8]. The examples arising from graph algebras have A dense in X,
so taking N = 1 and q = idAb in any unitization Ab of A shows that 3) is always satisfied for the gauge
spectral triple of a graph algebra.

All four points are satisfied in the unital case, so we will ignore the case of a single loop in the following,
focussing attention instead on the directed trees.

Roughly speaking, without points 2) and 4), H can contain many ‘functions’ on the graph which are
unbounded, and so are not in the algebra A or the module X. Modules of unbounded ‘functions’ are
not terrible per se, but we prefer to remain close to the C∗-theory.
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Example Let E be the ‘dyadic directed tree’
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Define a faithful trace as follows. If v is a vertex before the first split, let τ(pv) = 1. If v occurs after
n splits and before n + 1 splits, define τ(pv) = 2−n. Finally define τ(SµS∗ν) = δµ,ντ(pr(µ)). Then the
Hilbert space H = L2(X, τ) contains

(15) a = lim
N→∞

N∑
i=1

2i/4pi

where τ(pi) = 2−i, and the pi are mutually orthogonal. The element a ∈ H in equation (15) does not
lie in the C∗-module X, as the limit does not exist in the norm ‖ · ‖X .

New Condition 6 (Nonunital Finiteness). The dense subspace of H which is the smooth domain
of D,

H∞ :=
⋂
m≥1

domDm

has a right inner product A-module structure. Moreover, H∞ embeds as a dense subspace of a C∗-A-
module which is finitely generated and projective over some unitization Ab of A.

Having identified a working generalisation of the finiteness condition, we identify the restrictions it
places on a graph C∗-algebra. So to check that New Condition 6 holds, we must verify points 2) and 4).

Proposition 3.3. Suppose that the locally finite directed graph E has no sinks, no loops and satisfies
the single entry condition. The A-module H∞ satisfies 2) if and only if the K-theory of A is finitely
generated. In this case the Hilbert space H also satisfies point 2). If the K-theory of A is finitely
generated then point 4) holds.

Remark Thus for the directed tree examples, the finiteness condition is satisfied if and only if the
K-theory of A is finitely generated.

Proof. We begin with condition 2) for our directed trees. First of all we must have kerD ∩ H∞ =
L2(Fc, τ) ⊂ X. Thus we require a C > 0 such that

‖f‖2X = ‖f∗f‖1/2F ≤ Cτ(f∗f)1/2 = C‖f‖2H,
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for all f ∈ L2(Fc, τ). In particular, we require for all v ∈ E0 that

1 = ‖pv‖F ≤ Cτ(pv)1/2.

Hence τ(pv) must be bounded below, which implies, by the definition of a graph trace and the faith-
fulness of τ , that there exist at most finitely many ends, and so K0(A) is finitely generated. Thus the
condition is necessary.

Conversely, suppose that K0(A) is finitely generated, and let rank(K0(A)) = N < ∞ be the number
of ends. Observe that having finitely many ends implies that any faithful graph trace is bounded from
below. Then if f ∈ Fc, Lemma 3.1 allows us to write

f =
∑
v∈E0

N∑
n=1

cv,nSv,nS
∗
v,n, cv,n ∈ C

where (v, n) denotes a path with source v and range in the n-th end. We have ‖f‖2F = sup |cv,n|2.

Now suppose that f ∈ H, so that

‖f‖2H = τ(f∗f) =
∑
v

∑
n

|cv,n|2τ(pn) <∞

where pn is any projection in the n-th end. Then

‖f‖2H =
∑
v

∑
n

|cv,n|2τ(pn) ≥ min{τ(pn)}
∑
v

∑
n

|cv,n|2

≥ min{τ(pn)} sup
v,n
|cv,n|2 = min{τ(pn)}‖f‖2F = min{τ(pn)}‖f‖2X .

Hence f ∈ X. Finally, suppose that x ∈ H, so x =
∑

k∈Z xk and
∑

k∈Z τ(x∗kxk) <∞. As fk := x∗kxk ∈
F and is positive, we have

‖x‖2H =
∑
k

τ(x∗kxk) =
∑
k

‖fk‖H ≥ (min{τ(pn)})1/2
∑
k

‖fk‖X

= (min{τ(pn)})1/2
∑
k

‖x∗kxk‖X = (min{τ(pn)})1/2
∑
k

‖(x∗kxk)2‖1/2F

= (min{τ(pn)})1/2
∑
k

‖x∗kxk‖F = (min{τ(pn)})1/2 sup
k
‖x∗kxk‖F

= (min{τ(pn)})1/2‖x‖2X .

This proves that the finite generation of K0(A) is necessary and sufficient for the second point.

For point 4), we assume that K0(A) is finitely generated. We observe that if x, y ∈ Xc = Ac ⊂ H∞
we have x∗y ∈ Ac ⊂ A. In particular, x∗y is in the smooth domain of the derivation δ = [|D|, ·]. Thus
for x, y ∈ Xc we have, by Lemma 2.19,

‖δm(x∗y)‖2 ≤
∑
k,l∈Z

|k − l|2m‖x∗kyl‖2A

where the sum over k, l is finite and we have used ‖δm((x∗y)∗op)‖ = ‖δm(x∗y)‖ for a ∈ Ac to avoid
writing op throughout the following calculation. Now

‖x∗kyl‖2A = ‖y∗l xkx∗kyl‖A ≤ ‖y∗l yl‖A‖xkx∗k‖A ≤ C2τ(y∗l yl)τ(x∗kxk),
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the last inequality using the finite generation of K0(A). So we have the inequality

‖δm(x∗y)‖ ≤ C2
∑
k,l∈Z

|k − l|2mτ(y∗l yl)τ(x∗kxk)

≤ C2
∑
k,l∈Z

(|k|+ |l|)2mτ(y∗l yl)τ(x∗kxk)

= C2
∑
k,l∈Z

2m∑
j=0

(
2m
j

)
|k|2m−j |l|jτ(y∗l yl)τ(x∗kxk)

= C2
∑
k,l∈Z

2m∑
j=0

(
2m
j

)
τ((|D|j/2yl)∗(|D|j/2yl))τ((|D|(2m−j)/2xk)∗(|D|(2m−j)/2xk))

= C2
2m∑
j=0

(
2m
j

)
‖|D|j/2y‖2H‖|D|(2m−j)/2x‖2H.(16)

So suppose that {xi} ⊂ Xc is a sequence converging to x ∈ H∞ in the topology determined by the
seminorms x→ ‖|D|mx‖H, m ≥ 0, and similarly yi → y.

The estimate (16) shows that

‖δm(x∗jyj − x∗i yi)‖2A = ‖δm(x∗jyj − x∗jyi + x∗jyi − x∗i yi)‖2A

≤ C2
2m∑
j=0

(
2m
j

)
‖|D|j/2(yj − yi)‖2H‖|D|(2m−j)/2(xj)‖2H

+C2
2m∑
j=0

(
2m
j

)
‖|D|j/2(yi)‖2H‖|D|(2m−j)/2(xj − xi)‖2H,

and this goes to zero. Hence the sequence x∗jyj is Cauchy in A, and so for the limits x, y ∈ H∞, the
inner product (x|y)A = x∗y is in the completion of Ac for the δ-topology, and so x∗y ∈ A. �

Remark We also note that Connes stipulates that when we restrict the Hilbert space inner product
to H∞ we should have

〈x, y〉 = −
∫

(x|y)A(1 +D2)−1/2

where the Hermitian product is the A-valued one: (x|y)A = x∗y. However, the trace satisfies τ = τ ◦Φ,
so

τ((x|y)A) = τ(x∗y) = τ(Φ(x∗y)) = τ((x|y)R),
and the inner product does indeed satisfy this formula, up to a factor of 2; see Equation (3). The
factor of 2 also occurs in the type I case, and is simply a matter of normalisation of the inner product,
and does not affect the Hilbert space; see [R2, Section 5] for the constants in the commutative case.

The following condition describes a spinc structure for the noncommutative manifold, [P].

Old Condition 7 (Spinc). The C∗-A-module completion of H∞ is a Morita equivalence bimodule
between A and the norm completion of the algebra CD(A) generated by A and [D,A].

Since for graph algebras the A-bimodule A is contained in X, we have a natural Morita equivalence
bimodule between A and A. As the norm closed algebra generated by A and [D,A] is just A in the
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case of the gauge spectral triple, the Morita equivalence follows. Thus there is no need to alter the
spinc condition to deal with semifiniteness or lack of a unit (at least for graph algebras).

New Condition 7 (Spinc). The C∗-A-module completion of H∞ is a Morita equivalence bimodule
between A and the norm completion of the algebra CD(A) generated by A and [D,A].

In the case where A = C∞(M), M a manifold, the spinc condition (together with orientability)
provides a spinc structure for M , [P]. Given a spinc manifold M , M is spin if and only if at least one
(oriented) Morita equivalence bimodule admits a bijective antilinear map satisfying the requirements
of the reality condition, [GVF, Theorem 9.6]. Thus the reality condition below, in conjunction with
the spinc condition, may be regarded as a noncommutative spin structure.

Old Condition 8 (Reality). There is an antiunitary operator J : H → H such that Ja∗J−1 = aop for
all a ∈ A; and moreover, J2 = ±1, JDJ−1 = ±D and also JΓJ−1 = ±Γ in the even case, according
to the following table of signs depending only on p mod 8:

(17)
p mod 8 0 2 4 6

J2 = ±1 + − − +

JDJ−1 = ±D + + + +

JΓJ−1 = ±Γ + − + −

p mod 8 1 3 5 7

J2 = ±1 + − − +

JDJ−1 = ±D − + − +

For the origin of this sign table in KR-homology, we refer to [GVF, §9.5].

For the gauge spectral triple, the operator J : L2(X, τ) → L2(X, τ), J(x) = x∗ satisfies the reality
condition for p = 1, namely, J2 = 1, Ja∗J = aop and JDJ = −D, so the bimodule and spectral triple
are real. This can be directly verified with ease.

For this reason we retain the reality condition in its original form.

New Condition 8 (Reality). There is an antiunitary operator J : H → H such that Ja∗J−1 = aop for
all a ∈ A; and moreover, J2 = ±1, JDJ−1 = ±D and also JΓJ−1 = ±Γ in the even case, according
to the table (17) of signs.

For the type I case connectedness of the underlying noncommutative space is formulated in the fol-
lowing condition.

Old Condition 9 (Irreducibility). The spectral triple (A,H,D) is irreducible: that is, the only oper-
ators in B(H) commuting with D and all a ∈ A are the scalars.

In a von Neumann algebra context it is clear what we should replace this condition with.

New Condition 9 (Semifinite Irreducibility). The semifinite spectral triple (A,H,D) is irreducible:
that is, the only operators in N commuting with D and all a ∈ A are the scalars.

For our algebra A, only the fixed-point subalgebra F commutes with D. For graphs satisfying the
single entry condition, F is abelian. A graph-theoretic argument shows that if E is connected, then
no nontrivial element of F can commute with all of A.

We summarise our results for graph algebras.

Theorem 3.4. Let E be a connected locally finite graph with no sinks, admitting a faithful graph trace,
satisfying the single entry condition and having finitely generated K-theory. Then the gauge spectral
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triple (A,H,D) of E satisfies the new (semifinite, nonunital) conditions 1 to 9. If E is not a single
loop, the gauge spectral triple is both nonunital (noncompact) and semifinite.

4. k-Graph Manifolds

In [PRS] we adapted the construction of [PRen] described earlier to construct a Kasparov module and
semifinite spectral triple for suitable k-graph algebras. This was accomplished by ‘pushing forward’
the Dirac operator (of the simplest spin structure) on the k-torus, using the canonical Tk action on a
k-graph algebra.

We will not go into the details of these constructions as we did for graph algebras, noting only that
they are essentially analogous to the graph case. We also omit a general discussion of k-graph algebras,
as this is lengthy. We will adopt the definitions, notations and conventions of [PRS], and refer the
reader to this work for an introduction to k-graph algebras adapted to this context.

We do require several notational reminders so that we can state our results here with the minimum
of ambiguity. In particular:

Warning In this section we reverse our conventions regarding range and source of edges. This means
that sinks and sources play opposite roles, the single entry condition becomes the single exit condition,
and so on. This is in keeping with the notation employed in [PRS].

Briefly, a k-graph is a set Λ of paths with a degree map d : Λ→ Nk. For n ∈ Nk, we write Λn for d−1(n),
and regard Λ0 as the set of vertices. Paths have the unique factorisation property: if d(λ) = m + n
then there are unique paths µ ∈ Λm and ν ∈ Λn such that λ = µν. In particular, if m ≤ n ≤ l = d(λ),
then there is a unique factorisation λ = λ(0,m)λ(m,n)λ(n, l) where d(λ(0,m)) = m and so forth. It
also follows that each path λ has a unique range r(λ) ∈ Λ0 such that r(λ)λ = λ; likewise for sources.
With this in mind, we write vΛn for r−1(v) ∩ Λn and Λnv for s−1(v) ∩ Λn for n ∈ Nk and v ∈ Λ0.

The C∗-algebra C∗(Λ) of a k-graph Λ is the universal C∗-algebra generated by a set {Sλ : λ ∈ Λ} of
partial isometries satisfying Cuntz-Krieger type relations [KP].

For the remainder of this section, ‘k-graph’ shall be an abbreviation for ‘locally convex, locally finite
k-graph without sinks, which possesses a faithful k-graph trace’. All the conditions below refer to the
general semifinite nonunital versions discussed for graph algebras (with appropriate changes to the
dimensions involved where necessary).

The gauge spectral triples (A,H,D) for k-graph algebras satisfy the new dimension, regularity (smooth-
ness) and absolute continuity conditions, with dimension k. All this is proved in [PRS].

The new first order condition is satisfied just as in the graph case, and the new irreducibility condition
is also satisfied if the k-graph is connected.

The remaining conditions which we need to verify are the new finiteness, orientability, closedness,
Morita equivalence (spinc) and reality conditions.

In order to do this, we will need to assume that our k-graphs are row-finite with no sources (0 <
|vΛn| < ∞ for v ∈ Λ0 and n ∈ Nk), and satisfy the single exit condition (|Λnv| = 1 for each v ∈ Λ0

and n ∈ Nk).

Finiteness and Morita Equivalence

The proof of our rather strict finiteness condition for k-graphs is almost identical to the proof for the
1-graph case. In fact, once we have the following result it is virtually identical.
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Suppose that Λ is a row-finite k-graph with no sources satisfying the single-exit condition. We claim
there is an isomorphism of the fixed point algebra C∗(Λ)γ onto C0(Λ∞) (where the infinite path space
Λ∞ is endowed with the topology generated by the cylinder sets λΛ∞, λ ∈ Λ). The isomorphism
takes SλS∗λ to the characteristic function χλΛ∞ for each λ ∈ Λ. To see this, first recall from [FPS] (see
also [KP]) that for an arbitrary row-finite k-graph Λ with no sources, there is an isomorphism of the
diagonal D(Λ) := span{SλS∗λ : λ ∈ Λ} onto C0(Λ∞) which takes SλS∗λ to χλΛ∞ . We also know that
C∗(Λ)γ = span{SµS∗ν : d(µ) = d(ν)}, but the single-exit condition ensures that whenever SµS∗ν 6= 0
and d(µ) = d(ν), we have µ = ν. Hence C∗(Λ)γ = D(Λ) when Λ satisfies the single-exit condition,
and this establishes the claim.

In particular, it is not hard to deduce from this an exact analogue of Lemma 3.1: if Λ is row-finite,
satisfies the single exit condition, and has finitely many (say N) ends, then each element a of Fc can
be expressed as

(18) a :=
∑
v∈Λ0

N∑
i=1

b(v,i)S(v,i)S
∗
(v,i)

where (v, i) is a path from the ith end to v.

As in the graph case, there is almost nothing to prove when the algebra is unital. This follows since
then the trace of the identity is finite, and we can compare the Hilbert space and C∗-module norms
easily. For the nonunital case we have the following.

Proposition 4.1. Suppose that the locally finite, locally convex k-graph (Λ, d) has no sources and
satisfies the single exit condition. The A-module H∞ embeds continuously in the C∗-A-module com-
pletion if and only if the K-theory of A is finitely generated; in this case the Hilbert space H does also.
If K∗(A) is finitely generated then the C∗-inner product restricted to H∞ takes values in A.

Apart from the above result describing the fixed-point algebra of C∗(Λ), we also require the K-theory
computations of [PRS] which show that in the situation of Proposition 4.1 the K-theory is finitely
generated if and only if there are finitely many ends. With these results in hand, our corresponding
proof for 1-graphs can be applied with minor modifications.

The Morita equivalence condition is now simple, since CD(A) ∼= Cliff(Rk) ⊗ A (or Cliff+(Rk) in
odd dimensions) and H∞ = A2[k/2]

. So the gauge spectral triple of a k-graph is spinc.

Orientation

As noted above, H∞ = A2[k/2]
, and the operator D acts on generators x ∈ Xc ⊂ H with degree

d(x) = n ∈ Nk by Dx =
(∑k

j=1 γ
j(inj)

)
x where the γj are constant matrices generating the complex

Clifford algebra of Rk.

In what follows we write 1k for (1, . . . , 1) ∈ Nk. We let Σk be the group of permutations of {1, . . . , k}.
Fix a k-graph Λ and a path µ ∈ Λ1k . Given a permutation σ ∈ Σk, the factorisation property
guarantees that there is a unique factorisation µ = µσ1µ

σ
2 . . . µ

σ
k such that µσi ∈ Λeσ(i) for 1 ≤ i ≤ k.

For example, let k = 2 and let µ = ef = ab be a commuting square, so that d(e) = d(b) = e1 and
d(f) = d(a) = e2. There are two elements of Σ2, namely the flip (1, 2) and the identity id. We have
µ

(1,2)
1 = a and µ

(1,2)
2 = b whilst µid

1 = e and µid
2 = f .

We use the notation (−1)σ for the canonical homomorphism σ 7→ (−1)σ from Σk to {−1, 1} which
takes the 2-cycles (i, j) to −1.



22 DAVID PASK†, ADAM RENNIE∗‡, AIDAN SIMS†

Proposition 4.2. Let Λ be a row-finite k-graph with no sources, and suppose that for every v ∈ Λ0

and 1 ≤ i ≤ k we have |Λeiv| = 1 (single exit). Define

(19) ck := id
k+1
2
e
∑
µ∈Λ1k

1
k!

∑
σ∈Σk

(−1)σS∗µ ⊗ Sµσ1 ⊗ Sµσ2 ⊗ · · · ⊗ Sµσk .

Then b(ck) = 0, where b is the Hochschild boundary operator, and πD(ck) = Γ where Γ is the grading
for k even, and the identity for k odd.

Proof. We begin by establishing that πD(ck) = Γ because this is the easier of the two calculations. To
see this, we just calculate (here, the γj are the generators of Cliff(Rk)):

πD(c) = id
k+1
2
e
∑
µ∈Λ1k

1
k!

∑
σ∈Σk

(−1)σS∗µ[D, Sµσ1 ][D, Sµσ2 ] . . . [D, Sµσk ]

= id
k+1
2
e
∑
µ∈Λ1k

1
k!

∑
σ∈Σk

(−1)σS∗µSµσ1 γ
σ(1)Sµσ2 γ

σ(2) . . . Sµσkγ
σ(k)

= id
k+1
2
eγ1 · · · γk

∑
µ∈Λ1k

1
k!

∑
σ∈Σk

S∗µSµσ1Sµσ2 . . . Sµσk = ωC

∑
µ∈Λ1k

ps(µ),

where ωC is the complex volume form in Cliff(Rk). The single exit assumption ensures that the sum
of vertex projections in the last line has exactly one term for each vertex of Λ, and hence converges
to the identity in the multiplier algebra of C∗(Λ), establishing that πD(ck) = Γ.

Now we need to establish that b(ck) = 0. To begin with, fix µ ∈ Λ1k . We claim that

b
( ∑
σ∈Σk

(−1)σS∗µ ⊗ Sµσ1 ⊗ Sµσ2 ⊗ · · · ⊗ Sµσk
)

=
∑
σ∈Σk

(−1)σ
(
S∗µσ2 ...µσk

⊗ Sµσ2 ⊗ · · · ⊗ Sµσk

+ (−1)kSµσkS
∗
µσk
S∗µσ1 ...µσk−1

⊗ Sµσ1 ⊗ · · · ⊗ Sµσk−1

)
.

(20)

To see this, we apply the definition of the Hochschild boundary b to obtain

b
( ∑
σ∈Sk

(−1)σS∗µ ⊗ Sµσ1 ⊗ Sµσ2 ⊗ · · · ⊗ Sµσk
)

=
∑
σ∈Σk

(−1)σ
(
S∗µσ2 ...µσk

⊗ Sµσ2 ⊗ · · · ⊗ Sµσk

+
k−1∑
j=1

(−1)jS∗µ ⊗ Sµσ1 ⊗ · · · ⊗ Sµσj Sµσj+1
⊗ · · · ⊗ Sµσk

+ (−1)kSµσkS
∗
µσk
S∗µσ1 ...µσk−1

⊗ Sµσ1 ⊗ · · · ⊗ Sµσk−1

)
.

To establish (20), it therefore suffices to show that for 1 ≤ j ≤ k − 1, we have∑
σ∈Σk

(−1)σS∗µ ⊗ Sµσ1 ⊗ · · · ⊗ Sµσj Sµσj+1
⊗ · · · ⊗ Sµσk = 0.
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To see this, we fix 1 ≤ j ≤ k − 1, and note that we may partition Σk as Σk = Aj t Bj where
Aj := {σ ∈ Σk : σ(j) < σ(j + 1)} and Bj := {σ ∈ Σk : σ(j) > σ(j + 1)}. Let tj ∈ Σk be the
transposition (j, j + 1). Then σ 7→ σ ◦ tj is a bijection from Aj to Bj .

Hence ∑
σ∈Σk

(−1)σS∗µ ⊗ Sµσ1 ⊗ · · · ⊗ Sµσj Sµσj+1
⊗ · · · ⊗ Sµσk

=
∑
σ∈Aj

(
(−1)σS∗µ ⊗ Sµσ1 ⊗ · · · ⊗ Sµσj Sµσj+1

⊗ · · · ⊗ Sµσk

+ (−1)σ◦tjS∗µ ⊗ Sµσ◦tj1

⊗ · · · ⊗ S
µ
σ◦tj
j

S
µ
σ◦tj
j+1

⊗ · · · ⊗ S
µ
σ◦tj
k

)
.

The definition of tj guarantees that (−1)σ + (−1)σ◦tj = 0 for all σ ∈ Aj , and we will therefore have
established (20) if we can show that for fixed 1 ≤ j ≤ k − 1 and fixed σ ∈ Aj , we have

(21) S∗µ ⊗ Sµσ1 ⊗ · · · ⊗ Sµσj Sµσj+1
⊗ · · · ⊗ Sµσk = S∗µ ⊗ Sµσ◦tj1

⊗ · · · ⊗ S
µ
σ◦tj
j

S
µ
σ◦tj
j+1

⊗ · · · ⊗ S
µ
σ◦tj
k

By definition of tj we have µσi = µ
σ◦tj
i whenever i 6= j, j + 1. If we set m :=

∑j−1
i=1 eσ(i) ∈ Nk, then the

factorisation property in Λ ensures that

µσj µ
σ
j+1 = µ(m,m+ eσ(j) + eσ(j+1)) = µ(m,m+ eσ◦tj(j) + eσ◦tj(j+1)) = µ

σ◦tj
j µ

σ◦tj
j+1 .

It follows that corresponding terms in the elementary tensors on either side of (21) are identical. This
establishes (20).

We must now show that if we sum the right-hand side of (20) over all µ ∈ Λ1k , we obtain zero.

Fix, for the time being, µ ∈ Λ1k and σ ∈ Σk. Consider the expression

(22) (−1)σS∗µσ2 ...µσk ⊗ Sµσ2 ⊗ · · · ⊗ Sµσk
appearing as a summand in the first term on the right-hand side of (20). Let λ := µσ2µ

σ
3 . . . µ

σ
k , so that

µ = µσ1λ. Let ψk ∈ Σk be the permutation defined by ψk(i) = i+ 1 for i ≤ k − 1 and ψk(k) = 1. Fix
α ∈ s(λ)Λeσ(1) . Then λα ∈ Λ1k . Consider the expression

x(λ, σ ◦ ψk, α) := (−1)σ◦ψk(−1)kS
(λα)

σ◦ψk
k

S∗
(λα)

σ◦ψk
k

S∗
(λα)

σ◦ψk
1 ...(λα)

σ◦ψk
k−1

⊗ S
(λα)

σ◦ψk
1

⊗ · · · ⊗ S
(λα)

σ◦ψk
k−1

which appears in the second term on the right-hand side of (20) for λα ∈ Λ1k and σ◦ψk ∈ Σk. We have
(−1)ψk = (−1)k−1, and hence (−1)σ◦ψk(−1)k = −(−1)σ. By definition of ψk, we have (λα)σ◦ψkk = α,
and (λα)σ◦ψkj = µσj+1 for 1 ≤ j ≤ k − 1. Hence, we may rewrite

x(λ, σ ◦ ψk, α) = −(−1)σSαS∗αS
∗
µσ2 ...µ

σ
k
⊗ Sµσ2 ⊗ · · · ⊗ Sµσk .

By the Cuntz-Krieger relation, we have∑
α∈s(λ)Λ

eσ(1)

SαS
∗
α = ps(λ) = ps(µσk ),

and hence

(23) S∗µσ2 ...µσk
⊗ Sµσ2 ⊗ · · · ⊗ Sµσk −

∑
α∈s(λ)Λ

eσ(1)

x(µσ2 . . . µ
σ
k , σ ◦ ψk, α) = 0
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The single-exit condition and the unique factorisation property guarantee that each

S∗µσ2 ...µσk
⊗ Sµσ2 ⊗ · · · ⊗ Sµσk

occurs exactly once in the first summand of the right-hand side of (20) as µ ranges over Λ1k and σ
ranges over Σk. The factorisation property shows that for fixed µ and σ, a term x(λ, σ′, α) is of the
form

x⊗ Sµσ2 ⊗ · · · ⊗ Sµσk

for some x ∈ C∗(Λ) only if σ′ = σ ◦ ψk, λ = µσ2 . . . µ
σ
k and α ∈ s(λ)Λeσ(1) .

Hence we may formally rewrite

b(ck) =
∑
µ∈Λ1k

∑
σ∈Σk

(−1)σ
(
S∗µσ2 ...µσk

⊗ Sµσ2 ⊗ · · · ⊗ Sµσk −
∑

α∈s(µσk )Λ
eσ(1)

x(µσ2 . . . µ
σ
k , σ ◦ ψk, α)

)
,

which formally collapses to zero by (23).

One can check relatively easily, using the approximate identity
∑

µ∈Λ1k SµS
∗
µ for C∗(Λ), that the

infinite sums involved in the definition of ck and the formal calculations in this proof make sense in
the multiplier algebra of the k + 1-fold tensor power of C∗(Λ). �

Closedness

To show that for all a1, . . . , ak ∈ A we have

τ̃ω(Γ[D, a1] · · · [D, ak](1 +D2)−k/2) = 0

it suffices to prove the result for generators of the algebra. So let Tµj ,νj = SµjS
∗
νj , j = 1, . . . , k, be

generators. Then

[D, Tµj ,νj ] = γ(idj) = i

k∑
m=1

γmnm,j Tµj ,νj

where dj = (n1,j , . . . , nk,j) is the degree of Tµj ,νj . With this notation we have

τ̃ω(Γ[D, Tµ1,ν1 ] · · · [D, Tµk,νk ](1 +D2)−k/2)

= ipτ̃ω

Γ(
∑
j1

γj1nj1,1) · · · (
∑
jk

γjknjk,k)Tµ1,ν1 · · ·Tµk,νk(1 +D2)−k/2

 .(24)

Now Γ = ωC⊗ 1 where ωC is the (representation of) the complex volume form in the Clifford algebra.
Since the only products of generators of the Clifford algebra with non-zero trace are multiples of the
identity, the only surviving terms on the right hand side of Equation (24) when we expand the products
are those with precisely one of each generator γj . Thus
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τ̃ω(Γ[D, Tµ1,ν1 ] · · · [D, Tµk,νk ](1 +D2)−k/2)

= ipτ̃ω

Γ
∑
σ∈Sk

γσ(1)nσ(1),1 · · · γσ(k)nσ(k),k)Tµ1,ν1 · · ·Tµk,νk(1 +D2)−k/2


= ip−[(p+1)/2]τ̃ω

∑
σ∈Sk

(−1)σnσ(1),1 · · ·nσ(k),k)Tµ1,ν1 · · ·Tµk,νk(1 +D2)−k/2


= ip−[(p+1)/2] det(nj,k)τ̃ω

(
Tµ1,ν1 · · ·Tµk,νk(1 +D2)−k/2

)
Now, the trace τ̃ω(Tµ1,ν1 · · ·Tµk,νk(1+D2)−k/2) = τ(Tµ1,ν1 · · ·Tµk,νk) is zero unless Tµ1,ν1 · · ·Tµk,νk ∈ F ,
since τ is gauge invariant. This is equivalent to

k∑
j=1

dj = 0⇔ ∀ l
k∑

m=1

nl,m = 0.

Hence the first, say, column of the matrix (nj,k) is a linear combination of the other columns, and
det(nj,k) = 0. Hence for any generators Tµj ,νj = SµjS

∗
νj , we have

τ̃ω(Γ[D, Tµ1,ν1 ] · · · [D, Tµk,νk ](1 +D2)−k/2) = 0.

Reality

We take the complex Clifford algebra Cliffk to be generated by k elements γj , j = 1, . . . , k such that
(γj)∗ = −γj and

γjγl + γlγj = −2δl,jId.
We make some further specifications on the generators consistent with these conventions. Denote by
j the antilinear operator on X such that

jx = j

 x1
...

x2[k/2]

 =

 x∗1
...

x∗
2[k/2]

 .

Let s(k) = [k2 ](k + 1)− k and label the generators of the Clifford algebra so that

γj = jγjj =
{

(−1)s(k)γj j odd
(−1)s(k)+1γj j even

Observe that s(k) is even only when k = 4n, so except for these dimensions the odd generators have
complex entries and are invariant under transpose, while the even generators have real entries and are
antisymmetric. In dimensions 4n the situation is of course reversed.

Let χ = γ2γ4 · · · γ2[k/2] be the product of the even generators (take χ = 1 when k = 1). Since the
entries of χ are real for all k (if k = 4n there are 2n factors in χ and so the entries of χ are real) we
have

χ̄ = χ.

Using (γj)∗ = −γj we find χ∗ = (−1)[k/2]([k/2]+1)/2χ. We then define

J := χ ◦ j = j ◦ χ.
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Lemma 4.3. The operator J satisfies J2 = ε, JD = ε′DJ and for k even JΓ = ε′′ΓJ , where ε, ε′, ε′′

are given in the table in Equation (17).

Proof. To check the sign ε, one needs only J∗J = 1 (which is straightforward) and

J∗ = j∗ ◦ χ∗ = (−1)[k/2]([k/2]+1)/2j ◦ χ = (−1)[k/2]([k/2]+1)/2J.

The sign can now be easily checked. The sign ε′′, in even dimensions, arises because j preserves the
±1 eigenspace decomposition of ωC, and so commutes with ωC, while ωCχ = (−1)k/2χωC.

For ε′ this is more subtle. We require the straightforward identity jΦnj = Φ−n which may be checked
on generators. Then we compute

JDΦnJ
∗ = J(

∑
j

iγjnj)ΦnJ
∗ = χ(−i

∑
j

jγjjnj)jΦnJ
∗

= −iχ

∑
j odd

(−1)s(k)γjnj +
∑
j even

(−1)s(k)+1γjnj

 jΦnJ
∗

= −i(−1)[(k+1)/2](k+2)
∑
j

γjnjJΦnJ
∗ = (−1)[(k+1)/2](k+2)DΦ−n.(25)

Using the orthogonality of the Φn, for any x ∈ DomD we have

JDJ∗x =
∑
n∈Zk

JDΦnJ
∗x = (−1)[(k+1)/2](k+2)

∑
n∈Zk

DΦ−nx = (−1)[(k+1)/2](k+2)Dx.

The reader will check that the sign appearing here agrees with the values of ε′ in the table above. �

Theorem 4.4. Let (Λ, d) be a connected, locally convex, locally finite graph with no sources, a faithful
k-graph trace, satisfying the single exit condition and having finitely generated K-theory. Then the
gauge spectral triple (A,H,D) of E satisfies the (semifinite, nonunital) Conditions 1 to 9.
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