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THE NONCOMMUTATIVE GEOMETRY OF k-GRAPH C∗-ALGEBRAS

DAVID PASK, ADAM RENNIE, AND AIDAN SIMS

Abstract. This paper is comprised of two related parts. First we discuss which k-graph
algebras have faithful traces. We characterise the existence of a faithful semifinite lower-
semicontinuous gauge-invariant trace on C∗(Λ) in terms of the existence of a faithful graph
trace on Λ.

Second, for k-graphs with faithful gauge invariant trace, we construct a smooth (k,∞)-
summable semifinite spectral triple. We use the semifinite local index theorem to compute
the pairing with K-theory. This numerical pairing can be obtained by applying the trace to a
KK-pairing with values in the K-theory of the fixed point algebra of the T

k action. As with
graph algebras, the index pairing is an invariant for a finer structure than the isomorphism
class of the algebra.

1. Introduction

In this paper we generalise the construction of semifinite spectral triples for graph algebras of
[PRen] to the C∗-algebras of higher-rank graphs, or k-graphs. Experience with k-graph algebras
has shown that from a C∗-algebraic point of view they tend to behave very much like graph
C∗-algebras. Consequently the transition from graph C∗-algebras to k-graph C∗-algebras often
appears quite simple. The subtlety generally lies in the added combinatorial complexity of
k-graphs, and in particular in identifying the right higher-dimensional analogues of the graph-
theoretic conditions which arise in the one-dimensional case. This experience is borne out again
in the current paper: once the appropriate k-graph theoretic conditions have been identified,
the generalisations of the constructions in [PRen] to higher-rank graphs turn out to be mostly
straightforward.

However, the pay-offs from carrying through this analysis are significant from the points of view
of both noncommutative geometry and k-graph algebra theory.

The pay-off for noncommutative geometry is that our analysis allows us to construct infinitely
many examples of (semifinite) spectral triples of every integer dimension k ≥ 1 (k = 1 is
contained in [PRen]). These spectral triples are generically semifinite, and so come from KK
classes rather than K-homology classes. Computations can be made very explicitly with these
algebras, and we use this to relate the semifinite index pairing to the KK-index for these

Date: December 23, 2005.
1991 Mathematics Subject Classification. Primary 46L05.
Key words and phrases. Graph algebra, spectral triple, index theorem, KK-theory.
The last two authors were supported by Australian Research Council Australian Postdoctoral Fellowships.

In addition, AR was supported by Statens Naturvidenskabelige Forskningsr̊ad, Denmark.
1

http://arxiv.org/abs/math.OA/0512438v2


2 DAVID PASK, ADAM RENNIE, AND AIDAN SIMS

examples. This has led to a general picture of the relationship between semifinite index theory
and KK-theory, [KNR]. From our point of view, k-graph algebras are sufficiently generic to
reveal the relationship between KK-theory and semifinite index theory. We highlight this at
the end of Section 7.

The connections between non-commutative geometry and classical (commutative) differential
geometry are still a subject of intense research (and speculation). This paper helps to illuminate
these connections in two ways. The first, and always the most important for understanding the
extension of geometry to the noncommutative setting, is index theory. We relate an analytic
index to a KK-index with values in the K-theory of the fixed point algebra. This KK-index
is far better adapted to topological interpretation, and furthermore exists in greater generality.

The second connection between this paper and classical geometry is less deep, but is a key tool
in our construction. The group Tk acting on a k-graph algebra is a Lie group. We use the action
of Tk to ‘push forward’ the Dirac operator on Tk to a Dirac operator for a k-graph algebra.
While we have done this only for the (spin) Dirac operator of the simplest spin structure on
Tk, the possibility also exists for repeating our construction for every spinc structure on Tk, as
well as the Hodge-de Rham operator, and other twisted Dirac operators. It is an interesting
question to determine to what extent this ‘pushing forward’ operation can be systematised.

The pay-off for k-graph algebra theory is that we obtain detailed information about semifinite
traces on k-graph algebras. To construct a semifinite spectral triple one requires a faithful
semifinite trace on the underlying C∗-algebra. Hence our first step is to investigate when such
a trace exists on a k-graph algebra. We characterise faithful semifinite gauge-invariant traces
on C∗(Λ) in terms of graph traces on Λ (cf. [H, PRen]). In particular, this represents a first
systematic exploration of gauge-invariant traces on C∗-algebras associated to graphs of arbitrary
rank (see Section 3).

In the appendix, we also identify a (fairly restrictive) class of k-graphs which admit faithful
graph traces, demonstrate that their C∗-algebras are Morita equivalent to direct sums of alge-
bras of continuous functions on tori of rank 0, . . . , k, and calculate their K-theory. For graph
algebras this is not new because the K-theory of graph algebras is completely understood
[RSz]. However, only for 2-graphs have general K-theory computations recently emerged [E].
Consequently any advances on K-theory for general k-graph algebras are significant.

Outline. The paper is arranged a follows. In Section 2 we review the basic definitions of
k-graphs and k-graph algebras. In Section 3 we show that a k-graph algebra C∗(Λ) admits
a faithful, semifinite, lower-semicontinuous, gauge-invariant trace if and only if Λ admits a
faithful graph trace (in the Appendix, we identify a substantial class of k-graphs which admit
such a graph trace, show that they are Morita equivalent to commutative C∗-algebras, and
hence compute their K-theory).

Section 4 reviews the definitions we require pertaining to semifinite spectral triples. In Section 5
we construct a Kasparov module for the C∗-algebra of any locally finite, locally convex k-graph
with no sinks. This is a very general construction, and the resulting Kasparov module is even
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iff k is an even integer. In Section 6 we construct (k,∞)-summable spectral triples for k-graph
algebras with faithful trace.

The von Neumann algebra constructed as part of our spectral triple plays the role of the crossed
product of the (von Neumann completion of the) graph algebra by the Tk action. The precise
relationship is not clear to us, but we suspect the two are isomorphic.

In Section 7 we use these spectral triples to compute index pairings and compare them with
the Kasparov product as in [PRen]. By example we indicate how the semifinite index can be
used to obtain more refined information than the usual Fredholm index.

Acknowledgements The second author would like to thank Ian Putnam for bringing the K-
theory constructions of Section 7 to his attention. We would also like to thank our referee for
a careful reading of the manuscript and detailed comments leading to significant improvements
in the exposition.

2. k-Graph C∗-Algebras

2.1. Higher-rank graphs and their C∗-algebras. In this subsection we outline the basic
notation and definitions of k-graphs and their C∗-algebras. We refer the reader to [RSY] for a
more thorough account.

Higher-rank graphs. Throughout this paper, we regard Nk as a monoid under pointwise
addition. We denote the usual generators of Nk by e1, . . . , ek, and for n ∈ Nk and 1 ≤ i ≤ k,
we denote the ith coordinate of n by ni ∈ N; so n =

∑
niei. For m,n ∈ Nk, we write m ≤ n if

mi ≤ ni for all i. By m < n, we mean m ≤ n and m 6= n. We use m ∨ n and m ∧ n to denote,
respectively, the coordinate-wise maximum and coordinate-wise minimum of m and n; so that
m ∧ n ≤ m,n ≤ m ∨ n and these are respectively the greatest lower bound and least upper
bound of m,n in Nk.

Definition 2.1 (Kumjian-Pask [KP]). A graph of rank k or k-graph is a pair (Λ, d) consisting
of a countable category Λ and a degree functor d : Λ → Nk which satisfy the following fac-
torisation property: if λ ∈ Mor(Λ) satisfies d(λ) = m + n, then there are unique morphisms
µ, ν ∈ Mor(Λ) such that d(µ) = m, d(ν) = n, and λ = µ ◦ ν.

The factorisation property ensures (see [KP]) that the identity morphisms of Λ are precisely
the morphisms of degree 0; that is {ido : o ∈ Obj(Λ)} = d−1(0). This means that we may
identify each object with its identity morphism, and we do this henceforth. This done, we can
regard Λ as consisting only of its morphisms, and we write λ ∈ Λ to mean λ ∈ Mor(Λ).

Since we are thinking of Λ as a kind of graph, we write r and s for the codomain and domain
maps of Λ respectively. We refer to elements of Λ as paths, and to the paths of degree 0 (which
correspond to the objects of Λ as above) as vertices. Extending these conventions, we refer to
the elements of Λ with minimal nonzero degree (that is d−1({e1, . . . , ek}) as edges.
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Notation 2.2. To try to minimise confusion, we will always use u, v, w to denote vertices, e, f
to denote edges, and lower-case Greek letters λ, µ, ν, etc. for arbitrary paths. We will also drop
the composition symbol, and simply write µν for µ ◦ ν when the two are composable.

Warning: because Λ is a category, composition of morphisms reads from right to left. Hence

paths µ and ν in Λ can be composed to form µν if and only if r(ν) = s(µ), and in this case,

r(µν) = r(µ) and s(µν) = s(ν). This is the reverse of the convention for directed graphs, used

in [BPRS, KPR, KPRR, PRen], so the reader should beware. In particular the roles of sources

and sinks, and of ranges and sources, are opposite to those in [PRen].

Definition 2.3. For each n ∈ Nk, we write Λn for the collection {λ ∈ Λ : d(λ) = n} of paths
of degree n.

The range and source r, s are thus maps from Λ to Λ0, and if v ∈ Λ0, then r(v) = v = s(v).

Given λ ∈ Λ and S ⊂ Λ, it makes sense to write λS for {λσ : σ ∈ S, r(σ) = s(λ)}, and likewise
Sλ = {σλ : σ ∈ S, s(σ) = r(λ)}. In particular, if v ∈ Λ0, then vS is the collection of elements
of S with range v, and Sv is the collection of elements of S with source v.

Definition 2.4. Let (Λ, d) be a k-graph. We say that Λ is row-finite if |vΛn| < ∞ for each
v ∈ Λ0 and n ∈ Nk. We say that Λ is locally-finite if it is row-finite and also satisfies |Λnv| <∞
for all v ∈ Λ0 and n ∈ Nk. We say that Λ has no sources (resp. no sinks) if vΛn (resp. Λnv)
is nonempty for each v ∈ Λ0 and n ∈ Nk. Finally, we say that Λ is locally convex if, for each
edge e ∈ Λei, and each j 6= i in {1, . . . , k}, we have s(e)Λej = ∅ only if r(e)Λej = ∅.

As in [RSY], for locally convex k-graphs, we use the notation Λ≤n to denote the collection

Λ≤n := {λ ∈ Λ : d(λ) ≤ n, µ ∈ s(λ)Λ and d(λµ) ≤ n implies µ = s(λ)}.
Intuitively, Λ≤n is the collection of paths whose degree is “as large as possible” subject to being
dominated by n. In a 1-graph, Λ≤n is the set of paths λ ∈ Λ whose length is at most n and is
less than n only if s(λ) receives no edges. The significance of this is that the partial isometries
associated to distinct paths in Λ≤n have orthogonal range projections (cf. relation (CK4)
below). For more on the importance of Λ≤n, see [RSY].

Ωk,m and boundary paths. For k ≥ 1 and m ∈ (N ∪ {∞})k, we define a k-graph Ωk,m as
follows:

Ω0
k,m = {n ∈ Nk : n ≤ m} Ωn

k,m = {(p, q) ∈ Nk : p, q ∈ Ω0
k,m, q − p = n}

r(p, q) = p, s(p, q) = q, (p, q) ◦ (q, n) = (p, n).

See Figure 1 for a “picture” of Ω3,(∞,2,1).

Each path λ of degree p in a k-graph Λ determines a degree-preserving functor λ̂ from Ωk,p

to Λ as follows: the image λ̂(m,n) of the morphism (m,n) ∈ Ωk,p is the unique morphism in

Λn−m such that there exist µ ∈ Λm and ν ∈ Λp−n satisfying λ = µλ̂(m,n)ν. (The existence and

uniqueness of λ̂(m,n) is guaranteed by the factorisation property).
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In fact for each p ∈ Nk, the map λ 7→ λ̂ is a bijection between Λp and the set of degree-
preserving functors from Ωk,p to Λ. In practise, we just write λ(m,n) for the segment λ̂(m,n)
of λ described in the previous paragraph, and we write λ(m) for the range of the path λ(m,n),
which we think of as the vertex on λ at position m. If λ ∈ Λp and 0 ≤ m ≤ n ≤ p, then

λ = λ(0, m)λ(m,n)λ(n, p), s(λ(m,n)) = λ(n) and r(λ(m,n)) = λ(m).

We extend this correspondence between paths and degree-preserving functors to define the
notion of a boundary path in a k-graph.

Definition 2.5. A boundary path of a k-graph Λ is a degree-preserving functor x : Ωk,m → Λ
such that

if mi <∞, n ∈ Nk, n ≤ m and ni = mi, then x(n)Λei = ∅;
so the directions in which x is finite are those in which it cannot be extended. If x : Ωk,m → Λ
is a boundary path, we denote m by d(x), and x(0) by r(x). We write Λ≤∞ for the set of all
boundary paths of Λ.

Note that if λ ∈ Λ satisfies s(λ)Λn = ∅ for all n > 0 (that is, if s(λ) is a source in Λ), then

the graph morphism λ̂ : Ωk,d(λ) → Λ discussed above belongs to Λ≤∞; we think of λ itself as a
boundary path of Λ.

Definition 2.6. An end of Λ is a boundary path x ∈ Λ≤∞ such that for all n ≤ d(x), r(x)Λn =
{x(0, n)}. We denote the set of ends of Λ by Ends(Λ).

Remarks 2.7. If x is an end of Λ, then r(x)Λ≤n = {x(0, n ∧ d(x))} for all n ∈ Nk.

Skeletons. To draw a k-graph, we use its skeleton. The skeleton of a k-graph Λ is the
directed graph whose vertices and edges are those of Λ, but with the k different types of edges
distinguished using k different colours. In this paper, we use solid lines for edges of degree e1,
dashed lines for edges of degree e2, and dotted lines for edges of degree e3. For example, the
skeleton of Ω3,(∞,2,1) is presented in Figure 1

The factorisation property says that if e and f are edges of degree ei and ej respectively such
that s(e) = r(f), then the path ef can be expressed in the form f ′e′ where d(f ′) = ej and
d(e′) = ei. In the skeleton for Ω3,(∞,2,1) there is just one way this can happen; so the skeleton
is actually a commuting diagram in the category, and although there appear to be many ways
to get from (1, 2, 1) to (0, 0, 0), for example, each of these paths yields the same morphism in
the category, so there is really just one path in Ω3,(∞,2,1) from (1, 2, 1) to (0, 0, 0).

The information determining the factorisation property is not always included in the skeleton,
and it must then be specified separately as a set of factorisation rules. The uniqueness of
factorisations ensures that amongst the factorisation rules for the skeleton of a k-graph, each
composition ef where e and f are composable edges of different colours will appear exactly
once. A set of factorisation rules for a skeleton with this property is referred to as an allowable
factorisation regime.
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Figure 1. The skeleton of Ω3,(∞,2,1)

For example, in the 1-skeleton of Figure 2 the allowable factorisation regimes are: {ef =
he, kf = hk} and {ef = hk, kf = he}).
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Figure 2. A skeleton that admits two distinct factorisation regimes

A skeleton together with an allowable factorisation regime determines at most one k-graph.
When k = 2, each skeleton and allowable factorisation regime determines a unique k-graph.
For k ≥ 3, there is an additional associativity condition on the factorisation rules which must
be verified [FS]; but the issue does not arise in the examples we give in this paper.

Cuntz-Krieger families and C∗(Λ). As with directed graphs, we are interested in higher-
rank graphs because we can associate to each one a C∗-algebra of Cuntz-Krieger type.

Definition 2.8. Let (Λ, d) be a row-finite locally convex k-graph. A Cuntz-Krieger Λ-family is
a collection {sλ : λ ∈ Λ} of partial isometries satisfying

(CK1) {sv : v ∈ Λ0} is a collection of mutually orthogonal projections;
(CK2) sµsν = sµν for all µ, ν ∈ Λ with s(µ) = r(ν);
(CK3) s∗λsλ = ss(λ) for all λ ∈ Λ; and
(CK4) sv =

∑
λ∈vΛ≤n sλs

∗
λ for all v ∈ Λ0 and n ∈ Nk.

As a point of notation, we will henceforth denote the vertex projection sv by pv to remind
ourselves that it is a projection.
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The Cuntz-Krieger algebra of Λ, denoted C∗(Λ), is the universal C∗-algebra generated by a
Cuntz-Krieger family {sλ : λ ∈ Λ}. By this we mean that given any other Cuntz-Krieger
Λ-family {tλ : λ ∈ Λ}, there is a homomorphism πt satisfying πt(sλ) = tλ for all λ ∈ Λ. By
[RSY, Proposition 3.5], if µ, ν ∈ Λ, then s∗µsν =

∑
µα=νβ,d(µα)=d(µ)∨d(ν) sαs

∗
β, and hence ([RSY,

Remarks 3.8(1)]),

(1) C∗(Λ) = span{sαs
∗
β : s(α) = s(β)}.

For the details of the next two paragraphs, see [RSY, page 109].

The universal property of C∗(Λ) guarantees that there is an action γ : Tk → Aut(C∗(Λ))

satisfying γz(sλ) = zd(λ)sλ := z
d(λ)1
1 ·zd(λ)2

2 · · · zd(λ)k

k sλ and hence γz(pv) = pv. We denote the fixed
point algebra for γ by F , and Φ denotes the faithful conditional expectation Φ : C∗(Λ) → F
determined by Φ(a) =

∫
Tk γz(a) dµ(z).

We have F = span{sµs
∗
ν : d(µ) = d(ν), s(µ) = s(ν)} and Φ is determined by Φ(sµs

∗
ν) =

δd(µ),d(ν)sµs
∗
ν . For each n ∈ Nk, we write Fn := span{sµs

∗
ν : d(µ) = d(ν), µ, ν ∈ Λ≤n, s(µ) =

s(ν)}. Then each Fn is isomorphic to a direct sum of matrix algebras and algebras of compact

operators, and F =
⋃
Fn is an AF algebra.

3. k-graph traces and faithful traces on C∗(Λ)

In this section we investigate conditions which give rise to faithful traces on C∗(Λ) for a locally
convex locally finite k-graph Λ. As with the C∗-algebras of directed graphs, necessary and
sufficient conditions for the existence of faithful traces on a k-graph algebra are hard to come
by. We denote by A+ the positive cone in a C∗-algebra A, and we use extended arithmetic on
[0,∞] so that 0 ×∞ = 0. From [PhR] we take the basic definition:

Definition 3.1. A trace on a C∗-algebra A is a map τ : A+ → [0,∞] satisfying

1) τ(a+ b) = τ(a) + τ(b) for all a, b ∈ A+

2) τ(λa) = λτ(a) for all a ∈ A+ and λ ≥ 0

3) τ(a∗a) = τ(aa∗) for all a ∈ A

We say: that τ is faithful if τ(a∗a) = 0 ⇒ a = 0; that τ is semifinite if {a ∈ A+ : τ(a) < ∞}
is norm dense in A+ (or that τ is densely defined); that τ is lower semicontinuous if whenever
a = limn→∞ an in norm in A+ we have τ(a) ≤ lim infn→∞ τ(an).

We may extend a (semifinite) trace τ by linearity to a linear functional on (a dense subspace
of) A. Observe that the domain of definition of a densely defined trace is a two-sided ideal
Iτ ⊂ A. The proof of the following Lemma is identical to that of the analogous result for graph
algebras [PRen, Lemma 3.2].
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Lemma 3.2. Let (Λ, d) be a row-finite locally convex k-graph and let τ : C∗(Λ) → C be a
semifinite trace. Then the dense subalgebra

Ac := span{sµs
∗
ν : µ, ν ∈ Λ}

is contained in the domain Iτ of τ .

Recall from [Si] that a loop with an entrance is a path λ ∈ Λ with r(λ) = s(λ) such that
d(λ) ≥ ei for some 1 ≤ i ≤ k, together with an e ∈ Λei with r(e) = r(λ) but λ(0, ei) 6= e.

Lemma 3.3. Let (Λ, d) be a row-finite locally convex k-graph.

(i) If C∗(Λ) has a faithful semifinite trace then no loop can have an entrance.

(ii) If C∗(Λ) has a gauge-invariant, semifinite, lower semicontinuous trace τ then τ ◦ Φ = τ
and

τ(sµs
∗
ν) = δµ,ντ(ps(µ)).

In particular, if τ |C∗({sµs∗µ:µ∈Λ}) = 0 then τ = 0.

Proof. The entrance condition implies that λ(0, ei) and the entrance e are distinct paths of
degree ei with the same range, and it follows from (CK3) and (CK4) that

s∗λsλ = ps(λ) = pr(λ) ≥ sλs
∗
λ + ses

∗
e.

If τ is a trace on C∗(Λ), we therefore have τ(s∗λsλ) ≥ τ(sλs
∗
λ) + τ(ses

∗
e), and it follows from

Lemma 3.2 and the trace property that τ(s∗ese) = τ(ses
∗
e) = 0. Theorem 3.15 of [RSY] implies

that s∗ese 6= 0 so τ is not faithful.

The proof of the second part is the same as [PRen, Lemma 3.3], but for clarity we remind the
reader how the final statement arises. If τ is gauge invariant we have

τ(sµs
∗
ν) = τ(γz(sµs

∗
ν)) = zd(µ)−d(ν)τ(sµs

∗
ν)

for all z ∈ Tk. Hence τ(sµs
∗
ν) is zero unless d(µ) = d(ν), and so τ = τ ◦ Φ. Moreover if

d(µ) = d(ν), then using the trace property,

τ(sµs
∗
ν) = τ(s∗νsµ) = δν,µτ(ps(ν)) = δν,µτ(s

∗
νsν).

This proves that if τ |span{sµs∗µ:µ∈Λ} = 0 then τ |Ac = 0. The details of extending this to the

C∗-completion are as in [PRen]. �

Whilst the condition that no loop has an entrance is necessary for the existence of a faithful
semifinite trace, it is not sufficient. For example, let Λ be any 2-graph whose skeleton is the one
illustrated in Figure 3 (there are many allowable factorisation regimes to choose from). Then
Λ is locally convex and locally finite, contains no sinks or sources, and contains no cycles at
all, so certainly no cycles with entrances, yet C∗(Λ) does not admit a faithful semifinite trace.
To see why note that (CK4) forces sgs

∗
g = pv = ses

∗
e + sfs

∗
f so if τ is a trace on C∗(Λ) then the

trace property forces

τ(pv) = τ(sgs
∗
g) = τ(pw) and τ(pv) = τ(ses

∗
e) + τ(sfs

∗
f) = 2τ(pw),
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Figure 3. A 2-graph whose C∗-algebra does not admit a faithful semifinite trace

and hence τ(pw) = 0.

The situation illustrated in Figure 3 is more subtle than those which can arise for graph C∗-
algebras. However, as with directed graphs, the obstructions to the existence of a faithful
semifinite trace on a k-graph algebra can be expressed most naturally for general k-graphs Λ
in terms of a function gτ : Λ0 → R+ which arises naturally from each trace τ on C∗(Λ).

Lemma 3.4. Let Λ be a locally convex row-finite k-graph, and suppose that τ is a semifinite
trace on C∗(Λ). Then the function gτ : Λ0 → R+ defined by gτ (v) := τ(pv) satisfies gτ (v) =∑

λ∈vΛ≤n gτ (s(λ)) for all v ∈ Λ0 and n ∈ Nk.

Proof. Fix v ∈ Λ0 and n ∈ Nk. By (CK4), we have pv =
∑

λ∈vΛ≤n sλs
∗
λ. Hence

τ(pv) =
∑

λ∈vΛ≤n

τ(sλs
∗
λ) =

∑

λ∈vΛ≤n

τ(s∗λsλ) =
∑

λ∈vΛ≤n

τ(ps(λ)),

and the result follows from the definition of gτ . �

Returning to the example of Figure 3 we can see that if τ is a trace on C∗(Λ) then gτ (v) must
simultaneously be equal to gτ (w) and 2gτ(w), forcing gτ (w) and hence τ(pw) to be equal to
zero.

Motivated by Lemma 3.4, we make the following definition (see [H] for the origins of this
definition):

Definition 3.5. Let Λ be a locally convex row-finite k-graph. A function g : Λ0 → R+ is called
a k-graph trace on Λ if it satisfies

(2) g(v) =
∑

λ∈vΛ≤n

g(s(λ)) for all v ∈ Λ0 and n ∈ Nk.

We say that g is faithful if g(v) 6= 0 for all v ∈ Λ0.

Remarks 3.6. Notice that if x is an end of Λ, then x(0)Λ≤n = {x(0, n)} for any n ≤ d(x). It
follows that each k-graph trace on Λ is constant on the vertices of x.

We want to be able to construct semifinite lower semicontinuous gauge-invariant traces on
C∗(Λ) from k-graph traces on Λ. The idea is to use (2) to define a trace on C∗(Λ) by

τg

( ∑
µ,ν∈F aµ,νsµs

∗
ν

)
=

∑
µ∈F aµ,µg(s(µ)). There are two problems to overcome: is τg well-

defined in the first place, and when is τg faithful? To address these problems, we establish that
there is a faithful conditional expectation Ψ on C∗(Λ) satisfying Ψ(sµs

∗
ν) = δµ,νsµs

∗
µ. We would
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like to thank the referee for pointing out the straightforward proof of this result appearing
below.

Proposition 3.7. Let Λ be a locally convex row-finite k-graph. There is a faithful conditional
expectation Ψ : C∗(Λ) → D := span{sλs

∗
λ : λ ∈ Λ} which satisfies Ψ(sλs

∗
µ) = δλ,µsλs

∗
λ for all

λ, µ ∈ Λ.

Proof. Averaging over the gauge action γ gives a faithful conditional expectation Φγ onto the
fixed point algebra C∗(Λ)γ = span{sµs

∗
ν : d(µ) = d(ν)}. For q ∈ Nk, p ≤ q and v ∈ Λ0,

let P (q, p, v) := {λ ∈ Λ≤q : s(λ) = v, d(λ) = p}. It is shown on page 109 of [RSY] that
Fq,p(v) := span{sµs

∗
ν : µ, ν ∈ P (q, p, v)}, is canonically isomorphic to K(ℓ2(P (q, p, v))), that for

fixed q, distinct Fq,p(v) are orthogonal, and that setting Fq :=
⊕

p,v Fq,p(v), we have

C∗(Λ)γ =
⋃

q∈Nk

Fq

This shows that C∗(Λ)γ is an AF algebra with maximal abelian subalgebra D. Let ΦD denote
the canonical expectation from C∗(Λ)γ onto its maximal abelian subalgebra. Then Ψ := ΦD◦Φγ

is the desired expectation. �

Proposition 3.8. Let Λ be a row-finite locally convex k-graph. Then there is a one-to-one
correspondence between faithful graph traces on Λ and faithful, semifinite, lower semicontinuous,
gauge invariant traces on C∗(Λ).

Proof. Given a faithful k-graph trace, the existence of Ψ : C∗(Λ) → span{SµS
∗
µ} given by

Proposition 3.7 shows that the functional τg : Ac → C defined by

τg(SµS
∗
ν) := δµ,νg(s(µ))

is well-defined. As in [PRen], one checks that τg is a gauge invariant trace on Ac and is faithful
because for a =

∑n
i=1 cµi,νi

Sµi
S∗

νi
∈ Ac we have a∗a ≥ ∑n

i=1 |cµi,νi
|2Sνi

S∗
νi

, so

〈a, a〉g := τg(a
∗a) = τg

( n∑

i=1

|cµi,νi
|2Sνi

S∗
νi

)
=

n∑

i=1

|cµi,νi
|2τg(Sνi

S∗
νi

) =

n∑

i=1

|cµi,νi
|2g(s(νi)) > 0.

(3)

by definition of τg.

Then 〈a, b〉g = τg(b
∗a) defines a positive definite inner product on Ac which makes it a Hilbert

algebra (that the left regular representation of Ac is nondegenerate follows from A2
c = Ac).

The rest of the proof is the same as [PRen, Proposition 3.9], except that we use the gauge
invariant uniqueness theorem for k-graphs, [RSY, Theorem 4.1], to show that we obtain faithful
representation of A = C∗(Λ) on the Hilbert space completion of Ac. �

The results of sections 4–7 below apply to any k-graph which admits a faithful graph trace. It
is therefore important to establish that there is a substantial class of k-graphs for any k with
this property, and how large the class is. This is in general a difficult question. The results of
[PRRS] show there is a substantial class of 2-graphs admitting faithful graph traces, but for
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arbitrary k there are, to our knowledge, no definitive results. In Appendix A we establish some
necessary conditions and one sufficient condition, which will prove useful in section 7.

4. Semifinite Spectral Triples

We begin with some semifinite versions of standard definitions and results. Let τ be a fixed
faithful, normal, semifinite trace on the von Neumann algebra N . Let KN be the τ -compact
operators in N (that is the norm closed ideal generated by the projections E ∈ N with τ(E) <
∞).

Definition 4.1. A semifinite spectral triple (A,H,D) relative to (N , τ) consists of a Hilbert
space H, a ∗-algebra A ⊂ N where N is a semifinite von Neumann algebra acting on H, and
a densely defined unbounded self-adjoint operator D affiliated to N such that

1) [D, a] is densely defined and extends to a bounded operator in N for all a ∈ A
2) a(λ−D)−1 ∈ KN for all λ 6∈ R and all a ∈ A
3) The triple is said to be even if there is Γ ∈ N such that Γ∗ = Γ, Γ2 = 1, DΓ + ΓD = 0, and
aΓ = Γa for all a ∈ A. Otherwise it is odd.

Definition 4.2. A semifinite spectral triple (A,H,D) is QCk for k ≥ 1 (Q for quantum) if for
all a ∈ A the operators a and [D, a] are in the domain of δk, where δ(T ) = [|D|, T ] is the partial
derivation on N defined by |D|. We say that (A,H,D) is QC∞ if it is QCk for all k ≥ 1.

Note. The notation is meant to be analogous to the classical case, but we introduce the
Q so that there is no confusion between quantum differentiability of a ∈ A and classical
differentiability of functions.

Remarks concerning derivations and commutators. By partial derivation we mean that
δ is defined on some subalgebra of N which need not be (weakly) dense in N . More precisely,
dom δ = {T ∈ N : δ(T ) is bounded}. We also note that if T ∈ N , one can show that [|D|, T ]
is bounded if and only if [(1 + D2)1/2, T ] is bounded, by using the functional calculus to show
that |D|− (1 +D2)1/2 extends to a bounded operator in N . In fact, writing |D|1 = (1 +D2)1/2

and δ1(T ) = [|D|1, T ] we have

dom δn = dom δn
1 for all n.

We also observe that if T ∈ N and [D, T ] is bounded, then [D, T ] ∈ N . Similar comments
apply to [|D|, T ], [(1 + D2)1/2, T ]. The proofs of these statements can be found in [CPRS2].

Definition 4.3. A ∗-algebra A is smooth if it is Fréchet and ∗-isomorphic to a proper dense
subalgebra i(A) of a C∗-algebra A which is stable under the holomorphic functional calculus.

Thus saying that A is smooth means that A is Fréchet and a pre-C∗-algebra. Asking for i(A)
to be a proper dense subalgebra of A immediately implies that the Fréchet topology of A is
finer than the C∗-topology of A (since Fréchet means locally convex, metrizable and complete.)
We will sometimes speak of A = A, particularly when A is represented on Hilbert space and
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the norm closure A is unambiguous. At other times we regard i : A →֒ A as an embedding of
A in a C∗-algebra. We will use both points of view.

It has been shown that if A is smooth in A then Mn(A) is smooth in Mn(A), [GVF, S]. This
ensures that the K-theories of the two algebras are isomorphic, the isomorphism being induced
by the inclusion map i. This definition ensures that a smooth algebra is a ‘good’ algebra,
[GVF], so these algebras have a sensible spectral theory which agrees with that defined using
the C∗-closure, and the group of invertibles is open.

Stability under the holomorphic functional calculus extends to nonunital algebras, since the
spectrum of an element in a nonunital algebra is defined to be the spectrum of this element in
the ‘one-point’ unitization, though we must of course restrict to functions satisfying f(0) = 0.
Likewise, the definition of a Fréchet algebra does not require a unit. The point of contact
between smooth algebras and QC∞ spectral triples is the following Lemma, proved in [R1].

Lemma 4.4. If (A,H,D) is a QC∞ spectral triple, then (Aδ,H,D) is also a QC∞ spectral
triple, where Aδ is the completion of A in the locally convex topology determined by the semi-
norms

qn,i(a) = ‖δndi(a)‖, n ≥ 0, i = 0, 1,

where d(a) = [D, a]. Moreover, Aδ is a smooth algebra.

We call the topology on A determined by the seminorms qni of Lemma 4.4 the δ-topology.

Whilst smoothness does not depend on whether A is unital or not, many analytical problems
arise because of the lack of a unit. As in [R1, R2, GGISV], we make two definitions to address
these issues.

Definition 4.5. An algebra A has local units if for every finite subset of elements {ai}n
i=1 ⊂ A,

there exists φ ∈ A such that for each i

φai = aiφ = ai.

Definition 4.6. Let A be a Fréchet algebra and Ac ⊆ A be a dense subalgebra with local units.
Then we call A a quasi-local algebra (when Ac is understood.) If Ac is a dense ideal with local
units, we call Ac ⊂ A local.

Quasi-local algebras have an approximate unit {φn}n≥1 ⊂ Ac such that φn+1φn = φn, [R1].

Example For a k-graph C∗-algebra A = C∗(Λ), Equation (1) shows that

Ac = span{SµS
∗
ν : µ, ν ∈ E∗ and s(µ) = s(ν)}

is a dense subalgebra. It has local units because

pvSµS
∗
ν =

{
SµS

∗
ν v = r(µ)

0 otherwise
.
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Similar comments apply to right multiplication by pr(ν). By summing the source and range
projections (without repetitions) of all Sµi

S∗
νi

appearing in a finite sum

a =
∑

i

cµi,νi
Sµi

S∗
νi

we obtain a local unit for a ∈ Ac. By repeating this process for any finite collection of such
a ∈ Ac we see that Ac has local units.

We also require that when we have a spectral triple the operator D is compatible with the
quasi-local structure of the algebra, in the following sense.

Definition 4.7. If (A,H,D) is a spectral triple, then we define Ω∗
D(A) to be the algebra gen-

erated by A and [D,A].

Definition 4.8. A local spectral triple (A,H,D) is a spectral triple with A quasi-local such that
there exists an approximate unit {φn} ⊂ Ac for A satisfying

Ω∗
D(Ac) =

⋃

n

Ω∗
D(A)n,

Ω∗
D(A)n = {ω ∈ Ω∗

D(A) : φnω = ωφn = ω}.

Remark A local spectral triple has a local approximate unit {φn}n≥1 ⊂ Ac such that, [R2],
φn+1φn = φnφn+1 = φn and φn+1[D, φn] = [D, φn]φn+1 = [D, φn]. This is the crucial property
we require to prove our summability results for nonunital spectral triples, to which we now
turn.

4.1. Summability. In the following, let N be a semifinite von Neumann algebra with faithful
normal trace τ . Recall from [FK] that if S ∈ N , the tth generalized singular value of S for each
real t > 0 is given by

µt(S) = inf{‖SE‖ : E is a projection in N with τ(1 − E) ≤ t}.

The ideal L1(N ) consists of those operators T ∈ N such that ‖T‖1 := τ(|T |) < ∞ where

|T | =
√
T ∗T . In the Type I setting this is the usual trace class ideal. We will simply write

L1 for this ideal in order to simplify the notation, and denote the norm on L1 by ‖ · ‖1. An
alternative definition in terms of singular values is that T ∈ L1 if ‖T‖1 :=

∫ ∞

0
µt(T )dt <∞.

Note that in the case where N 6= B(H), L1 is not complete in this norm but it is complete in
the norm ‖ · ‖1 + ‖ · ‖∞. (where ‖ · ‖∞ is the uniform norm). Another important ideal for us is
the domain of the Dixmier trace:

L(1,∞)(N ) =

{
T ∈ N : ‖T‖

L(1,∞)
:= sup

t>0

1

log(1 + t)

∫ t

0

µs(T )ds <∞
}
.

There are related ideals for p > 1: to describe them first set

ψp(t) =

{
t for 0 ≤ t ≤ 1

t1−
1
p for 1 ≤ t.
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Then define

L(p,∞)(N ) =

{
T ∈ N : ‖T‖

L(p,∞)
:= sup

t>0

1

ψp(t)

∫ t

0

µs(T )ds <∞
}
.

For p > 1 there is also the equivalent definition

L(p,∞)(N ) =

{
T ∈ N : sup

t>0

t

ψp(t)
µt(T ) <∞

}
.

If T ∈ L(p,∞)(N ), then T p ∈ L(1,∞)(N ).

We will suppress the (N ) in our notation for these ideals, as N will always be clear from

context. The reader should note that L(1,∞) is often taken to mean an ideal in the algebra Ñ
of τ -measurable operators affiliated to N . Our notation is however consistent with that of [C]
in the special case N = B(H). With this convention the ideal of τ -compact operators, K(N ),

consists of those T ∈ N (as opposed to Ñ ) such that

µ∞(T ) := lim
t→∞

µt(T ) = 0.

Definition 4.9. A semifinite local spectral triple is (k,∞)-summable if

a(D − λ)−1 ∈ L(k,∞) for all a ∈ Ac, λ ∈ C \ R.

Remark If A is unital, kerD is τ -finite dimensional. Note that the summability requirements
are only for a ∈ Ac. We do not assume that elements of the algebra A are all integrable in the
nonunital case. Strictly speaking, this definition describes local (k,∞)-summability, however
we use the terminology (k,∞)-summable to be consistent with the unital case.

We need to briefly discuss the Dixmier trace, but fortunately we will usually be applying it in
reasonably simple situations. For more information on semifinite Dixmier traces, see [CPS2].
For T ∈ L(1,∞), T ≥ 0, the function

FT : t 7→ 1

log(1 + t)

∫ t

0

µs(T )ds

is bounded. For certain generalised limits ω ∈ L∞(R+
∗ )∗, we obtain a positive functional on

L(1,∞) by setting

τω(T ) = ω(FT ).

This is the Dixmier trace associated to the semifinite normal trace τ , denoted τω, and we extend
it to all of L(1,∞) by linearity, where of course it is a trace. The Dixmier trace τω is defined on
the ideal L(1,∞), and vanishes on the ideal of trace class operators. Whenever the function FT

has a limit at infinity, all Dixmier traces return the value of the limit. We denote the common
value of all Dixmier traces on measurable operators by −

∫
. So if T ∈ L(1,∞) is measurable, for

any allowed functional ω ∈ L∞(R+
∗ )∗ we have

τω(T ) = ω(FT ) = −
∫
T.
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Example The Dirac operator on the k-torus. Let γj , j = 1, . . . , k, be generators of the Clifford
algebra of Rk with the usual Euclidean inner product. Form the Dirac operator on spinors

D =
∑k

j=1 γ
j ∂

∂θj , which acts on L2(Tk) ⊗ C2[k/2]
, and for n ∈ Zk, let n2 ∈ N denote the sum

n2 =
∑k

i=1 n
2
i of the squares of the coordinates of n. Then it is well known that the spectrum of

D2 consists of eigenvalues {n2 ∈ N}, where each n ∈ Zk is counted once. A careful calculation
taking account of the multiplicities, [La], shows that using the standard operator trace, the
function F(1+D2)−k/2 is

1

log(|{n : |n| ≤ N}|)
N∑

|n|=0

(1 + n2)−k/2 =
2[k/2]vol(Sk−1)

k logN

N∑

m=0

(1 +m2)−1/2 + o(1)

and this is bounded. Hence (1 + D2)−k/2 ∈ L(1,∞) and

Traceω((1 + D2)−k/2) = −
∫

(1 + D2)−k/2 =
2[k/2]vol(Sk−1)

k
=

2[k/2]vol(Sk−1)

(2π)kk
vol(Tk).

Numerous properties of local algebras are established in [R1, R2]. The introduction of quasi-
local algebras in [GGISV] led to a review of the validity of many of these results for quasi-local
algebras. Most of the summability results of [R2] are valid in the quasi-local setting. In addition,
the summability results of [R2] are also valid for general semifinite spectral triples since they
rely only on properties of the ideals L(p,∞), p ≥ 1, [C, CPS2], and the trace property. We quote
the version of the summability results from [R2] that we require below.

Proposition 4.10 ([R2]). Let (A,H,D) be a QC∞, local (k,∞)-summable semifinite spectral
triple. Let T ∈ N satisfy Tφ = φT = T for some φ ∈ Ac. Then

T (1 + D2)−k/2 ∈ L(1,∞).

For Re(s) > k, T (1 + D2)−s/2 is trace class. If the limit

(4) lim
s→k/2+

(s− k/2)τ(T (1 + D2)−s)

exists, then it is equal to
k

2
−
∫
T (1 + D2)−k/2.

In addition, for any Dixmier trace τω, the function

a 7→ τω(a(1 + D2)−k/2)

defines a trace on Ac ⊂ A.

5. Constructing a C∗-module and a Kasparov module

Let A = C∗(Λ) where Λ is a locally finite locally convex k-graph. Let F = C∗(Λ)γ be the
fixed point subalgebra for the gauge action. Finally, let Ac = span{sµs

∗
ν : µ, ν ∈ Λ} and let

Fc = span{sµs
∗
ν : d(µ) = d(ν)} = F ∩ Ac so that A and F are the C∗-completions of Ac and

Fc. Note that the expectation Φ : A → F outlined at the end of Section 2 restricts to an
expectation, also denoted Φ of Ac onto Fc.
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For q ∈ Q, we denote by [q] the integer part max{n ∈ Z : n ≤ q} of q. We make A2[k/2]
=

C2[k/2]⊗A a right inner product-F -module. The right action of F on A is by right multiplication.
The inner product is defined by

(x|y)R :=
2[k/2]∑

j=1

Φ(x∗jyj) ∈ F.

It is simple to check the requirements that (·|·)R defines an F -valued inner product on A2[k/2]
.

The requirement (x|x)R = 0 ⇒ x = 0 follows from the faithfulness of Φ.

Definition 5.1. Define X to be the completion of A2[k/2]
to a C∗-module over F for the C∗-

module norm

‖x‖2
X := ‖(x|x)R‖A = ‖(x|x)R‖F = ‖

2[k/2]∑

i=1

Φ(x∗ixi)‖F .

Define Xc to be the pre-C∗-module over Fc with linear space A2[k/2]

c and the inner product (·|·)R.

Remark Typically, the action of F does not map Xc to itself, so we may only consider Xc as
an Fc module. This is a reflection of the fact that Fc and Ac are quasilocal not local.

Remark Frequently we will define an operator T on the F module A, and implicitly extend T
to X by id2[k/2] ⊗T , where id2[k/2] is the identity operator in the matrix algebra M2[k/2](C).

Remark There is an irreducible representation γ of the complex Clifford algebra Cliffk =

Cliff(Ck) on C2[k/2]
, and tensoring this representation by the identity map on A, this extends

to a representation on X as adjointable operators. We employ the convention that

γlγj + γjγl := γ(el)γ(ej) + γ(ej)γ(el) = −2δlj id2[k/2] .

When k is even the operator ωC := i[(k+1)/2]γ1 · · · γk is self-adjoint, has ω2
C

= id2[k/2] and
γjωC = −ωCγ

j for j = 1, . . . , k. When k is odd, ωC is central in the Clifford algebra, and we
choose the representation with ωC = 1.

The map a 7→ 12[k/2] ⊗ a is an isometric inclusion of A into C2[k/2] ⊗ A = A2[k/2]
, which in turn

is dense in X by definition. The inclusion ι : A→ X is continuous since

‖a‖2
X = ‖Φ(a∗a)‖F ≤ ‖a∗a‖A = ‖a‖2

A.

We can also define the gauge action γ on A ⊂ X, and as

‖γz(a)‖2
X = ‖Φ((γz(a))

∗(γz(a)))‖F = ‖Φ(γz(a
∗)γz(a))‖F

= ‖Φ(γz(a
∗a))‖F = ‖Φ(a∗a)‖F = ‖a‖2

X ,

for each z ∈ Tk, the action of γz is isometric on A ⊂ X and so extends to a unitary Uz on X.
This unitary is F -linear and adjointable, and we obtain a strongly continuous action of Tk on
X, which we still denote by γ.
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For each n ∈ Zk, define an operator Φn on X by

Φn(x) =
1

(2π)k

∫

Tk

z−nγz(x)d
kθ, zj = eiθj , x ∈ X.

Observe that on generators we have

(5) Φn(SαS
∗
β) =

{
SαS

∗
β d(α) − d(β) = n

0 d(α) − d(β) 6= n
.

Remark If (Λ, d) is a finite k-graph with no cycles, then for n sufficiently large there are no
paths of degree n and so Φn = 0. This will obviously simplify many of the convergence issues
below.

The proof of the following Lemma is identical to that of [PRen, Lemma 4.2].

Lemma 5.2. The operators Φn are adjointable endomorphisms of the F -module X such that
Φ∗

n = Φn = Φ2
n and ΦnΦm = δn,mΦn. For each subset K ⊂ Zk, the sum

∑
n∈K Φn converges

strictly to a projection ΦK in the endomorphism algebra. Moreover, the projection ΦZk corre-
sponding to K = Zk is the identity operator on X.

Corollary 5.3. Let x ∈ X. Then with xn = Φnx the sum
∑

n∈Zk xn converges in X to x.

5.1. The Kasparov Module. As we did in Section 4, for n ∈ Zk, we write n2 =
∑k

j=1 n
2
j and

|n| =
√
n2.

The theory of unbounded operators on C∗-modules that we require is all contained in Lance’s
book, [L, Chapters 9,10]. We quote the following definitions (adapted to our situation).

Definition 5.4. Let Y be a right C∗-B-module. A densely defined unbounded operator D :
dom D ⊂ Y → Y is a B-linear operator defined on a dense B-submodule dom D ⊂ Y . The
operator D is closed if the graph

G(D) = {(x,Dx)R : x ∈ dom D}
is a closed submodule of Y ⊕ Y .

Given a densely defined unbounded operator D : dom D ⊂ Y → Y , define a submodule

dom D∗ := {y ∈ Y : ∃z ∈ Y such that ∀x ∈ dom D, (Dx|y)R = (x|z)R}.
Then for y ∈ dom D∗ define D∗y = z. Given y ∈ dom D∗, the element z is unique, so D∗ is
well-defined, and moreover is closed.

Definition 5.5. Let Y be a right C∗-B-module. A densely defined unbounded operator D :
dom D ⊂ Y → Y is symmetric if for all x, y ∈ dom D

(Dx|y)R = (x|Dy)R.

A symmetric operator D is self-adjoint if dom D = dom D∗ (and so D is necessarily closed).
A densely defined unbounded operator D is regular if D is closed, D∗ is densely defined, and
(1 + D∗D) has dense range.
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The extra requirement of regularity is necessary in the C∗-module context for the continuous
functional calculus, and is not automatically satisfied, [L, Chapter 9].

With these definitions in hand, we return to our C∗-module X. The proof of the following
Proposition is an exact analogue of [PRen, Proposition 4.6].

Proposition 5.6. Let X be the right C∗-F -module of Definition 5.1. Define XD ⊂ X to be the
linear space

XD = {x =
∑

n∈Zk

xn : ‖
∑

n∈Zk

n2(xn|xn)R‖ <∞}.

For x ∈ XD define

Dx =
∑

n∈Zk

γ(in)xn = i
∑

n∈Zk

k∑

j=1

γjnjxn.

Then D : XD → X is self-adjoint and regular.

Remark For n ∈ Zk, the restriction of the map D to ΦnX implements Clifford multiplication
by the vector in ∈ Ck. Any SαS

∗
β ∈ Ac is in XD and

DSαS
∗
β = i

k∑

j=1

γj(d(α)j − d(β)j)SαS
∗
β

as the reader will easily verify. Thus we have

D2Φnx =

k∑

j=1

n2
jΦnx = n2Φnx.

There is a continuous functional calculus for self-adjoint regular operators, [L, Theorem 10.9],
and we use this to obtain spectral projections for D2 at the C∗-module level. Let fm ∈ Cc(R)
be 1 in a small neighbourhood of m ∈ Z and zero on (−∞, m− 1/2] ∪ [m + 1/2,∞). Then it
is clear that ∑

n∈Zk, n2=m

Φn = fm(D2).

The next Lemma is the first place where we need our k-graph to be locally finite and have no
sinks. It is also the point where the generalisation from the graph case differs the most.

Lemma 5.7. Assume that the k-graph (Λ, d) is locally finite, locally convex and has no sinks.
For all a ∈ A and n ∈ Zk, aΦn ∈ End0

F (X), the compact endomorphisms of the right F -module
X. If a ∈ Ac then aΦn is finite rank.

Remarks 5.8. If we were employing the A-valued inner product on X, then each a ∈ A would
be compact, and Lemma 5.7 would be an immediate corollary of the fact that the compacts
form an ideal. However, with our choice of inner product, with values in F , no a ∈ A acts as a
compact endomorphism, except in some extreme examples.
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Proof. Let n ∈ Zk and write n = n1 + n2 with n1 ≥ 0 and n2 < 0. We will see that the precise
choice of n1, n2 is largely irrelevant. For v ∈ Λ0, let |v|n denote the number of paths ρ ∈ Λ with
d(ρ) = n and s(ρ) = v, i.e. |v|n = |Λnv|. Since Λ has no sinks and is locally finite, for all n and
all v we have 0 < |v|n <∞ .

Now define, for n = n1 + n2 as above,

Tv,n1,n2 =
∑

d(α)=n1,d(β)=−n2,s(α)=s(β),r(α)=v

1

|s(β)|−n2

ΘR
SαS∗

β ,SαS∗
β
,

where for x, y, z ∈ X

ΘR
x,yz := x(y|z)R,

defines a rank one operator. Observe that since Λ is locally finite this is a finite sum of
rank one operators and so finite rank. We claim that Tv,n1,n2 = pvΦn. It suffices to prove
that the difference pvΦn − Tv,n1,n2 vanishes on Xc ⊂ X. That is, we just need to show that
(pvΦn − Tv,n1,n2)SµS

∗
ν = 0 for all µ, ν. So first we compute, with q = d(α) ∨ d(µ),

S∗
αSµ =

∑

ασ=µρ,ασ∈Λq

SσS
∗
ρ

by [RSY, Proposition 3.5 and Remarks 3.8(2)]. Next consider

Φ(SβS
∗
αSµS

∗
ν) = Φ(Sβ

∑

ασ=µρ,ασ∈Λq

SσS
∗
ρS

∗
ν).

This is zero unless d(β) + d(σ) − d(ρ) − d(ν) = 0. Now d(σ) − d(ρ) = d(µ) − d(α) so

Φ(SβS
∗
αSµS

∗
ν) = δd(µ)−d(ν),d(α)−d(β)Sβ

∑

ασ=µρ,ασ∈Λq

SσS
∗
ρS

∗
ν .

Of course, d(α) − d(β) = n. Since each S∗
βSβ = ps(β), we can perform the sum over β:

∑

α,β

1

|s(β)|−n2

pvΘSαS∗
β ,SαS∗

β
SµS

∗
ν =

∑

α,β

1

|s(β)|−n2

δd(µ)−d(ν),npvSαS
∗
βSβ

∑

ασ=µρ,ασ∈Λq

SσS
∗
ρS

∗
ν

=
∑

α

δd(µ)−d(ν),npvSα

∑

ασ=µρ,ασ∈Λq

SσS
∗
ρS

∗
ν

=
∑

α

δd(µ)−d(ν),npv

∑

ασ=µρ,ασ∈Λq

SµSρS
∗
ρS

∗
ν .

If we suppose that a given α has no common extensions with µ, then this particular term in the
sum contributes zero. Summing over all α (of fixed length n1) with common extensions with µ
yields

∑

α

δd(µ)−d(ν),npv

∑

ασ=µρ,ασ∈Λq

SµSρS
∗
ρS

∗
ν = pv

∑

ρ∈Λq−d(µ),r(ρ)=s(µ)

SµSρS
∗
ρS

∗
ν = SµS

∗
ν .



20 DAVID PASK, ADAM RENNIE, AND AIDAN SIMS

Hence we conclude that
∑

α,β

1

|s(β)|−n2

pvΘSαS∗
β ,SαS∗

β
SµS

∗
ν = δd(µ)−d(ν),npvSµS

∗
ν

= pvΦnSµS
∗
ν .

As µ, ν were arbitrary paths, this shows that pvΦn is a finite rank endomorphism. For arbitrary
a =

∑
cjSµj

S∗
νj

, where the sum is finite, we may apply the same reasoning to each ps(νj) to see
that aΦn is finite rank for all a ∈ Ac.

To see that aΦk is compact for all a ∈ A, recall that every a ∈ A is a norm limit of a sequence
{ai}i≥0 ⊂ Ac. Thus for any n ∈ Zk aΦn = limi→∞ aiΦn and so is compact. �

Lemma 5.9. Assume that the k-graph (Λ, d) is locally finite and has no sinks. For all a ∈ A,
a(1 + D2)−1/2 is a compact endomorphism of the F -module X.

Proof. First let a = pv for v ∈ Λ0. Then the sum

Rv,N := pv

N∑

|n|=0

Φn(1 + n2)−1/2

is finite rank, by Lemma 5.7. We will show that the sequence {Rv,N}N≥0 is convergent with
respect to the operator norm ‖ · ‖End of endomorphisms of X. Indeed, assuming that M > N ,

‖Rv,N − Rv,M‖End = ‖pv

M∑

|n|=N+1

Φn(1 + n2)−1/2‖End

≤ (1 + (N + 1)2)−1/2 → 0,(6)

since the ranges of the pvΦn are orthogonal for different n. Thus, using the argument from
Lemma 5.7, a(1 + D2)−1/2 ∈ End0

F (X) for all a ∈ Ac. Letting {ai} be a Cauchy sequence from
Ac, we have

‖ai(1 + D2)−1/2 − aj(1 + D2)−1/2‖End ≤ ‖ai − aj‖End = ‖ai − aj‖A → 0,

since ‖(1 +D2)−1/2‖ ≤ 1. Thus the sequence ai(1 +D2)−1/2 is Cauchy in norm and we see that
a(1 + D2)−1/2 is compact for all a ∈ A. �

Proposition 5.10. Assume that the k-graph (Λ, d) is locally finite and has no sinks. Let
V = D(1 + D2)−1/2. Then (X, V ) defines a class in KKk mod 2(A,F ).

Proof. We refer to [K] for more information. We need to show that various operators belong to
End0

F (X). First, V −V ∗ = 0, so a(V −V ∗) is compact for all a ∈ A. Also a(1−V 2) = a(1+D2)−1

which is compact from Lemma 5.9 and the boundedness of (1 + D2)−1/2. Finally, we need to
show that [V, a] is compact for all a ∈ A. First we suppose that a ∈ Ac. Then we have

[V, a] = [D, a](1 + D2)−1/2 −D(1 + D2)−1/2[(1 + D2)1/2, a](1 + D2)−1/2

= b1(1 + D2)−1/2 + V b2(1 + D2)−1/2,
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where b1 = [D, a] ∈ Ac and b2 = [(1 + D2)1/2, a]. Provided that b2(1 + D2)−1/2 is a compact
endomorphism, Lemma 5.9 will show that [V, a] is compact for all a ∈ Ac. So consider the
action of [(1 + D2)1/2, SµS

∗
ν ](1 + D2)−1/2 on x =

∑
n∈Zk xn. We find

∑

n∈Zk

[(1 + D2)1/2, SµS
∗
ν ](1 + D2)−1/2xn

=
∑

n∈Zk

(
(1 + (d(µ) − d(ν) + n)2)1/2 − (1 + n2)1/2

)
(1 + n2)−1/2SµS

∗
νxn

=
∑

n∈Zk

fµ,ν(n)SµS
∗
νΦnx.(7)

The function

fµ,ν(n) =
(
(1 + (d(µ) − d(ν) + n)2)1/2 − (1 + n2)1/2

)
(1 + n2)−1/2

goes to zero as n2 → ∞. As the SµS
∗
νΦn are finite rank with orthogonal ranges (for different

n), the sum in (7) converges in the endomorphism norm, and so converges to a compact endo-
morphism. For general a ∈ Ac we write a as a finite linear combination of generators SµS

∗
ν , and

apply the above reasoning to each term in the sum to find that [(1 + D2)1/2, a] is a compact
endomorphism for all a ∈ Ac.

Now let a ∈ A be the norm limit of a Cauchy sequence {ai}i≥0 ⊂ Ac. Then

‖[V, ai − aj]‖End ≤ 2‖ai − aj‖End → 0,

so the sequence [V, ai] is also Cauchy in norm, and so the limit is compact.

It is also clear from the construction that if k is even, the Kasparov module is even (with
grading given by ωC) and so belongs to KK0(A,F ), while when k is odd, the Kasparov module
belongs to KK1(A,F ). �

6. The Gauge Spectral Triple of a k-Graph Algebra

In this section we will construct a semifinite spectral triple for those locally convex k-graph
C∗-algebras which possess a faithful, semifinite, lower-semicontinuous, gauge invariant trace, τ .
Recall from Proposition 3.8 that such traces arise from faithful k-graph traces.

We will begin with the right Fc module Xc. In order to deal with the spectral projections of D
we will also assume throughout this section that (Λ, d) is locally finite and has no sinks. This
ensures, by Lemma 5.7 that for all a ∈ A and n ∈ Zk the endomorphisms aΦn of X are compact
endomorphisms.

We define a C-valued inner product on Xc by

〈x, y〉 := τ((x|y)R) =
2[k/2]∑

j=1

τ(Φ(x∗jyj)) =
2[k/2]∑

j=1

τ(x∗jyj).
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Observe that this inner product is linear in the second variable. We define the Hilbert space
H = L2(X, τ) to be the completion of Xc in the norm coming from the inner product.

Lemma 6.1. The C∗-algebra A = C∗(Λ) acts on H by an extension of left multiplication.
This defines a faithful nondegenerate ∗-representation of A. Moreover, any endomorphism of
X leaving Xc invariant extends uniquely to a bounded linear operator on H.

Proof. The first statement follows from the proof of Proposition 3.8. Now let T be an endo-
morphism of X leaving Xc invariant. Then [RW, Cor 2.22],

(Tx|Ty)R ≤ ‖T‖2
End(x|y)R

in the algebra F . Now the norm of T as an operator on H, denoted ‖T‖∞, can be computed
in terms of the endomorphism norm of T by

‖T‖2
∞ := sup

‖x‖H≤1

〈Tx, Tx〉 = sup
‖x‖H≤1

τ((Tx|Tx)R)

≤ sup
‖x‖H≤1

‖T‖2
Endτ((x|x)R) = ‖T‖2

End.(8)

�

Corollary 6.2. The endomorphisms {Φn}n∈Zk define mutually orthogonal projections on H.
For any K ⊂ Zk the sum

∑
n∈K Φn converges strongly to a projection ΦK in B(H). The

projection ΦZk corresponding to K = Zk is equal to idH, so that for all x ∈ H the sum
∑

n Φnx
converges in norm to x.

Proof. As in Lemma 5.2, we can use the continuity of the Φn on H, which follows from Lemma
6.1, to see that the relation ΦnΦm = δn,mΦn extends from Xc ⊂ H to H. The proof of the
strong convergence of sums of Φn’s is just as in Lemma 5.2 after replacing the C∗-module norm
with the Hilbert space norm. �

Lemma 6.3. The operator D extends to a closed unbounded self-adjoint operator on H. The
closure of the operator D|Xc is D.

Proof. The proof is essentially the same as the C∗-module version, Lemma 5.6. By replacing
the C∗-module norm and the C∗-Cauchy-Schwartz inequality with the Hilbert space analogues,
the proof that D is closed goes through as before. We then define dom D to be the completion
of Xc in the norm

x→ ‖x‖H,D := ‖x‖H + ‖Dx‖H.
The proofs of symmetry and self-adjointness now follow just as in the C∗-module case. The
last statement follows from the definition of dom D. �

The Hilbert space H and operator D are two of the ingredients of our spectral triple. We also
need a ∗-algebra. In fact Ac will do the job, but it also has a natural completion A which is
useful too. To prove both these assertions we need the following lemma. The proof is the same
as [PRen, Lemma 5.4].
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Lemma 6.4. Let H,D be as above and let |D| =
√
D∗D =

√
D2 be the absolute value of D.

Then for SαS
∗
β ∈ Ac, the operator [|D|, SαS

∗
β] is well-defined on Xc, and extends to a bounded

operator on H with

‖[|D|, SαS
∗
β]‖H ≤

∣∣∣d(α) − d(β)
∣∣∣.

Similarly, ‖[D, SαS
∗
β]‖H =

∣∣∣d(α) − (β)
∣∣∣.

Corollary 6.5. The algebra Ac is contained in the smooth domain of the derivation δ where
for T ∈ B(H), δ(T ) = [|D|, T ]. That is

Ac ⊆
⋂

n≥0

dom δn.

Definition 6.6. Define the ∗-algebra A ⊂ A to be the completion of Ac in the δ-topology. By
Lemma 4.4, A is Fréchet and stable under the holomorphic functional calculus.

Lemma 6.7. If a ∈ A then [D, a] ∈ A and the operators δk(a), δk([D, a]) are bounded for all
k ≥ 0. If φ ∈ A satisfies φa = a = aφ, then φ[D, a] = [D, a] = [D, a]φ. The norm closed algebra
generated by A and [D,A] is A⊗M2[k/2](C). In particular, A is quasi-local.

We leave the straightforward proofs of these statements to the reader.

At this point we have most of the structure required to define a semifinite local spectral triple.
The one remaining piece of information we require is the compactness of a(λ−D)−1, λ ∈ C\R,
a ∈ A, relative to some trace on some von Neumann algebra to which D is affiliated. There is
a canonical choice of von Neumann algebra and trace, and for this choice a(1 + D2)−k/2 is in
the domain of the Dixmier trace for all a ∈ A.

6.1. Traces and Compactness Criteria. We continue to assume that (Λ, d) is a locally con-
vex locally finite k-graph with no sinks and that τ is a faithful, semifinite, lower-semicontinuous,
gauge invariant trace on C∗(Λ). We will define a von Neumann algebra N with a faithful
semifinite normal trace τ̃ so that A ⊂ N ⊂ B(H), where A and H are as defined in the last
subsection. Moreover the operator D will be affiliated to N . To state the theorem, we need
some preliminary definitions and results.

Definition 6.8. Let End00
F (Xc) denote the algebra of finite rank operators on Xc acting on H.

Define N = (End00
F (Xc))

′′, and let N+ denote the positive cone in N .

Definition 6.9. Let T ∈ N . For n ∈ Nk and v ∈ Λ0, let |v|n denote the number of paths of
degree n with source v. Let Λ ×min

s Λ denote the set of pairs

{(α, β) ∈ Λ : s(α) = s(β), d(α) ∧ d(β) = 0}.
For (α, β) ∈ Λ ×min

s Λ, define

ωα,β(T ) =
1

|s(α)|d(β)

〈sαs
∗
β, T sαs

∗
β〉.
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Note that if d(α) = d(β) = 0, then α = β = v for some v ∈ Λ0, and since sv = pv by convention,
we have ωv,v(T ) = 〈pv, T pv〉. Define

(9) τ̃ : N+ → [0,∞], by τ̃ (T ) = lim
LրΛ×min

s Λ

∑

(α,β)∈L

ωα,β(T )

where L increases over the net of finite subsets of Λ ×min
s Λ.

Remarks

(1) For T, S ∈ N+ and λ ≥ 0 we have

τ̃(T + S) = τ̃(T ) + τ̃ (S) and τ̃(λT ) = λτ̃(T ) where 0 ×∞ = 0.

(2) Note that for µ ∈ Λ, we have ωµ,s(µ)(T ) = 〈sµ, T sµ〉 and ωs(µ),µ(T ) = 1
|s(µ)|d(µ)

〈s∗µ, T s∗µ〉.
Consequently, if Λ is a 1-graph then for µ ∈ Λ\Λ0, the map ωµ of [PRen, Definition 5.10]
is precisely ωµ,s(µ)+ωs(µ),µ, while for v ∈ Λ0, ωv = ωv,v. In particular, for a 1-graph, (9) is
just a slightly more efficient expression for the definition of τ̃ of [PRen, Definition 5.10].

Theorem 6.10. Let (Λ, d) be a locally convex locally finite k-graph with no sinks, and let τ be
a faithful semifinite trace on C∗(Λ). Let N be as in Definition 6.8 and let τ̃ : N+ → [0,∞] be
as in Definition 6.9. Then

(1) τ̃ defines a faithful normal semifinite trace on N .
(2) (A,H,D) is a QC∞ (k,∞)-summable odd local semifinite spectral triple relative to

(N , τ̃).
(3) For all a ∈ A, the operator a(1 + D2)−1/2 is not trace class.

Suppose that v ∈ Λ0 satisfies vΛ≤n = vΛn for all n ∈ Nk. Then

τ̃ω(pv(1 + D2)−k/2) = Ckτ(pv),

where τ̃ω is any Dixmier trace associated to τ̃ , and

Ck =
2[k/2]vol(Sk−1)

k

Remark The hypothesis that vΛ≤n = vΛn for all n ∈ Nk is perhaps somewhat opaque.
This theorem generalises [PRen, Theorem 5.8], which requires that the vertex v has “no sinks
downstream” to ensure that pv =

∑
s(α)=v,|α|=n sαs

∗
α for all n ∈ N. The hypothesis that vΛ≤n =

vΛn for all n ∈ Nk has precisely the same effect (consider relation (CK4)). Indeed this is
precisely the notion that the Λ≤n notation was developed to capture: Λ≤n is supposed to
consist of all paths of degree n together with all paths whose degree is less than n because they
originate at a source in direction n [RSY].

Proposition 6.11. The function τ̃ : N+ → [0,∞] defines a faithful normal semifinite trace on
N . Moreover,

End00
F (Xc) ⊂ Nτ̃ := span{T ∈ N+ : τ̃ (T ) <∞},
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the domain of definition of τ̃ , and

τ̃(ΘR
x,y) = 〈y, x〉 = τ(y∗x), x, y ∈ Xc.

The proof of this important, but technical, result is extremely similar to that of [PRen, Propo-
sition 5.11], differing only in the details of the calculations establishing the analogue of [PRen,
Equation (18)] and showing that τ̃ (ΘR

x,y) = τ(y∗x) for all x, y.

Lemma 6.12. Let (Λ, d) be a locally convex locally finite k-graph with no sinks and a faithful
gauge invariant trace τ on C∗(Λ). Let v ∈ Λ0 and n ∈ Zk. Then

τ̃(pvΦn) ≤ τ(pv)

with equality when vΛ≤p = vΛp.

Proof. Let n = n+ + n− where n+ ≥ 0, n− ≤ 0, and n+ ∨−n− = n+ − n−. By Lemma 5.7 and
Proposition 6.11 we have

τ̃ (pvΦn) = τ̃



pv

∑

d(α)=n+,d(β)=−n−

1

|s(β)|−n−

ΘSαS∗
β ,SαS∗

β





= τ




∑

d(α)=n+,d(β)=−n−

1

|s(β)|−n−

(SαS
∗
β |pvSαS

∗
β)R





= τ




∑

d(α)=n+,d(β)=−n−

1

|s(β)|−n−

Φ(SβS
∗
αpvSαS

∗
β)




= τ




∑

d(α)=n+,d(β)=−n−,r(α)=v

1

|s(β)|−n−

SαS
∗
βSβS

∗
αpv




= τ




∑

d(α)=n+,r(α)=v

SαS
∗
αpv


 .

If there are no sources within |n+| of v, then
∑

d(α)=n+,r(α)=v SαS
∗
α = pr(α) = pv. Otherwise the

sum on the right is strictly less than pv. So

τ̃(pvΦn) ≤ τ(pv)

with equality when there are no sources within |n+| of v. �

Proposition 6.13. Assume that the locally convex k-graph (Λ, d) is locally finite, has no sinks
and has a faithful gauge invariant trace on C∗(Λ). For all a ∈ Ac the operator a(1 +D2)−k/2 is
in the ideal L(1,∞)(N , τ̃). When v ∈ Λ0 satisfies vΛ≤n = vΛn for all n ∈ Nk, we have

τ̃ω(pv(1 + D2)−k/2) =
2[k/2]vol(Sk−1)

k
τ(pv).
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Proof. It suffices to show this for a projection a = pv for v ∈ Λ0, and extending to more general
a ∈ Ac using the arguments of Lemma 5.7. We compute the partial sums defining the trace of
pv(1 + D2)−k/2. Lemma 6.12 gives us

(10) τ̃



pv

∑

|n|≤N

(1 + n2)−k/2Φn



 ≤
∑

|n|≤N

(1 + n2)−k/2τ(pv).

We have equality when vΛ≤n = vΛn whenever |n| ≤ N . Since Λ has no sinks, the sequence

1

log |{n : |n| ≤ N}|
∑

|n|≤N

(1 + n2)−k/2τ̃(pvΦk)

is bounded (there is at least one ‘direction’ in which n can increase indefinitely, so the sequence
does not go to zero). Hence pv(1 + D2)−k/2 ∈ L(1,∞) and for any ω-limit we have

τ̃ω(pv(1 + D2)−k/2) ≤ ω-lim
2[k/2]vol(Sk−1)

k logm

N∑

m=0

(1 +m2)−1/2τ̃ (pvΦk).

When there are no sources in Λ, we have equality in Equation (10) for any v ∈ Λ0 and so

τ̃ω(pv(1 + D2)−k/2) =
2[k/2]vol(Sk−1)

k
τ(pv).

�

Computing the Dixmier trace when vΛ≤n may be strictly larger than vΛn for some n is harder.

Remark Using Proposition 4.10, one can check that

(11) ress=0τ̃(pv(1 + D2)−k/2−s) =
k

2
τ̃ω(pv(1 + D2)−k/2).

We will require this formula when we apply the local index theorem.

Corollary 6.14. Assume Λ is locally finite, has no sources and has a faithful k-graph trace.
Then for all a ∈ A, a(1 + D2)−1/2 ∈ KN .

Proof. (of Theorem 6.10.) That we have a QC∞ spectral triple follows from Corollary 6.5,
Lemma 6.7 and Corollary 6.14. The properties of the von Neumann algebra N and the trace
τ̃ follow from Proposition 6.11. The (k,∞)-summability and the value of the Dixmier trace
comes from Proposition 6.13. The locality of the spectral triple follows from Lemma 6.7. �

7. The Local Index Theorem for the Gauge Spectral Triple

The local index theorem for semifinite spectral triples described in [CPRS2, CPRS3] is relatively
simple for the spectral triples constructed here. This is because of the simple way in which the
triples are built using the Clifford algebra.
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In the following discussion we assume we have a fixed locally finite locally convex k-graph (Λ, d)
without sinks, and possessing a faithful k-graph trace. We let (A,H,D) be the associated gauge
spectral triple relative to (N , τ̃) constructed in the previous section.

Elementary manipulations with the Clifford variables, like those in [BCPRSW, Section 11.1],
along with the Dixmier trace results, show that when k is odd we are left with only one term
in the local index theorem

φk(a0, a1, ..., ak) = −
√

2πi
1

k!

1√
π

Γ(k/2 + 1)resr=(1−k)/2τ̃(a0[D, a1] · · · [D, ak](1 + D2)−(k−1)/2−r).

When k is even we are left with only two terms:

φk(a0, a1, ..., ak) =
1

k!
Γ(k/2 + 1)resr=(1−k)/2τ̃ (γa0[D, a1] · · · [D, ak](1 + D2)−(k−1)/2−r),

φ0(a0) = resr=(1−k)/2
1

(r − (1 − k)/2)
τ̃(γa0(1 + D2)−(k−1)/2−r).

The zero component in the even case likewise vanishes for our examples. The reason for this
is simply that we have complete symmetry between the ±1 eigenspaces of γ, and so for Re(r)
large

1

(r − (1 − k)/2)
τ̃(γa0(1 + D2)−(k−1)/2−r) = 0.

Hence in this particular case, the local index theorem is in fact computed using the Hochschild
class (top component) of the Chern character, [CPRS1].

In Proposition A.3, we will describe a class of k-graphs which admit faithful graph traces. For
full details, see Appendix A; for the time being we need only two facts established there: (1)
that for such k-graph, the K-theory of C∗(Λ) resides entirely on the set of ideals of C∗(Λ)
corresponding to ends (see Definition 2.6) of Λ; and (2) that for each end of Λ, the associated
ideal is of the form K ⊗ C(Tl) for some 0 ≤ l ≤ k. In particular (1) implies that it is only
necessary to produce generators of K-theory corresponding to these ends.

The form of the Chern character given above shows that in odd dimensions we can detect only
ends for which the number l in (2) above is odd, whilst in even dimensions we can only detect
ends for which l is even. A simple analysis based on the Clifford algebra then shows that in
fact we can only pair with ends where l = k; that is, ends which are k-tori, k-planes, or more
generally k-cylinders.

Before producing an example of what this kind of index pairing can tell us, we discuss the
relationship between the KK-index pairing with values in K0(F ) and the semifinite index
theorem.

Theorem 7.1. Let Λ be a locally convex, locally finite k-graph without sinks which admits a
faithful graph trace, let τ be the corresponding semifinite trace on A = C∗(Λ), and let (A,H,D)
be the gauge spectral triple (relative to (N , τ̃)) obtained from Theorem 6.10. Let (X,D) be the
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corresponding Kasparov module with class in KKk(A,F ). Let x ∈ Kk(A) be a K-theory class.
Then

τ̃∗([x× (X,D)]) = Ch(A,H,D)(Ch(x)).

Proof. Let us first consider the even case, where we have the K0(F )-valued index of pD+p on X,
where p is a projection in A. The projections defining ker(pD+p) and coker(pD+p) are compact
endomorphisms of the module X, and moreover map Xc to itself. This last assertion follows
because D maps Xc to itself, and p may be chosen to lie in Ac which preserves Xc. The reason
we can do this is that K0(A) = limK0(φnAφn) where φn is any local approximate unit for Ac,
[R1]. Hence the kernel and cokernel projections are actually endomorphisms preserving Xc.

Now such endomorphisms extend to act on the Hilbert space in a unique way. Since H = Xc

with respect to the norm coming from the inner product, we see that the Hilbert space kernel
and cokernel projections are given by the extension of the C∗-module projections. So we have,
by Lemma 6.12,

τ̃ − Index(pD+p) = τ̃ (Qker(pD+p) −Qcoker(pD+p)) = τ̃∗([Index(pD+p)]) = τ̃∗([p] × [(X,D)]).

The argument for the odd pairing is now exactly the same, except that we consider the kernel
and cokernel projections of PuP where P is the non-negative spectral projection of D and u is
unitary. The upshot is that

τ̃ − Index(PuP ) = τ̃∗([Index(PuP )]) = τ̃∗([u] × [(X,D)]).

Now we wish to relate the τ̃ index to the pairing of Chern characters. However, by [CPRS4],
this is precisely the main theorems of [CPRS2, CPRS3] in the odd and even cases respectively,
and so we are done. �

We will conclude with an example which indicates the kinds of information one might hope
to obtain from the semifinite index theorem. In order to present the example explicitly, we
first produce representatives for generators of K-theory coming from ends of graphs satisfying
Proposition A.3. For this we need generators of the K-theory of ordinary tori (those for planes
are of course well known). In fact we really only need those generators which pair with the
Dirac class. These in turn can all be obtained, using the universal coefficient theorem and the
fact that the K-theory of tori is free abelian, by using iterated products with the circle.

We illustrate this with a specific example; the nontrivial generator of K2(T2) = Z2 (the other
products are simpler). We wish to compute the product of [u] ∈ K1(C(T1)) with itself to obtain
the nontrivial element of K0(T

2). Let θ, φ ∈ [0, 2π], and set z = eiθ. Then θ → z represents
the generator [u]. Define

K(θ) =

(
0 z
z̄ 0

)
, S =

(
0 1
1 0

)
, Y (φ, θ) = eiφK(θ)/4eiS/4.
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Then the product [u] × [u] is the class of the projection

P (φ, θ) = Y (φ, θ)∗
(

1 0
0 0

)
Y (φ, θ).

A lengthy computation shows that

P (φ, θ) =

(
1 − sin2(φ/2) cos2(θ/2) i

2
sin(φ) cos2(θ/2) − 1

2
sin(φ/2) sin(θ)

− i
2
sin(φ) cos2(θ/2) − 1

2
sin(φ/2) sin(θ) sin2(φ/2) cos2(θ/2).

)

An even lengthier calculation using the residue cocycle from the local index theorem, [CPRS2,
CPRS3], shows that P (φ, θ) has pairing with

DiracT2 =

(
C∞(T2), L2(T2) ⊗C2,

(
0 −∂φ + i∂θ

∂φ + i∂θ

))

equal to one. Hence p is the desired generator.

Example. Consider the 2-graph Λn whose skeleton is illustrated in Figure 4
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Figure 4. The 2-graph Λn

We label the solid edge whose range is vi by ei and the dashed edge with the same range is
labelled fi for all i < n. Without the infinite tail to the left, we think of this 2-graph as the
’n-point 2-torus’. To justify this, note that Λn is the pull-back of the graph En from [PRen]
with respect to the functor λ 7→ d(λ)1 + d(λ)2, and so [KP, Corollary 3.5(iii)] shows that

C∗(Λn) ∼= C∗(En) ⊗ C(T) ∼= K ⊗ C(T) ⊗ C(T) ∼= K ⊗ C(T2);

in particular pvn is a full projection in C∗(Λn) and pvnC
∗(Λn)pvn is isomorphic to C(T2).

We wish to describe the isomorphism explicitly. To do this, first notice that pvnC
∗(Λ)pvn is

generated by the unitaries

u1 := se1se2 . . . sen and u2 = sf1se2 . . . sen.
1

For 1 ≤ i < j let θi,j := sej
. . . sei+1, for i > j, let θi,j := θ∗j,i = s∗ej+1

. . . s∗ei
, and for i = j, let

θi,i := pvi
. For i = 1, 2 define Ui ∈ M(C∗(Λn)) by Ui :=

∑
j∈N

θn,juiθj,n.

1Note that while w = sf1
sf2

· · · sfn
would appear to be a more natural candidate for the second generator

than u2, it is easy to see that u2 does not belong to C∗({u1, w}) and so u1 and w do not generate pvn
C∗(Λ)pvn

.
From a K-theoretic point of view, however, the distinction is not important: one can check that u2 and w have
the same class in K1(pvn

C∗(Λ)pvn
).
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Lemma 7.2. The C∗-algebra C∗(Λn) is generated by the elements {θi,j : i, j ∈ N} together
with {U1, U2}. The θi,j form a system of nonzero matrix units, the unitaries U1, U2 commute
and have full spectrum, and hence there is an isomorphism of C∗(Λn) onto K ⊗ C(T2) which
takes θi,jU

m
1 U

n
2 to the function (w, z) 7→ Θi,j ⊗ wmzn. Moreover, the core Fn = C∗(Λn)γ is

isomorphic to ⊕n
j=1K.

Proof. The Cuntz-Kreiger relations show that the θi,j are matrix units and that U1 and U2 are
unitaries. Since the θn,j have orthogonal range projections, C∗({U1, U2}) is canonically isomor-
phic to C∗({u1, u2}), which in turn is canonically isomorphic to C(T2) (see Proposition A.6).
It is easy to check that U1 and U2 commute with the matrix units θi,j so C∗({U1, U2, θi,j : i, j ∈
N}) ∼= K ⊗ C(T2) (it is worth noting that compression by pvn = θn,n takes Ui to ui). It now
remains to show that this algebra is all of C∗(Λn).

For i 6= 1, we have sei
= θi,i+1, and we have se1 = u1θn,1 and sf2 = u2θn,1. The only possible fac-

torisation rule for Λn satisfies ei+1fi = fi+1ei for all i, and it now follows that sfi
= θ1,isf1θi−1,n

for all i > 1. Hence all the generators of C∗(Λn) belong to C∗({U1, U2, θi,j : i, j ∈ N}) and it
follows that C∗(Λn) is isomorphic to K ⊗ C(T2) as required.

To see that Fn is isomorphic to ⊕n
i=1K, first observe that the subalgebra C∗({sα : α ∈ Λn :

d(α)2 = 0}) generated by paths consisting only of solid edges is canonically isomorphic to the
graph algebra C∗(En) described in [PRen, Corollary 6.6], and that this isomorphism intertwines
the restriction of the gauge action on C∗(Λn) to (T, 1) and the gauge action on C∗(En).

It is shown in [PRen] that the core of C∗(En) is isomorphic to ⊕n
i=1K: the minimal projections

in the jth copy of K are the vertex projections svi
: i ∼= lmodn, and for i ≥ j, the (i, j)th matrix

unit is θl
i,j := sηs

∗
L(vj)i−js∗ζ where η is the shortest path from vl to vin+l, ζ is the shortest path

from vl to vjn+l, and L(vl) is the loop of length n based at vl.

Hence it suffices to show here that

(12) Fn = span{sµs
∗
ν : d(µ) = d(ν), d(µ)2 = d(ν)2 = 0, s(µ) = s(ν)}.

Recall from [RSY, Section 4.1] that

Fn = span{sµs
∗
ν : µ, ν ∈ Λn, d(µ) = d(ν), s(µ) = s(ν)},

so we just need to show that if µ, ν ∈ Λn satisfy d(µ) = d(ν) and s(µ) = s(ν), then there exist
η and ζ such that d(η) = d(ζ) = (c, 0) for some c ∈ N, s(η) = s(ζ), and sηs

∗
ζ = sµs

∗
ν . Fix

µ, ν ∈ Λn with d(µ) = d(ν) and s(µ) = s(ν), and write (a, b) for d(µ). Let β be the unique
path of degree (b, 0) whose range is equal to the source of µ. By the factorisation property we
can express µ = µ1µ2 and ν = ν1ν2 where d(µ1) = d(ν1) = (a, 0) and d(µ2) = d(ν2) = (0, b).
Applying the factorisation property again, we obtain

µβ = µ1µ2β = µ1β
′µ′

2 and νβ = ν1ν2β = ν1β
′′ν ′2

where d(β ′) = d(β ′′) = (b, 0) and d(µ′
2) = d(ν ′2) = (0, b). Since |µ1β

′| = |µ1|+ |β| = a+ b = |µ|,
we have s(µ1β

′) = s(µ), and similarly s(ν1β
′′) = s(ν) = s(µ). Hence µ′

2 and ν ′2 are two paths
with the same degree and same range. Since vΛp

n is a singleton for each v and p, it follows that
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µ′
2 = ν ′2, so sµ′

2
s∗ν′

2
= ps(µ) by (CK4). But now

sµs
∗
ν = sµps(µ)s

∗
ν = sµsβs

∗
βs

∗
ν = sµ1β′µ′

2
s∗ν1β′′ν′

2
= sµ1β′sµ′

2
s∗µ′

2
sν1β′′ = sµ1β′sν1β′′.

Since d(µ1β
′) = (a+ b, 0) = d(ν1β

′′) and since s(β ′) = s(β ′′) = s(µ), this establishes (12). �

So for all n we have K1(C
∗(Λn)) ∼= K0(C

∗(Λn)) ∼= Z2. Choose any unitaries v1, v2 ∈ (C∗(Λn)c)
+,

the one-point unitization of the span of the generators, such that v1, v2 represent the classes of
the standard generators z1, z2 of K1(C(T2)). Then we obtain, as above, a projection P (v1, v2)
representing the class of the Bott generator in K0(C

∗(Λn)). Using this, we may compute the
pairing of the Kasparov module (Xn,Dn) constructed for C∗(Λn) with the Bott projector.

As in [PRen] we will compute first with the ‘n-point 2-torus’, the analogous calculation for the
2-graph Λn will then follow from the isomorphism K0(Kn) ∼= K0(C

n) = Zn.

Let φ : C(T2) →Mn(C(T2)) be given by

φ(f(z1, z2)) = θn,nf(w1, w2)θn,n + (1 − θn,n) = pvnf(w1, w2)pvn + (1 − pvn).

Here we have set w1 = u1 and w2 = w, as in the proof of Lemma 7.2, and denoted the generating
unitaries of C(T2) by z1, z2. Also θn,n is the projection pvn . Let (X,D) be the Kasparov module
for the n-point 2-torus built from the gauge action of T2. Then D =

∑n
j=1 pvj

D =
∑
pvj

Dpvj
,

and the pull-back of (X,D) by φ is

φ∗(X,D) = (pvnX, pvnD) ⊕ degenerate module ∈ KK0(C(T2), F )

since 1 − pvn commutes with D. The isomorphism ψ : F → Cn given by

ψ(

n∑

j=1

zjpvj
) = (z1, . . . , zn)

gives us
ψ∗φ

∗(X,D) = ⊕n
j=1(pvnXpvj

, pvnD) ∈ ⊕n
j=1K

0(C(T2).

The class of (pvnXpvj
, pvnD) is easily seen to be the Dirac operator on T2 for the usual flat

metric. In the following we will identify F with Cn (suppressing ψ).

Now we can compute the pairing of D with P (w1, w2) = φ(P (z1, z2)) where P (z1, z2) is the Bott
projector of T2 constructed earlier. We have

〈[P (w1, w2)], [(Xn,Dn)]〉 = 〈φ∗([P (z1, z2)], [(Xn,Dn)]〉
= 〈[P (z1, z2)], φ

∗[(Xn,Dn)]〉 functoriality of Kasparov product

= 〈[P (z1, z2)], [(pvnXn, pvnDn)] ⊕ [degenerate module]〉
= 〈P (z1, z2),⊕n

j=1[(pvnXnpvj
, pvnDn)]〉

= ⊕n
j=1〈P (z1, z2), [DiracT2 ]〉

= ⊕n
j=1〈[z1] × [z2], [DiracT1 ] × [DiracT1 ]〉 by [HR, Theorem 10.8.7]

= −⊕n
j=1 〈[z1], [DiracT1]〉〈[z2], [DiracT1]〉 [HR, Chapter 9]

= −(1, 1, . . . , 1) ∈ Zn = K0(C
n).(13)
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Using Theorem 7.1, we may compute the pairing of the Bott class with the spectral triple
(A,Hn,Dn) (where the k-graph trace is chosen to be equal to 1 on each vertex) by applying τ̃∗
to this last computation. We obtain

〈[P (w1, w2)], [(A,Hn,Dn)]〉 = −n.

The number n appears basically because the multiplicity provided by the core has given us n
copies of the Dirac operator at each point.

Now one can add the handle to the n-point 2-torus to get the 2-graph Λn. The core becomes
Kn and an argument entirely analogous to the above shows again that the number n emerges
from the pairing of D with the class of the Bott projector.

Note that this example can be generalised to an n-point k-torus with a “handle”. A similar
argument to that of Lemma 7.2 shows that the resulting k-graph Λk

n satisfies C∗(Λk
n) ∼= K ⊗

C(Tk) independent of n, but that the core F k
n is always isomorphic to ⊕n

i=1K. We can therefore
see that n appears in the index computation in each case.

The point of this example is as follows. Whilst C∗(Λn) ∼= C∗(Λm) for all n,m, as k-graph
algebras they are, somewhat vaguely, ‘different’ for n 6= m. This difference is embodied by
equivalently the different gauge actions, the nonisomorphic cores, and the different presentations
as universal algebras. Because (Xn,Dn) is constructed from the gauge action, one would expect
that [(Xn,Dn)] ∈ KK0(C∗(Λn), C

∗(Λn)γ) could ‘see’ these differences.

However, given a semifinite spectral triple (A,H,D) relative to (N , τ), we have no knowledge
of the possible range of the index; any real number is possible a priori. What theorem 7.1 says,
at least in this case, is that the semifinite index is ‘quantised’ — the resulting index for C∗(Λn)
is always a multiple of n. In [KNR], inspired by the result for k-graphs, it is shown that a
similar result is true for any semifinite spectral triple.

We list two results for this very simple example which indicate the kinds of information one
may draw from semifinite index theory in general:

1) No combination of operator homotopy and addition of degenerate spectral triples, [CPRS1],
can make (Ac,Hn,Dn) and (Ac,Hm,Dm) unitarily equivalent.

2) The gauge actions on C(T2) ⊗ K coming from the presentations as C∗(Λn) and C∗(Λm),
n 6= m, are not homotopic in Aut(C(T 2) ⊗K).

From the point of view of k-graph algebas, what is interesting here is not the differences
between Λm and Λn, or between the cores of the corresponding C∗-algebras, but rather that the
semifinite index can detect these differences in the algebras. For example, while it is obvious
that for n 6= m there is no gauge equivariant isomorphism φ : C∗(Λn) → C∗(Λm) (such a
map would give an isomorphism Kn ∼= Km of the fixed point algebras), and hence there is no
functorial isomorphism between the 2-graphs Λn and Λm (such an equivalence would give rise
to a gauge equivariant isomorphism of C∗-algebras), it is not obvious that the semifinite index
(which sees the C∗-algebra and not the graph) should detect such information.
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Thus the semifinite index reflects finer details of the C∗-algebra than the ordinary Fredholm
index possibly could.

Appendix A. k-graphs which admit faithful graph traces

In this appendix we formulate two necessary conditions (Lemma A.1 and Corollary A.2), and
one sufficient condition (Proposition A.3), for a k-graph Λ to admit a faithful graph trace.
Our sufficient condition is certainly much stronger than need be; indeed, the C∗-algebra of a
k-graph satisfying our condition is Morita equivalent to a commutative C∗-algebra whereas, for
example, [PRRS] contains many examples of 2-graphs which admit faithful graph traces and
whose C∗-algebras are simple AT algebras with real rank 0. However, our condition is a direct
generalisation of the corresponding result in [PRen] which has already attracted independent
interest. Moreover, the results about k-graphs satisfying this condition, including the K-theory
calculations, are new and should be of independent interest to the k-graph community.

For the purposes of our first two results we say that paths µ and ν in a k-graph Λ are orthogonal
if the range projections sµs

∗
µ and sνs

∗
ν are orthogonal in C∗(Λ). By [RSY, Proposition 3.5], µ

and ν are orthogonal if and only if they have no common extensions.

Lemma A.1 (cf [PRen, Lemma 3.5]). Suppose that (Λ, d) is a row-finite k-graph and there
are vertices v, w ∈ Λ0 with an infinite number of mutually orthogonal paths from w to v. Then
there is no faithful k-graph trace on Λ0.

Proof. Let (λn)n∈N be the infinite set of orthogonal paths from w to v. Suppose that τ is a
trace on C∗(Λ). For each n, τ(sλns

∗
λn

) = τ(s∗λn
sλn) = τ(pw). It follows that for any N , we have

τ(pv) ≥ ∑N
n=1 τ(sλns

∗
λn

) = Nτ(pw), and it follows that τ(pw) = 0. Hence gτ (w) = 0, and it
follows from Proposition 3.8 that no k-graph trace on Λ0 is faithful. �

Corollary A.2 (cf [PRen, Corollary 3.7]). Suppose that (Λ, d) is a row-finite k-graph and there
exists a vertex v ∈ Λ0 with an infinite number of mutually orthogonal paths from an end to v.
Then there is no faithful k-graph trace on Λ0.

Proof. Since k-graph traces are constant on ends by Remarks 3.6, the proof is identical to that
of Lemma A.1. �

We now aim to provide a sufficient condition for a k-graph to admit a faithful k-graph trace.

Notation. Let Λ be a locally convex row-finite k-graph. For ends x and y of Λ, we write x ∼ y
if and only if x(n) = y(m) for some n ≤ d(x) and m ≤ d(y). This defines an equivalence
relation on ends of Λ, and we write [x] for the equivalence class of an end x under ∼.

If a vertex v lies on an end of Λ, then vΛ≤∞ = {xv}, where xv is itself an end of Λ.

Proposition A.3 (cf [PRen, Propositions 3.8 and 3.9]). Let Λ be a locally convex row-finite
k-graph. Suppose that there is a function v 7→ nv from Λ0 to Nk such that for each v ∈ Λ0 and
each λ ∈ vΛ≤nv, s(λ) lies on an end of Λ.
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(a) If g : Λ0 → R+ is a k-graph trace, then there is a well-defined function from Ends(Λ)/∼
to R+ satisfying g([x]) := g(x(0)), and

(14) g(v) =
∑

λ∈vΛ≤nv

g([xs(λ)]) for every v ∈ Λ0.

(b) Conversely, given any function g from Ends(Λ)/∼ to R+, there is a unique graph-trace
g on Λ satisfying g(x(0)) = g([x]) for all x ∈ Ends(Λ).

Before proving the Proposition we need to know that for a fixed function g from Ends(Λ)/∼
to R+, the formula (14) is independent of the choice of function v 7→ nv.

Lemma A.4. Suppose that Λ satisfies the hypotheses of Propopoition A.3, and let g be a
function from Ends(Λ)/∼ to R+. Define g(v) := g([xv]) for each vertex v that lies on an end
of Λ. Fix v ∈ Λ0 and suppose n1, n2 ∈ Nk each have the property that s(λ) lies on an end of Λ
for each λ ∈ vΛ≤ni. Then

∑

µ∈vΛ≤n1

g(s(µ)) =
∑

ν∈vΛ≤n2

g(s(ν)).

Proof. Let n := n1 ∨n2. Using that vΛ≤n−ni is a singleton (i = 1, 2) when v lies on an end, one
easily checks that

∑
µ∈vΛ≤ni g(s(µ)) =

∑
λ∈vΛ≤n g(s(λ)) for i = 1, 2. �

Proof of Proposition A.3. (a) By definition, graph traces are constant on ends, and hence on
equivalence classes of ends. The formula (14) holds by definition of a k-graph trace.

(b) Define g(v) : Λ0 → R+ by

g(v) :=
∑

λ∈vΛ≤nv

g([xs(λ)])

Note that if x is an end of Λ, then nx(0) := 0 has the property that s(λ) lies on an end of Λ for
each λ ∈ x(0)Λnx(0). Hence Lemma A.4 shows that g(x(0)) = g([x]).

Fix v ∈ Λ0 and n ∈ Nk. We must show that

(15) g(v) =
∑

λ∈vΛ≤n

g(s(λ)).

We may assume without loss of generality that n ≤ nv because if it is not, then n′
v := n ∨ nv

can be used in place of nv by Lemma A.4 and satisfies n ≤ n′
v. Since Λ≤nv = Λ≤nΛ≤nv−n [RSY,

Lemma 3.6], we then have that for each λ ∈ vΛ≤n, the element nv − n has the property that
for each α ∈ s(λ)Λ≤nv−n, the source of α is on an end of Λ and hence

(16) g(s(λ)) =
∑

α∈s(λ)Λ≤nv−n

g(s(α))
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by Lemma A.4. But now
∑

λ∈vΛ≤n

g(s(λ)) =
∑

λ∈vΛ≤n

( ∑

α∈s(λ)Λ≤nv−n

g(s(α))
)

by (16)

=
∑

λα∈vΛ≤nv

g(s(λα)) by [RSY, Lemma 3.6]

= g(v)

by definition of g. �

Finally we show that we can check that a given function is a graph trace just by considering
edges and vertices in the skeleton of Λ. This is useful as it simplifies the task of checking that
a given function is a k-graph trace.

Lemma A.5. Let Λ be a locally-convex row-finite k-graph. Suppose that g : Λ0 → R+ satisfies
g(v) =

∑
e∈vΛei g(s(e)) for all v ∈ Λ0 and all 1 ≤ i ≤ k such that vΛei 6= ∅. Then g is a k-graph

trace.

Proof. We proceed by induction on ℓ(n) =
∑k

i=1 ni. If ℓ(n) = 0 then n = 0 and vΛ≤n = {v} for
each v, so (2) holds trivially. Suppose as an inductive hypothesis that (2) holds for ℓ(n) ≤ L,
fix v ∈ Λ0 and n ∈ Nk with ℓ(n) = L + 1, and write n = n′ + ei where ℓ(n′) = L. By the
inductive hypothesis,

(17) g(v) =
∑

λ∈vΛ≤n′

g(s(λ)),

and by hypothesis, we know that for each λ ∈ vΛn′

, we have g(s(λ)) =
∑

e∈s(λ)Λ≤ei g(s(e)) (if

s(λ)Λ≤ei = {s(λ)}, this is trivial, and otherwise it is precisely the hypothesis of the lemma.
Since [RSY, Lemma 3.6] ensures that (λ, e) 7→ λe is a bijection from {(λ, e) : λ ∈ vΛ≤n′

, e ∈
s(λ)Λ≤ei} to vΛ≤n, a straightforward calculation shows that g(v) =

∑
µ∈vΛ≤n g(s(µ)). �

A.1. The C∗-algebras of k-graphs which admit k-graph traces. In this subsection we
give some structural results and K-theory calculations for C∗(Λ) when Λ is a k-graph which
satisfies the hypotheses of Proposition A.3.

Proposition A.6. Let Λ be a k-graph, and suppose that the boundary path x : Ωk,m → Λ is
surjective. Let v denote the vertex x(0) ∈ Λ0. Then

(a) the collection G := {p− q : p, q ≤ d(x), x(p) = x(q)} is a subgroup of Zk;
(b) the projection pv is full in C∗(Λ); and
(c) there is an isomorphism φ of the full corner pvC

∗(Λ)pv onto the subalgebra C∗({Ln :
n ∈ G}) ⊂ C∗(Zk) which satisfies φ(sx(0,p)s

∗
x(0,q)) = Lp−q whenever x(p) = x(q).

In particular, C∗(Λ) is Morita equivalent to C∗(G) which is isomorphic to C(Tl) for some
0 ≤ l ≤ k.
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Proof. (a) G clearly contains the identity, and is closed under inverses by symmetry. Suppose
that x(p) = x(q) and x(p′) = x(q′), so n = p − q and n′ = p′ − q′ belong to G. We must
show that n + n′ ∈ G. Since q, p′ ≤ d(x), we have q ∨ p′ ≤ d(x). Let α := x(q, q ∨ p′) and let
β := x(p′, q ∨ p′). Clearly s(α) = s(β). But r(α) = x(q) = x(p), and since x is surjective, it
follows that x(0, p)α = x(0, p+(q∨p′)−q); and similarly, we have x(0, q′)β = x(0, q′+(q∨p′)−p′).
Hence x(p+ (q ∨ p′)− q) = x(q′ + (q ∨ p′)− p′), and so n+ n′ = p− q+ p′ − q′ = (p+ (q ∨ p′)−
q) − (q′ + (q ∨ p′) − p′) belongs to G as required.

(b) Since x is surjective, the hereditary subset of C∗(Λ) generated by v as in [RSY, §5] is all of
Λ0, so the ideal generated by pv is C∗(Λ) as required.

(c) We have that pvC
∗(Λ)pv = span{sλs

∗
µ : λ, µ ∈ vΛ, s(λ) = s(µ)} = span{sx(0,p)s

∗
x(0,q) :

x(p) = x(q)} because x is surjective. Suppose that x(p) = x(q) and x(p′) = x(q′), and that
p−q = p′−q′. Using (CK4) and that x is surjective, one checks that sx(0,p)s

∗
x(0,q) = sx(0,p′)s

∗
x(0,q′),

so for n ∈ G we may define Un := sx(0,p)s
∗
x(0,q) for any p, q such that x(p) = x(q) and p− q = n.

The Cuntz-Krieger relations show that UnU
∗
n = U∗

nUn = pv for all n, so the Un are unitaries.

The calculation

Uq−p = sx(0,q)s
∗
x(0,p) = (sx(0,p)s

∗
x(0,q))

∗ = U∗
p−q.

Shows that U−n = U∗
n for all n ∈ G. Moreover, since x is surjective, we have s∗x(0,q)sx(0,p′) =

sx(q,q∨p′)s
∗
x(p′,q∨p′) by [RSY, Proposition 3.5] and (CK3), and it follows that

Up−qUp′−q′ = sx(0,p)s
∗
x(0,q)sx(0,p′)s

∗
x(0,q′) = sx(0,p+(q∨p′)−q)s

∗
x(0,q′+(q∨p′)−p′) = Up+p′−q−q′

so that n 7→ Un is a representation of G. It follows that there is a surjective C∗-homomorphism
φ : C∗(G) → C∗({Un : n ∈ G}) = pvC

∗(Λ)pv which satisfies φ(χn) = Un for all n ∈ G.

It remains only to show that φ is injective. For this, we need only show that Um 6= Un for
m 6= n and that each Un where n 6= 0 has full spectrum. Since γz(UmU

∗
n) = zm−nUmU

∗
n, an

appropriate choice of z ∈ Tk shows that Um 6= Un for m 6= n. That each Un has full spectrum
follows from an argument identical to that used in [PRRS, Lemma 3.9]. This establishes (c).

The Morita equivalence of C∗(Λ) with C∗(G) follows immediately from (2) and (3), and since
G is a subgroup of Zk, we must have G ∼= Zl for some 0 ≤ l ≤ k. �

For the remainder of the appendix, Λ will be a fixed k-graph which satisfies the hypotheses of
Proposition A.3.

A vertex v ∈ Λ0 lies on an end of Λ if and only if |vΛ≤n| = 1 for all n ∈ Nk. Let Ends(Λ)0

denote the collection of all such vertices; for each v ∈ Ends(Λ)0, there is a unique end x(v)
whose range is v. By a simple argument, we may select a set V ⊂ Ends(Λ)0 such that for
each x ∈ Ends(Λ) there is a unique v ∈ V such that x ∼ x(v). We fix this collection for the
remainder of the section.

Proposition A.7. For each v ∈ V , let Λ(v) be the image of x(v) which is a subcategory of Λ.
Then each (Λ(v), d|Λ(v)) is itself a k-graph, and C∗(Λ) is Morita equivalent to

⊕
v∈V C

∗(Λ(v)).
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Proof. Since each x(v) is an end, each Λ(v)0 is a hereditary subset of Λ0. For distinct v, w ∈
V , we have Λ(v) ∩ Λ(w) = ∅ because otherwise x(v) ∼ x(w) contradicting our choice of
V . By [RSY, Theorem 5.2], for each v ∈ Λ0, the projection Pv :=

∑
w∈Λ(v)0 pw determines

an ideal Iv := C∗(Λ)PvC
∗(Λ) which is Morita equivalent to C∗(Λ(v)0Λ) = C∗(Λ(v)). Each

Iv = span{sλs
∗
µ : s(λ) = s(µ) ∈ Λ(v)0}, and since the distinct Λ(v) do not intersect the ideal

generated by all the Pv is isomorphic to
⊕

v∈V Iv.

The assumption that for each vertex w ∈ Λ0 there is an element nw ∈ Nk such that s(wΛ≤nw) ⊂
Ends(Λ)0 guarantees that every vertex of Λ belongs to the saturated hereditary set generated
by V . Another application of [RSY, Theorem 5.2] shows that the ideal generated by all the Iv
is C∗(Λ). Hence C∗(Λ) =

⊕
Iv is Morita equivalent to

⊕
C∗(Λ(v)). �

Corollary A.8. For each v ∈ V , let Gv := {p− q : x(v)(p) = x(v)(q)} ⊂ Zk. Then C∗(Λ) is
Morita equivalent to

⊕
v∈V C

∗(Gv) ∼=
⊕

v∈V C(Tlv) where 0 ≤ lv ≤ k for each v. In particular
K∗(C

∗(Λ)) is isomorphic to
⊕

v∈V K∗(C(Tlv)).
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