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Abstract

We investigate conditions on a graph C∗-algebra for the existence of a faithful semifi-
nite trace. Using such a trace and the natural gauge action of the circle on the graph
algebra, we construct a smooth (1,∞)-summable semfinite spectral triple. The lo-
cal index theorem allows us to compute the pairing with K-theory. This produces
invariants in the K-theory of the fixed point algebra, and these are invariants for a
finer structure than the isomorphism class of C∗(E).
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1 Introduction

The aim of this paper, and the sequel [26], is to investigate the noncom-
mutative geometry of graph C∗-algebras. In particular we construct finitely
summable spectral triples to which we can apply the local index theorem. The
motivation for this is the need for new examples in noncommutative geometry.
Graph C∗-algebras allow us to treat a large family of algebras in a uniform
manner.
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Graph C∗-algebras have been widely studied, see [2,20,21,17,24,28,35] and
the references therein. The freedom to use both graphical and analytical tools
make them particularly tractable. In addition, there are many natural general-
isations of this family to which our methods will apply, such as Cuntz-Krieger,
Cuntz-Pimsner algebras, Exel-Laca algebras, k-graph algebras and so on; for
more information on these classes of algebras see the above references and
[29]. We expect these classes to yield similar examples.

One of the key features of this work is that the natural construction of a
spectral triple (A,H,D) for a graph C∗-algebra is almost never a spectral triple
in the original sense, [8, Chapter VI]. That is, the key requirement that for all
a ∈ A the operator a(1 +D2)−1/2 be a compact operator on the Hilbert space
H is almost never true. However, if we broaden our point of view to consider
semifinite spectral triples, where we require a(1 + D2)−1/2 to be in the ideal
of compact operators in a semifinite von Neumann algebra, we obtain many
(1,∞)-summable examples. The only connected (1,∞)-summable example
arising from our construction which satisfies the original definition of spectral
triples is the Dirac triple for the circle.

The way we arrive at the correct notion of compactness is to regard
the fixed point subalgebra F for the S1 gauge action on a graph
algebra as the scalars. This provides a unifying point of view that will help
the reader motivate the various constructions, and understand the results. For
instance the C∗-bimodule we employ is a C∗-module over F , the range of the
(C∗-) index pairing lies in K0(F ), the ‘differential’ operator D is linear over
F and it is the ‘size’ of F that forces us to use a general semifinite trace.
The single (1,∞)-summable example where the operator trace arises as the
natural trace is the circle, and in this case F = C.

The algebras which arise from our construction, despite naturally falling into
the semifinite picture of spectral triples, are all type I algebras, [10]. Thus
even when dealing with type I algebras there is a natural and important role
for general semifinite traces.

Many of our examples arise from nonunital algebras. Fortunately, graph C∗-
algebras (and their smooth subalgebras) are quasi-local in the sense of [13],
and many of the results for smooth local algebras presented in [30,31] are valid
for smooth quasi-local algebras. Here ‘local’ refers to the possibility of using
a notion of ‘compact support’ to deal with analytical problems.

After some background material, we begin in Section 4 by constructing an odd
Kasparov module (X, V ) for C∗(E)-F , where F is the fixed point algebra. This
part of the construction applies to any locally finite directed graph with no
sources. The class (X, V ) can be paired with K1(C

∗(E)) to obtain an index
class in K0(F ). This pairing is described in the Appendix, and it is given in
terms of the index of Toeplitz operators on the underlying C∗-module. We
conjecture that this pairing is the Kasparov product.
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When our graph C∗-algebra has a faithful (semifinite, lower-semicontinuous)
gauge invariant trace τ , we can define a canonical faithful (semifinite, lower
semicontinuous) trace τ̃ on the endomorphism algebra of the C∗-F -module X.
Using τ̃ , in Section 5 we construct a semifinite spectral triple (A,H,D) for a
smooth subalgebra A ⊂ C∗(E).

The numerical index pairing of (A,H,D) with K1(C
∗(E)) can be computed

using the semifinite local index theorem, [6], and we prove that

〈K1(C
∗(E)), (A,H,D)〉 = τ̃∗〈K1(C

∗(E)), (X, V )〉,

where 〈K1(C
∗(E)), (X, V )〉 ⊂ K0(F ) denotes the K0(F )-valued index and τ̃∗

is the map induced onK-theory by τ̃ . We show by an example that this pairing
is an invariant of a finer structure than the isomorphism class of C∗(E).

To ensure that readers without a background in graph C*-algebras or a back-
ground in spectral triples can access the results in this paper, we have tried
to make it self contained. The organisation of the paper is as follows. Sec-
tion 2 describes graph C∗-algebras and semifinite spectral triples, as well as
quasilocal algebras and the local index theorem. Section 3 investigates which
graph C∗-algebras have a faithful positive trace, and we provide some neces-
sary and some sufficient conditions. In Section 4 we construct a C∗-module for
any locally finite graph C∗-algebra. Using the generator of the gauge action
on this C∗-module, we obtain a Kasparov module whenever the graph has
no sources, and so a KK-class. In Section 5, we restrict to those graph C∗-
algebras with a faithful gauge invariant trace, and construct a spectral triple
from our Kasparov module. Section 6 describes our results pertaining to the
index theorem.

In the sequel to this paper, [26], we identify a large subclass of our graph
C∗-algebras with faithful trace which satisfy a natural semifinite and nonuni-
tal generalisation of Connes’ axioms for noncommutative manifolds. These
examples are all one dimensional.

Acknowledgements We would like to thank Iain Raeburn and Alan Carey
for many useful comments and support. We also thank the referee for many
useful comments that have improved the work. In addition, we thank Nigel
Higson for showing us a proof that the pairing in the Appendix does indeed
represent the Kasparov product.

2 Graph C∗-Algebras and Semifinite Spectral Triples

2.1 The C∗-algebras of Graphs

For a more detailed introduction to graph C∗-algebras we refer the reader to
[2,20] and the references therein. A directed graph E = (E0, E1, r, s) consists
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of countable sets E0 of vertices and E1 of edges, and maps r, s : E1 → E0

identifying the range and source of each edge. We will always assume that
the graph is row-finite which means that each vertex emits at most finitely
many edges. Later we will also assume that the graph is locally finite which
means it is row-finite and each vertex receives at most finitely many edges.
We write En for the set of paths µ = µ1µ2 · · ·µn of length |µ| := n; that is,
sequences of edges µi such that r(µi) = s(µi+1) for 1 ≤ i < n. The maps r, s
extend to E∗ :=

⋃
n≥0E

n in an obvious way. A loop in E is a path L ∈ E∗

with s(L) = r(L), we say that a loop L has an exit if there is v = s(Li) for
some i which emits more than one edge. If V ⊆ E0 then we write V ≥ w if
there is a path µ ∈ E∗ with s(µ) ∈ V and r(µ) = w (we also sometimes say
that w is downstream from V ). A sink is a vertex v ∈ E0 with s−1(v) = ∅, a
source is a vertex w ∈ E0 with r−1(w) = ∅.
A Cuntz-Krieger E-family in a C∗-algebra B consists of mutually orthogonal
projections {pv : v ∈ E0} and partial isometries {Se : e ∈ E1} satisfying the
Cuntz-Krieger relations

S∗
eSe = pr(e) for e ∈ E1 and pv =

∑

{e:s(e)=v}

SeS
∗
e whenever v is not a sink.

It is proved in [20, Theorem 1.2] that there is a universal C∗-algebra C∗(E)
generated by a non-zero Cuntz-Krieger E-family {Se, pv}. A product Sµ :=
Sµ1Sµ2 . . . Sµn is non-zero precisely when µ = µ1µ2 · · ·µn is a path in En. Since
the Cuntz-Krieger relations imply that the projections SeS

∗
e are also mutually

orthogonal, we have S∗
eSf = 0 unless e = f , and words in {Se, S

∗
f} collapse to

products of the form SµS
∗
ν for µ, ν ∈ E∗ satisfying r(µ) = r(ν) (cf. [20, Lemma

1.1]). Indeed, because the family {SµS
∗
ν} is closed under multiplication and

involution, we have

C∗(E) = span{SµS
∗
ν : µ, ν ∈ E∗ and r(µ) = r(ν)}. (1)

The algebraic relations and the density of span{SµS
∗
ν} in C∗(E) play a critical

role throughout the paper. We adopt the conventions that vertices are paths
of length 0, that Sv := pv for v ∈ E0, and that all paths µ, ν appearing in
(1) are non-empty; we recover Sµ, for example, by taking ν = r(µ), so that
SµS

∗
ν = Sµpr(µ) = Sµ.

If z ∈ S1, then the family {zSe, pv} is another Cuntz-Krieger E-family which
generates C∗(E), and the universal property gives a homomorphism γz :
C∗(E) → C∗(E) such that γz(Se) = zSe and γz(pv) = pv. The homomor-
phism γz is an inverse for γz, so γz ∈ AutC∗(E), and a routine ǫ/3 argument
using (1) shows that γ is a strongly continuous action of S1 on C∗(E). It
is called the gauge action. Because S1 is compact, averaging over γ with re-
spect to normalised Haar measure gives an expectation Φ of C∗(E) onto the
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fixed-point algebra C∗(E)γ :

Φ(a) :=
1

2π

∫

S1
γz(a) dθ for a ∈ C∗(E), z = eiθ.

The map Φ is positive, has norm 1, and is faithful in the sense that Φ(a∗a) = 0
implies a = 0.

From Equation (1), it is easy to see that a graph C∗-algebra is unital if and only
if the underlying graph is finite. When we consider infinite graphs, formulas
which involve sums of projections may contain infinite sums. To interpret
these, we use strict convergence in the multiplier algebra of C∗(E):

Lemma 2.1. Let E be a row-finite graph, let A be a C∗-algebra generated by
a Cuntz-Krieger E-family {Te, qv}, and let {pn} be a sequence of projections
in A. If pnTµT

∗
ν converges for every µ, ν ∈ E∗, then {pn} converges strictly to

a projection p ∈ M(A).

Proof. Since we can approximate any a ∈ A = πT,q(C
∗(E)) by a linear combi-

nation of TµT
∗
ν , an ǫ/3-argument shows that {pna} is Cauchy for every a ∈ A.

We define p : A→ A by p(a) := limn→∞ pna. Since

b∗p(a) = lim
n→∞

b∗pna = lim
n→∞

(pnb)
∗a = p(b)∗a,

the map p is an adjointable operator on the Hilbert C∗-module AA, and hence
defines (left multiplication by) a multiplier p of A [27, Theorem 2.47]. Taking
adjoints shows that apn → ap for all a, so pn → p strictly. It is easy to check
that p2 = p = p∗.

2.2 Semifinite Spectral Triples

We begin with some semifinite versions of standard definitions and results.
Let τ be a fixed faithful, normal, semifinite trace on the von Neumann algebra
N . Let KN be the τ -compact operators in N (that is the norm closed ideal
generated by the projections E ∈ N with τ(E) <∞).

Definition 2.2. A semifinite spectral triple (A,H,D) is given by a Hilbert
space H, a ∗-algebra A ⊂ N where N is a semifinite von Neumann algebra
acting on H, and a densely defined unbounded self-adjoint operator D affiliated
to N such that

1) [D, a] is densely defined and extends to a bounded operator for all a ∈ A
2) a(λ−D)−1 ∈ KN for all λ 6∈ R and all a ∈ A.
3) The triple is said to be even if there is Γ ∈ N such that Γ∗ = Γ, Γ2 = 1,
aΓ = Γa for all a ∈ A and DΓ + ΓD = 0. Otherwise it is odd.
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Definition 2.3. A semifinite spectral triple (A,H,D) is QCk for k ≥ 1 (Q
for quantum) if for all a ∈ A the operators a and [D, a] are in the domain of
δk, where δ(T ) = [|D|, T ] is the partial derivation on N defined by |D|. We
say that (A,H,D) is QC∞ if it is QCk for all k ≥ 1.

Note. The notation is meant to be analogous to the classical case, but we
introduce theQ so that there is no confusion between quantum differentiability
of a ∈ A and classical differentiability of functions.

Remarks concerning derivations and commutators. By partial deriva-
tion we mean that δ is defined on some subalgebra of N which need not be
(weakly) dense in N . More precisely, dom δ = {T ∈ N : δ(T ) is bounded}.
We also note that if T ∈ N , one can show that [|D|, T ] is bounded if and
only if [(1 + D2)1/2, T ] is bounded, by using the functional calculus to show
that |D| − (1 + D2)1/2 extends to a bounded operator in N . In fact, writing
|D|1 = (1 + D2)1/2 and δ1(T ) = [|D|1, T ] we have

dom δn = dom δn
1 for all n.

We also observe that if T ∈ N and [D, T ] is bounded, then [D, T ] ∈ N . Similar
comments apply to [|D|, T ], [(1 + D2)1/2, T ]. The proofs can be found in [6].

The QC∞ condition places some restrictions on the algebras we consider.
Recall that a topological algebra is Fréchet if it is locally convex, metrizable
and complete, and that a subalgebra of a C∗-algebra is a pre-C∗-algebra if it
is stable under the holomorphic functional calculus. For nonunital algebras,
we consider only functions f with f(0) = 0.

Definition 2.4. A ∗-algebra A is smooth if it is Fréchet and ∗-isomorphic to
a proper dense subalgebra i(A) of a C∗-algebra A which is a pre-C∗-algebra.

Asking for i(A) to be a proper dense subalgebra of A immediately implies that
the Fréchet topology of A is finer than the C∗-topology of A. We will denote
the norm closure A = A, when the norm closure A is unambiguous.

If A is smooth in A then Mn(A) is smooth in Mn(A), [14,33], so K∗(A) ∼=
K∗(A), the isomorphism being induced by the inclusion map i. A smooth
algebra has a sensible spectral theory which agrees with that defined using
the C∗-closure, and the group of invertibles is open. The point of contact
between smooth algebras and QC∞ spectral triples is the following Lemma,
proved in [30].

Lemma 2.5. If (A,H,D) is a QC∞ spectral triple, then (Aδ,H,D) is also
a QC∞ spectral triple, where Aδ is the completion of A in the locally convex
topology determined by the seminorms

qn,i(a) =‖ δndi(a) ‖, n ≥ 0, i = 0, 1,

where d(a) = [D, a]. Moreover, Aδ is a smooth algebra.
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We call the topology on A determined by the seminorms qn,i of Lemma 2.5
the δ-topology.

Whilst smoothness does not depend on whether A is unital or not, many
analytical problems arise because of the lack of a unit. As in [13,30,31], we
make two definitions to address these issues.

Definition 2.6. An algebra A has local units if for every finite subset of
elements {ai}n

i=1 ⊂ A, there exists φ ∈ A such that for each i

φai = aiφ = ai.

Definition 2.7. Let A be a Fréchet algebra and Ac ⊆ A be a dense subalgebra
with local units. Then we call A a quasi-local algebra (when Ac is understood.)
If Ac is a dense ideal with local units, we call Ac ⊂ A local.

Quasi-local algebras have an approximate unit {φn}n≥1 ⊂ Ac such that for all
n, φn+1φn = φn, [30]; we call this a local approximate unit.

Example For a graph C∗-algebra A = C∗(E), Equation (1) shows that

Ac = span{SµS
∗
ν : µ, ν ∈ E∗ and r(µ) = r(ν)}

is a dense subalgebra. It has local units because

pvSµS
∗
ν =




SµS

∗
ν v = s(µ)

0 otherwise
.

Similar comments apply to right multiplication by ps(ν). By summing the
source and range projections (without repetitions) of all Sµi

S∗
νi

appearing in
a finite sum

a =
∑

i

cµi,νi
Sµi

S∗
νi

we obtain a local unit for a ∈ Ac. By repeating this process for any finite
collection of such a ∈ Ac we see that Ac has local units.

We also require that when we have a spectral triple the operator D is com-
patible with the quasi-local structure of the algebra, in the following sense.

Definition 2.8. If (A,H,D) is a spectral triple, then we define Ω∗
D(A) to be

the algebra generated by A and [D,A].

Definition 2.9. A local spectral triple (A,H,D) is a spectral triple with
A quasi-local such that there exists an approximate unit {φn} ⊂ Ac for A
satisfying

Ω∗
D(Ac) =

⋃

n

Ω∗
D(A)n, where

Ω∗
D(A)n = {ω ∈ Ω∗

D(A) : φnω = ωφn = ω}.
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Remark A local spectral triple has a local approximate unit {φn}n≥1 ⊂ Ac

such that φn+1φn = φnφn+1 = φn and φn+1[D, φn] = [D, φn]φn+1 = [D, φn], see
[30,31]. We require this property to prove the summability results we require.

2.3 Summability and the Local Index Theorem

In the following, let N be a semifinite von Neumann algebra with faithful
normal trace τ . Recall from [12] that if S ∈ N , the t-th generalized singular
value of S for each real t > 0 is given by

µt(S) = inf{||SE|| : E is a projection in N with τ(1 − E) ≤ t}.

The ideal L1(N ) consists of those operators T ∈ N such that ‖ T ‖1:=
τ(|T |) < ∞ where |T | =

√
T ∗T . In the Type I setting this is the usual trace

class ideal. We will simply write L1 for this ideal in order to simplify the
notation, and denote the norm on L1 by ‖ · ‖1. An alternative definition in
terms of singular values is that T ∈ L1 if ‖T‖1 :=

∫∞
0 µt(T )dt <∞.

Note that in the case where N 6= B(H), L1 is not complete in this norm but
it is complete in the norm ||.||1 + ||.||∞. (where ||.||∞ is the uniform norm).
Another important ideal for us is the domain of the Dixmier trace:

L(1,∞)(N ) =

{
T ∈ N : ‖T‖

L(1,∞)
:= sup

t>0

1

log(1 + t)

∫ t

0
µs(T )ds <∞

}
.

We will suppress the (N ) in our notation for these ideals, as N will always
be clear from context. The reader should note that L(1,∞) is often taken to
mean an ideal in the algebra Ñ of τ -measurable operators affiliated to N ,
[12]. Our notation is however consistent with that of [8] in the special case
N = B(H). With this convention the ideal of τ -compact operators, K(N ),
consists of those T ∈ N (as opposed to Ñ ) such that

µ∞(T ) := lim
t→∞

µt(T ) = 0.

Definition 2.10. A semifinite local spectral triple is (1,∞)-summable if

a(D − λ)−1 ∈ L(1,∞) for all a ∈ Ac, λ ∈ C \ R.

Equivalently, a(1 + D2)−1/2 ∈ L(1,∞) for all a ∈ Ac.

Remark If A is unital, kerD is τ -finite dimensional. Note that the summa-
bility requirements are only for a ∈ Ac. We do not assume that elements of
the algebra A are all integrable in the nonunital case.
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We need to briefly discuss the Dixmier trace, but fortunately we will usually be
applying it in reasonably simple situations. For more information on semifinite
Dixmier traces, see [4]. For T ∈ L(1,∞), T ≥ 0, the function

FT : t→ 1

log(1 + t)

∫ t

0
µs(T )ds

is bounded. For certain generalised limits ω ∈ L∞(R+
∗ )∗, we obtain a positive

functional on L(1,∞) by setting

τω(T ) = ω(FT ).

This is the Dixmier trace associated to the semifinite normal trace τ , denoted
τω, and we extend it to all of L(1,∞) by linearity, where of course it is a trace.
The Dixmier trace τω is defined on the ideal L(1,∞), and vanishes on the ideal
of trace class operators. Whenever the function FT has a limit at infinity, all
Dixmier traces return the value of the limit. We denote the common value of all
Dixmier traces on measurable operators by −∫ . So if T ∈ L(1,∞) is measurable,
for any allowed functional ω ∈ L∞(R+

∗ )∗ we have

τω(T ) = ω(FT ) = −
∫
T.

Example Let D = 1
i

d
dθ

act on L2(S1). Then it is well known that the spectrum
of D consists of eigenvalues {n ∈ Z}, each with multiplicity one. So, using the
standard operator trace, the function F(1+D2)−1/2 is

N → 1

log 2N + 1

N∑

n=−N

(1 + n2)−1/2

which is bounded. So (1 +D2)−1/2 ∈ L(1,∞) and for any Dixmier trace Traceω

Traceω((1 + D2)−1/2) = −
∫

(1 + D2)−1/2 = 2.

In [30,31] we proved numerous properties of local algebras. The introduction
of quasi-local algebras in [13] led us to review the validity of many of these
results for quasi-local algebras. Most of the summability results of [31] are
valid in the quasi-local setting. In addition, the summability results of [31]
are also valid for general semifinite spectral triples since they rely only on
properties of the ideals L(p,∞), p ≥ 1, [8,4], and the trace property. We quote
the version of the summability results from [31] that we require below.

Proposition 2.11 ([31]). Let (A,H,D) be a QC∞, local (1,∞)-summable
semifinite spectral triple relative to (N , τ). Let T ∈ N satisfy Tφ = φT = T
for some φ ∈ Ac. Then

T (1 + D2)−1/2 ∈ L(1,∞).
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For Re(s) > 1, T (1 + D2)−s/2 is trace class. If the limit

lim
s→1/2+

(s− 1/2)τ(T (1 + D2)−s) (2)

exists, then it is equal to

1

2
−
∫
T (1 + D2)−1/2.

In addition, for any Dixmier trace τω, the function

a 7→ τω(a(1 + D2)−1/2)

defines a trace on Ac ⊂ A.

In [6], the noncommutative geometry local index theorem of [9] was extended
to semifinite spectral triples. In the simplest terms, the local index theo-
rem provides a formula for the pairing of a finitely summable spectral triple
(A,H,D) with the K-theory of A. The precise statement that we require is

Theorem 2.12 ([6]). Let (A,H,D) be an odd QC∞ (1,∞)-summable local
semifinite spectral triple, relative to (N , τ). Then for u ∈ A unitary the pairing
of [u] ∈ K1(A) with (A,H,D) is given by

〈[u], (A,H,D)〉 = ress=0τ(u[D, u∗](1 + D2)−1/2−s).

In particular, the residue on the right exists.

For more information on this result see [4,6,7,9].

3 Graph C∗-Algebras with Semifinite Graph Traces

This section considers the existence of (unbounded) traces on graph algebras.
We denote by A+ the positive cone in a C∗-algebra A, and we use extended
arithmetic on [0,∞] so that 0×∞ = 0. From [25] we take the basic definition:

Definition 3.1. A trace on a C∗-algebra A is a map τ : A+ → [0,∞] satisfying

1) τ(a + b) = τ(a) + τ(b) for all a, b ∈ A+

2) τ(λa) = λτ(a) for all a ∈ A+ and λ ≥ 0

3) τ(a∗a) = τ(aa∗) for all a ∈ A

We say: that τ is faithful if τ(a∗a) = 0 ⇒ a = 0; that τ is semifinite if
{a ∈ A+ : τ(a) <∞} is norm dense in A+ (or that τ is densely defined); that
τ is lower semicontinuous if whenever a = limn→∞ an in norm in A+ we have
τ(a) ≤ lim infn→∞ τ(an).
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We may extend a (semifinite) trace τ by linearity to a linear functional on
(a dense subspace of) A. Observe that the domain of definition of a densely
defined trace is a two-sided ideal Iτ ⊂ A.

Lemma 3.2. Let E be a row-finite directed graph and let τ : C∗(E) → C be
a semifinite trace. Then the dense subalgebra

Ac := span{SµS
∗
ν : µ, ν ∈ E∗}

is contained in the domain Iτ of τ .

Proof. Let v ∈ E0 be a vertex, and let pv ∈ Ac be the corresponding projec-
tion. We claim that pv ∈ Iτ . Choose a ∈ Iτ positive, so τ(a) < ∞, and with
‖pv − a‖ < 1. Since pv is a projection, we also have ‖pv − pvapv‖ < 1 and
pvapv ∈ Iτ , so we have τ(pvapv) <∞.

The subalgebra pvC
∗(E)pv has unit pv, and as ‖pv − pvapv‖ < 1, pvapv is

invertible. Thus there is some b ∈ pvC
∗(E)pv such that bpvapv = pv. Then,

again since the trace class elements form an ideal, we have τ(pv) <∞.

Now since SµS
∗
ν = ps(µ)SµS

∗
ν , it is easy to see that every element of Ac has

finite trace.

It is convenient to denote by A = C∗(E) and Ac = span{SµS
∗
ν : µ, ν ∈ E∗}.

Lemma 3.3. Let E be a row-finite directed graph.

(i) If C∗(E) has a faithful semifinite trace then no loop can have an exit.

(ii) If C∗(E) has a gauge-invariant, semifinite, lower semicontinuous trace τ
then τ ◦ Φ = τ and

τ(SµS
∗
ν) = δµ,ντ(pr(µ)).

In particular, τ is supported on C∗({SµS
∗
µ : µ ∈ E∗}).

Proof. Suppose E has a loop L = e1 . . . en which has an exit. Let vi = s(ei)
for i = 1, · · · , n so that r(en) = v1. Without loss of generality suppose that v1

emits an edge f which is not part of L. If w = r(f) then we have

τ(pv1) ≥ τ(Se1S
∗
e1

+ SfS
∗
f) = τ(S∗

e1
Se1) + τ(S∗

fSf) = τ(pv2) + τ(pw).

Similarly we may show that τ(pvi
) ≥ τ(pvi+1

) for i = 1, . . . , n − 1 and so
τ(pv1) ≥ τ(pv1) + τ(pw) which means, by Lemma 3.2, that we must have
τ(pw) = 0. Since pw is positive, this implies that τ is not faithful. Now suppose
the trace τ is gauge-invariant. Then

τ(SµS
∗
ν) = τ(γzSµS

∗
ν) = τ(z|µ|−|ν|SµS

∗
ν) = z|µ|−|ν|τ(SµS

∗
ν)

11



for all z ∈ S1, and so τ(SµS
∗
ν) is zero unless |µ| = |ν|. Hence τ ◦Φ = τ on Ac.

Moreover, if |µ| = |ν| then

τ(SµS
∗
ν) = τ(S∗

νSµ) = τ(δµ,νpr(µ)) = δµ,ντ(pr(µ)),

so the restriction of τ to Ac is supported on span{SµS
∗
µ : µ ∈ E∗}. To extend

these conclusions to the C∗ completions, let {φn} ⊂ Φ(A) be an approximate
unit for A consisting of an increasing sequence of projections. Then for each n,
the restriction of τ to An := φnAφn is a finite trace, and so norm continuous.
Observe also that φnAcφn is dense in An and φnAcφn ⊆ Ac. We claim that

when restricted to An, τ satisfies τ ◦ Φ = τ. (3)

To see this we make two observations, namely that

Φ(An) = Φ(φnAφn) = φnΦ(A)φn ⊆ φnAφn = An

and that on φnAcφn ⊆ Ac we have τ ◦Φ = τ . The norm continuity of τ on An

now completes the proof of the claim. Now let a ∈ A+, and let an = a1/2φna
1/2

so that an ≤ an+1 ≤ · · · ≤ a and ‖an − a‖ → 0. Then

τ(a) ≥ lim sup τ(an) ≥ lim inf τ(an) ≥ τ(a),

the first inequality coming from the positivity of τ , and the last inequality
from lower semicontinuity. Since τ is a trace and φ2

n = φn we have

τ(a) = lim
n→∞

τ(an) = lim
n→∞

τ(φnaφn). (4)

Similarly, let bn = Φ(a)1/2φnΦ(a)1/2 so that bn ≤ bn+1 ≤ · · · ≤ Φ(a) and
‖bn − Φ(a)‖ → 0. Then

τ(Φ(a)) = lim
n→∞

τ(bn) = lim
n→∞

τ(φnΦ(a)φn) = lim
n→∞

τ(Φ(φnaφn)). (5)

However φnaφn ∈ An so by (3) we have (τ ◦ Φ)(φnaφn) = τ(φnaφn). Then by
Equations (4) and (5) we have τ(a) = (τ ◦ Φ)(a) for all a ∈ A+. By linearity
this is true for all a ∈ A, so τ = τ ◦ Φ on all of A. Finally,

φnspan{SµS
∗
µ : µ ∈ E∗}φn ⊆ span{SµS

∗
µ : µ ∈ E∗},

so by the arguments above τ is supported on C∗({SµS
∗
µ : µ ∈ E∗}).

Whilst the condition that no loop has an exit is necessary for the existence of
a faithful semifinite trace, it is not sufficient.

One of the advantages of graph C∗-algebras is the ability to use both graphical
and analytical techniques. There is an analogue of the above discussion of
traces in terms of the graph.

12



Definition 3.4 (cf. [35]). If E is a row-finite directed graph, then a graph
trace on E is a function g : E0 → R+ such that for any v ∈ E0 we have

g(v) =
∑

s(e)=v

g(r(e)). (6)

If g(v) 6= 0 for all v ∈ E0 we say that g is faithful.

Remark One can show by induction that if g is a graph trace on a directed
graph with no sinks, and n ≥ 1

g(v) =
∑

s(µ)=v, |µ|=n

g(r(µ)). (7)

For graphs with sinks, we must also count paths of length at most n which
end on sinks. To deal with this more general case we write

g(v) =
∑

s(µ)=v, |µ|�n

g(r(µ)) ≥
∑

s(µ)=v, |µ|=n

g(r(µ)), (8)

where |µ| � n means that µ is of length n or is of length less than n and
terminates on a sink.

As with traces on C∗(E), it is easy to see that a necessary condition for E to
have a faithful graph trace is that no loop has an exit.

Lemma 3.5. Suppose that E is a row-finite directed graph and there exist
vertices v, w ∈ E0 with an infinite number of paths from v to w. Then there
is no faithful graph trace on E0.

Proof. First suppose that there are an infinite number of paths from v to w of
the same length, k say. Then for any N ∈ N and any graph trace g : E0 → R+

g(v) =
∑

s(µ)=v, |µ|�k

g(r(µ)) ≥
N∑
g(w) = Ng(w).

So to assign a finite value to g(v) we require g(w) = 0.

Thus we may suppose that there are infinitely many paths of different length
from v to w, and without loss of generality that all the paths have different
length. Choose the shortest path µ1 of length k1, say. Then, with Em(v) =
{µ ∈ E∗ : s(µ) = v, |µ| � m}, we have

g(v) =
∑

µ∈Ek1(v)

g(r(µ)) = g(w) +
∑

µ∈Ek1 (v), r(µ)6=w

g(r(µ)). (9)

Observe that at least one of the paths, call it µ2, in the rightmost sum can be
extended until it reaches w. Choose the shortest such extension from r(µ2) to
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w, and denote the length by k2. So

∑

µ∈Ek1 (v), µ6=µ1

g(r(µ)) = g(r(µ2)) +
∑

µ∈Ek1 (v), µ6=µ1,µ2

g(r(µ))

=
∑

µ∈Ek2 (r(µ2))

g(r(µ)) +
∑

µ∈Ek1 (v), µ6=µ1,µ2

g(r(µ))

= g(w) +
∑

µ∈Ek2(r(µ2)), µ6=µ2

g(r(µ)) +
∑

µ∈Ek1(v), µ6=µ1,µ2

g(r(µ)). (10)

So by equation (9) we have

g(v) = 2g(w) + sum1 + sum2.

The two sums on the right contain at least one path which can be extended
to w, and so chossing the shortest,

g(v) = 3g(w) + sum1 + sum2 + sum3.

It is now clear how to proceed, and we deduce as before that for all N ∈ N,
g(v) ≥ Ng(w).

Definition 3.6. Let E be a row-finite directed graph. An end will mean a
sink, a loop without exit or an infinite path with no exits.

Remark We shall identify an end with the vertices which comprise it. Once
on an end (of any sort) the graph trace remains constant.

Corollary 3.7. Suppose that E is a row-finite directed graph and there exists
a vertex v ∈ E0 with an infinite number of paths from v to an end. Then there
is no faithful graph trace on E0.

Proof. Because the value of the graph trace is constant on an end Ω, say gΩ,
we have, as in Lemma 3.5,

g(v) ≥ NgE

for all N ∈ N. Hence there can be no faithful graph trace.

Thus if a row-finite directed graph E is to have a faithful graph trace, it is
necessary that no vertex connects infinitely often to any other vertex or to an
end, and that no loop has an exit.

Proposition 3.8. Let E be a row-finite directed graph and suppose there exists
N ∈ N such that for all vertices v and w and for all ends Ω,

1) the number of paths from v to w, and

2) the number of paths from v to Ω

is less than or equal to N . If in addition the only infinite paths in E are
eventually in ends, then E has a faithful graph trace.
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Proof. First observe that our hypotheses on E rule out loops with exit, since
we can define infinite paths using such loops, but they are not ends.

Label the set of ends by i = 1, 2, .... Assign a positive number gi to each end,
and define g(v) = gi for all v in the i-th end. If there are infinitely many ends,
choose the gi so that

∑
i gi <∞.

For each end, choose a vertex vi on the end. For v ∈ E0 not on an end, define

g(v) =
∑

i

∑

s(µ)=v, r(µ)=vi

gi. (11)

Then the conditions on the graph ensure this sum is finite. Using Equation
(8), one can check that g : E0 → R+ is a faithful graph trace.

There are many directed graphs with much more complicated structure than
those described in Proposition 3.8 which possess faithful graph traces. The
difficulty in defining a graph trace is going ‘forward’, and this is what prevents
us giving a concise sufficiency condition. Extending a graph trace ‘backward’
from a given set of values can always be handled as in Equation (11).

Proposition 3.9. Let E be a row-finite directed graph. Then there is a one-to-
one correspondence between faithful graph traces on E and faithful, semifinite,
lower semicontinuous, gauge invariant traces on C∗(E).

Proof. Given a faithful graph trace g on E we define τg on Ac by

τg(SµS
∗
ν) := δµ,νg(r(µ)). (12)

One checks that τg is a gauge invariant trace on Ac, and is faithful because
for a =

∑n
i=1 cµi,νi

Sµi
S∗

νi
∈ Ac we have a∗a ≥ ∑n

i=1 |cµi,νi
|2Sνi

S∗
νi

and then

〈a, a〉g := τg(a
∗a) ≥ τg(

n∑

i=1

|cµi,νi
|2Sνi

S∗
νi

)

=
n∑

i=1

|cµi,νi
|2τg(Sνi

S∗
νi

) =
n∑

i=1

|cµi,νi
|2g(r(νi)) > 0. (13)

Then 〈a, b〉g = τg(b
∗a) defines a positive definite inner product on Ac which

makes it a Hilbert algebra (that the left regular representation of Ac is non-
degenerate follows from A2

c = Ac).

Let Hg be the Hilbert space completion of Ac. Then defining π : Ac →
B(Hg) by π(a)b = ab for a, b ∈ Ac yields a faithful ∗-representation. Thus
{π(Se), π(pv) : e ∈ E1, v ∈ E0} is a Cuntz-Krieger E family in B(Hg). The
gauge invariance of τg shows that for each z ∈ S1 the map γz : Ac → Ac

extends to a unitary Uz : Hg → Hg. Then for a, b ∈ Ac we compute

(Uzπ(a)Uz̄)(b) = Uzaγz̄(b) = γz(aγz̄(b)) = γz(a)b = π(γz(a))(b).
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Hence Uzπ(a)Uz̄ = π(γz(a)) and defining αz(π(a)) := Uzπ(a)Uz̄ gives a point
norm continuous action of S1 on π(Ac) implementing the gauge action. Since
for all v ∈ E0, π(pv)pv = pv, π(pv) 6= 0. Thus we can invoke the gauge invariant
uniqueness theorem, [2, Theorem 2.1], and the map π : Ac → B(Hg) extends

by continuity to π : C∗(E) → B(Hg) and π(C∗(E)) = π(Ac)
‖·‖

in B(Hg). In
particular the representation is faithful on C∗(E).

Now, π(C∗(E)) ⊆ π(Ac)
′′ = π(Ac)

u.w.
, where u.w. denotes the ultra-weak

closure. The general theory of Hilbert algebras, see for example [11, Thm
1, Sec 2, Chap 6, Part I], now shows that the trace τg extends to an ultra
weakly lower semicontinuous, faithful, (ultra weakly) semifinite trace τ̄g on
π(Ac)

′′. Trivially, the restriction of this extension to π(C∗(E)) is faithful. It is
semifinite in the norm sense on C∗(E) since π(Ac) is norm dense in π(C∗(E))
and τg is finite on π(Ac). To see that this last statement is true, let a ∈ Ac,
choose any local unit φ ∈ Ac for a and then

∞ > τg(a) = τg(φa) = 〈a, φ〉g =: τ̄g(φa) = τ̄g(a).

It is norm lower semicontinuous on π(C∗(E)) because if π(a) ∈ C∗(E)+ and
π(an) ∈ C∗(E)+ with π(an) → π(a) in norm, then π(an) → π(a) ultra weakly
and so τ̄g(π(a)) ≤ lim inf τ̄g(π(an)).

We have seen that the gauge action of S1 on C∗(E) is implemented in the
representation π by the unitary representation S1 ∋ z → Uz ∈ B(Hg). We
wish to show that τ̄g is invariant under this action, but since the Uz do not
lie in π(Ac)

′′, we can not use the tracial property directly. Now T ∈ π(Ac)
′′ is

in the domain of definition of τ̄g if and only if T = π(ξ)π(η)∗ for left bounded
elements ξ, η ∈ Hg. Then τ̄g(T ) = τ̄g(π(ξ)π(η)∗) := 〈ξ, η〉g. Since Uz(ξ) and
Uz(η) are also left bounded elements of Hg we have

τ̄g(UzTUz̄) = τ̄g(Uzπ(ξ)π(η)∗Uz̄) = τ̄g(Uzπ(ξ)[Uzπ(η)]∗)

= τ̄g(π(γz(ξ))[π(γz(η))]
∗) = 〈Uz(ξ), Uz(η)〉g

= 〈ξ, η〉g = τ̄g(T ).

That is, τ̄g(αz(T )) = τ̄g(T ), and τ̄g is αz-invariant. Thus a→ τ̄g(π(a)) defines
a faithful, semifinite, lower semicontinuous, gauge invariant trace on C∗(E).

Conversely, given a faithful, semifinite, lower semicontinuous and gauge invari-
ant trace τ on C∗(E), we know by Lemma 3.2 that τ is finite on Ac and so we
define g(v) := τ(pv). It is easy to check that this is a faithful graph trace.

4 Constructing a C∗- and Kasparov Module

There are several steps in the construction of a spectral triple. We begin in
Subsection 4.1 by constructing a C∗-module. We define an unbounded operator
D on this C∗-module as the generator of the gauge action of S1 on the graph
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algebra. We show in Subsection 4.2 that D is a regular self-adjoint operator
on the C∗-module. We use the phase of D to construct a Kasparov module.

4.1 Building a C∗-module

The constructions of this subsection work for any locally finite graph. Let
A = C∗(E) where E is any locally finite directed graph. Let F = C∗(E)γ be
the fixed point subalgebra for the gauge action. Finally, let Ac, Fc be the dense
subalgebras of A,F given by the (finite) linear span of the generators.

We make A a right inner product F -module. The right action of F on A is by
right multiplication. The inner product is defined by

(x|y)R := Φ(x∗y) ∈ F.

Here Φ is the canonical expectation. It is simple to check the requirements
that (·|·)R defines an F -valued inner product on A. The requirement (x|x)R =
0 ⇒ x = 0 follows from the faithfulness of Φ.

Definition 4.1. Define X to be the C∗-F -module completion of A for the
C∗-module norm

‖x‖2
X := ‖(x|x)R‖A = ‖(x|x)R‖F = ‖Φ(x∗x)‖F .

Define Xc to be the pre-C∗-Fc-module with linear space Ac and the inner
product (·|·)R.

Remark Typically, the action of F does not map Xc to itself, so we may only
consider Xc as an Fc module. This is a reflection of the fact that Fc and Ac

are quasilocal not local.

The inclusion map ι : A→ X is continuous since

‖a‖2
X = ‖Φ(a∗a)‖F ≤ ‖a∗a‖A = ‖a‖2

A.

We can also define the gauge action γ on A ⊂ X, and as

‖γz(a)‖2
X = ‖Φ((γz(a))

∗(γz(a)))‖F = ‖Φ(γz(a
∗)γz(a))‖F

= ‖Φ(γz(a
∗a))‖F = ‖Φ(a∗a)‖F = ‖a‖2

X ,

for each z ∈ S1, the action of γz is isometric on A ⊂ X and so extends to
a unitary Uz on X. This unitary is F linear, adjointable, and we obtain a
strongly continuous action of S1 on X, which we still denote by γ.

For each k ∈ Z, the projection onto the k-th spectral subspace for the gauge
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action defines an operator Φk on X by

Φk(x) =
1

2π

∫

S1
z−kγz(x)dθ, z = eiθ, x ∈ X.

Observe that on generators we have Φk(SαS
∗
β) = SαS

∗
β when |α|− |β| = k and

is zero when |α| − |β| 6= k. The range of Φk is

Range Φk = {x ∈ X : γz(x) = zkx for all z ∈ S1}. (14)

These ranges give us a natural Z-grading of X.

Remark If E is a finite graph with no loops, then for k sufficiently large there
are no paths of length k and so Φk = 0. This will obviously simplify many of
the convergence issues below.

Lemma 4.2. The operators Φk are adjointable endomorphisms of the F -
module X such that Φ∗

k = Φk = Φ2
k and ΦkΦl = δk,lΦk. If K ⊂ Z then the sum∑

k∈K Φk converges strictly to a projection in the endomorphism algebra. The
sum

∑
k∈Z Φk converges to the identity operator on X.

Proof. It is clear from the definition that each Φk defines an F -linear map on
X. First, we show that Φk is bounded:

‖Φk(x)‖X ≤ 1

2π

∫

S1
‖γz(x)‖Xdθ ≤

1

2π

∫

S1
‖x‖Xdθ = ‖x‖X .

So ‖Φk‖ ≤ 1. Since ΦkSµ = Sµ whenever µ is a path of length k, ‖Φk‖ = 1.

On the subspace Xc of finite linear combinations of generators, one can use
Equation (14) to see that ΦkΦl = δk,lΦk since

ΦkΦlSαS
∗
β = Φkδ|α|−|β|,lSαS

∗
β = δ|α|−|β|,kδ|α|−|β|,lSαS

∗
β.

For general x ∈ X, we approximate x by a sequence {xm} ⊂ Xc, and the
continuity of the Φk then shows that the relation ΦkΦl = δk,lΦk holds on all
of X. Again using the continuity of Φk, the following computation allows us
to show that for all k, Φk is adjointable with adjoint Φk:

(ΦkSαS
∗
β|SρS

∗
σ)R =Φ

(
δ|α|−|β|,kSβS

∗
αSρS

∗
σ

)

= δ|α|−|β|,kδ|β|−|α|+|ρ|−|σ|,0SβS
∗
αSρS

∗
σ

=Φ
(
δ|ρ|−|σ|,kSβS

∗
αSρS

∗
σ

)
= (SαS

∗
β|ΦkSρS

∗
σ)R.

To address the last two statements of the Lemma, we observe that the set
{Φk}k∈Z is norm bounded in EndF (X), so the strict topology on this set
coincides with the ∗-strong topology, [27, Lemma C.6]. First, if K ⊂ Z is a
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finite set, the sum ∑

k∈K

Φk

is finite, and defines a projection in EndF (X) by the results above. So assume
K is infinite and let {Ki} be an increasing sequence of finite subsets of K with
K = ∪iKi. For x ∈ X, let

Tix =
∑

k∈Ki

Φkx.

Choose a sequence {xm} ⊂ Xc with xm → x. Let ǫ > 0 and choose m so that
‖xm − x‖X < ǫ/2. Since xm has finite support, for i, j sufficiently large we
have Tixm − Tjxm = 0, and so for sufficiently large i, j

‖Tix− Tjx‖X = ‖Tix− Tixm + Tixm − Tjxm + Tjxm − Tjxm‖X

≤‖Ti(x− xm)‖X + ‖Tj(x− xm)‖X + ‖Tixm − Tjxm‖X

< ǫ.

This proves the strict convergence, since the Φk are all self-adjoint. To prove
the final statement, let x, {xm} be as above, ǫ > 0, and choose m so that
‖x− xm‖X < ǫ/2. Then

‖x−
∑

k∈Z

Φkx‖X = ‖x−
∑

Φkxm +
∑

Φkxm −
∑

Φkx‖X

≤‖x− xm‖X + ‖
∑

Φk(x− xm)‖X < ǫ.

Corollary 4.3. Let x ∈ X. Then with xk = Φkx the sum
∑

k∈Z xk converges
in X to x.

4.2 The Kasparov Module

In this subsection we assume that E is locally finite and furthermore
has no sources. That is, every vertex receives at least one edge.

Since we have the gauge action defined on X, we may use the generator of
this action to define an unbounded operator D. We will not define or study D
from the generator point of view, rather taking a more bare-hands approach.
It is easy to check that D as defined below is the generator of the S1 action.

The theory of unbounded operators on C∗-modules that we require is all con-
tained in Lance’s book, [22, Chapters 9,10]. We quote the following definitions
(adapted to our situation).

Definition 4.4. Let Y be a right C∗-B-module. A densely defined unbounded
operator D : dom D ⊂ Y → Y is a B-linear operator defined on a dense B-
submodule dom D ⊂ Y . The operator D is closed if the graph

G(D) = {(x|Dx)R : x ∈ dom D}
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is a closed submodule of Y ⊕ Y .

If D : dom D ⊂ Y → Y is densely defined and unbounded, define a submodule

dom D∗ := {y ∈ Y : ∃z ∈ Y such that ∀x ∈ dom D, (Dx|y)R = (x|z)R}.

Then for y ∈ dom D∗ define D∗y = z. Given y ∈ dom D∗, the element z is
unique, so D∗ : domD∗ → Y , D∗y = z is well-defined, and moreover is closed.

Definition 4.5. Let Y be a right C∗-B-module. A densely defined unbounded
operator D : dom D ⊂ Y → Y is symmetric if for all x, y ∈ dom D

(Dx|y)R = (x|Dy)R.

A symmetric operator D is self-adjoint if dom D = dom D∗ (and so D is
necessarily closed). A densely defined unbounded operator D is regular if D is
closed, D∗ is densely defined, and (1 + D∗D) has dense range.

The extra requirement of regularity is necessary in the C∗-module context for
the continuous functional calculus, and is not automatic, [22, Chapter 9].

With these definitions in hand, we return to our C∗-module X.

Proposition 4.6. Let X be the right C∗-F -module of Definition 4.1. Define
XD ⊂ X to be the linear space

XD = {x =
∑

k∈Z

xk ∈ X : ‖
∑

k∈Z

k2(xk|xk)R‖ <∞}.

For x =
∑

k∈Z xk ∈ XD define

Dx =
∑

k∈Z

kxk.

Then D : XD → X is a self-adjoint regular operator on X.

Remark Any SαS
∗
β ∈ Ac is in XD and

DSαS
∗
β = (|α| − |β|)SαS

∗
β.

Proof. First we show that XD is a submodule. If x ∈ XD and f ∈ F , in the
C∗-algebra F we have

∑

k∈Z

k2(xkf |xkf)R =
∑

k∈Z

k2f ∗(xk|xk)Rf = f ∗
∑

k∈Z

k2(xk|xk)Rf

≤ f ∗f‖
∑

k∈Z

k2(xk|xk)R‖.

So
‖
∑

k∈Z

k2(xkf |xkf)R‖ ≤ ‖f ∗f‖ ‖
∑

k∈Z

k2(xk|xk)R‖ <∞.
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Observe that if x ∈ X is a finite sum of graded components,

x =
M∑

k=−N

xk,

then x ∈ XD. In particular if P =
∑

finite Φk is a finite sum of the projections
Φk, Px ∈ XD for any x ∈ X.

The following calculation shows that D is symmetric on its domain, so that
the adjoint is densely defined. Let x, y ∈ domD and use Corollary 4.3 to write
x =

∑
k xk and y =

∑
k yk. Then

(Dx|y)R = (
∑

k

kxk|
∑

m

ym)R = Φ((
∑

k

kxk)
∗(
∑

m

ym)) = Φ(
∑

k,m

kx∗kym)

=
∑

k

kx∗kyk = Φ(
∑

k,m

x∗mkyk) = Φ((
∑

m

xm)∗(
∑

k

kyk))

= (x|Dy)R.

Thus domD ⊆ domD∗, and so D∗ is densely defined, and of course closed.
Now choose any x ∈ X and any y ∈ domD∗. Let PN,M =

∑M
k=−N Φk, and

recall that PN,Mx ∈ domD for all x ∈ X. Then

(x|PN,MD∗y)R = (PN,Mx|D∗y)R = (DPN,Mx|y)R

= (
M∑

k=−N

kxk|y)R = (x|
M∑

k=−N

kyk)R.

Since this is true for all x ∈ X we have

PN,MD∗y =
M∑

k=−N

kyk.

Letting N,M → ∞, the limit on the left hand side exists by Corollary 4.3,
and so the limit on the right exists, and so y ∈ domD. Hence D is self-adjoint.

Finally, we need to show that D is regular. By [22, Lemma 9.8], D is regular
if and only if the operators D ± iIdX are surjective. This is straightforward
though, for if x =

∑
k xk we have

x =
∑

k∈Z

(k ± i)

(k ± i)
xk = (D ± iIdX)

∑

k∈Z

1

(k ± i)
xk.

The convergence of
∑

k xk ensures the convergence of
∑

k(k ± i)−1xk.

There is a continuous functional calculus for self-adjoint regular operators,
[22, Theorem 10.9], and we use this to obtain spectral projections for D at the
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C∗-module level. Let fk ∈ Cc(R) be 1 in a small neighbourhood of k ∈ Z and
zero on (−∞, k − 1/2] ∪ [k + 1/2,∞). Then it is clear that

Φk = fk(D).

That is the spectral projections of D are the same as the projections onto the
spectral subspaces of the gauge action.

The next Lemma is the first place where we need our graph to be locally finite
and have no sources.

Lemma 4.7. Assume that the directed graph E is locally finite and has no
sources. For all a ∈ A and k ∈ Z, aΦk ∈ End0

F (X), the compact endomor-
phisms of the right F -module X. If a ∈ Ac then aΦk is finite rank.

Remark The proof actually shows that for k > 0

Φk =
∑

|ρ|=k

ΘR
Sρ,Sρ

where the sum converges in the strict topology.

Proof. We will prove the Lemma by first showing that for each v ∈ E0 and
k ≥ 0

pvΦk =
∑

s(ρ)=v, |ρ|=k

ΘR
Sρ,Sρ

.

This is a finite sum, by the row-finiteness of E. For k < 0 the situation is more
complicated, but a similar formula holds in that case also.

First suppose that k ≥ 0 and a = pv ∈ Ac is the projection corresponding
to a vertex v ∈ E0. For α with |α| ≥ k denote by α = α1 · · ·αk and α =
αk+1 · · ·α|α|. With this notation we compute the action of pv times the rank
one endomorphism ΘR

Sρ,Sρ
, |ρ| = k, on SαS

∗
β. We find

pvΘ
R
Sρ,Sρ

SαS
∗
β = pvSρ(Sρ|SαS

∗
β)R = δv,s(ρ)pvSρΦ(S∗

ρSαS
∗
β)

= δv,s(ρ)pvSρδ|α|−|β|,kδρ,αSαS
∗
β = δ|α|−|β|,kδρ,αδv,s(ρ)SαS

∗
β .

Of course if |α| < |ρ| we have

pvΘ
R
Sρ,Sρ

SαS
∗
β = pvSρΦ(S∗

ρSαS
∗
β) = 0.

This too is δ|α|−|β|,kpvSαS
∗
β. Thus for any α we have

∑

|ρ|=k

pvΘ
R
Sρ,Sρ

SαS
∗
β =

∑

|ρ|=k,s(ρ)=v

δv,s(ρ)δ|α|−|β|,kδρ,αpvSαS
∗
β = δv,s(α)δ|α|−|β|,kSαS

∗
β.

This is of course the action of pvΦk on SαS
∗
β, and if v is a sink, pvΦk = 0, as

it must. Since E is locally finite, the number of paths of length k starting at
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v is finite, and we have a finite sum. For general a ∈ Ac we may write

a =
n∑

i=1

cµi,νi
Sµi

S∗
νi

for some paths µi, νi. Then Sµi
S∗

νi
= Sµi

S∗
νi
ps(νi), and we may apply the above

reasoning to each term in the sum defining a to get a finite sum again. Thus
aΦk is finite rank.

Now we consider k < 0. Given v ∈ E0, let |v|k denote the number of paths ρ
of length |k| ending at v, i.e. r(ρ) = v. Since we assume that E is locally finite
and has no sources, ∞ > |v|k > 0 for each v ∈ E0. We consider the action of
the finite rank operator

1

|v|k
∑

|ρ|=|k|,r(ρ)=v

pvΘ
R
S∗

ρ ,S∗
ρ
.

For SαS
∗
β ∈ X we find

1

|v|k
∑

|ρ|=|k|,r(ρ)=v

pvΘ
R
S∗

ρ ,S∗
ρ
SαS

∗
β =

1

|v|k
∑

|ρ|=|k|,r(ρ)=v

pvS
∗
ρΦ(SρSαS

∗
β)

=
1

|v|k
∑

|ρ|=|k|,r(ρ)=v

δ|α|−|β|,−|k|pvS
∗
ρSρSαS

∗
β

= δ|α|−|β|,−|k|δv,s(α)pvSαS
∗
β = pvΦkSαS

∗
β.

Thus pvΦ−|k| is a finite rank endomorphism, and by the argument above, we
have aΦ−|k| finite rank for all a ∈ Ac. To see that aΦk is compact for all a ∈ A,
recall that every a ∈ A is a norm limit of a sequence {ai}i≥0 ⊂ Ac. Thus for
any k ∈ Z aΦk = limi→∞ aiΦk and so is compact.

Lemma 4.8. Let E be a locally finite directed graph with no sources. For all
a ∈ A, a(1 + D2)−1/2 is a compact endomorphism of the F -module X.

Proof. First let a = pv for v ∈ E0. Then the sum

Rv,N := pv

N∑

k=−N

Φk(1 + k2)−1/2

is finite rank, by Lemma 4.7. We will show that the sequence {Rv,N}N≥0 is
convergent with respect to the operator norm ‖ · ‖End of endomorphisms of X.
Indeed, assuming that M > N ,

‖Rv,N −Rv,M‖End = ‖pv

−N∑

k=−M

Φk(1 + k2)−1/2 + pv

M∑

k=N

Φk(1 + k2)−1/2‖End

≤ 2(1 +N2)−1/2 → 0, (15)
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since the ranges of the pvΦk are orthogonal for different k. Thus, using the
argument from Lemma 4.7, a(1 + D2)−1/2 ∈ End0

F (X). Letting {ai} be a
Cauchy sequence from Ac, we have

‖ai(1 + D2)−1/2 − aj(1 + D2)−1/2‖End ≤ ‖ai − aj‖End = ‖ai − aj‖A → 0,

since ‖(1+D2)−1/2‖ ≤ 1. Thus the sequence ai(1+D2)−1/2 is Cauchy in norm
and we see that a(1 + D2)−1/2 is compact for all a ∈ A.

Proposition 4.9. Assume that the directed graph E is locally finite and has
no sources. Let V = D(1+D2)−1/2. Then (X, V ) defines a class in KK1(A,F ).

Proof. We will use the approach of [19, Section 4]. We need to show that
various operators belong to End0

F (X). First, V − V ∗ = 0, so a(V − V ∗) is
compact for all a ∈ A. Also a(1 − V 2) = a(1 + D2)−1 which is compact from
Lemma 4.8 and the boundedness of (1 + D2)−1/2. Finally, we need to show
that [V, a] is compact for all a ∈ A. First we suppose that a ∈ Ac. Then

[V, a] = [D, a](1 + D2)−1/2 −D(1 + D2)−1/2[(1 + D2)1/2, a](1 + D2)−1/2

= b1(1 + D2)−1/2 + V b2(1 + D2)−1/2,

where b1 = [D, a] ∈ Ac and b2 = [(1 +D2)1/2, a]. Provided that b2(1 +D2)−1/2

is a compact endomorphism, Lemma 4.8 will show that [V, a] is compact for
all a ∈ Ac. So consider the action of [(1 + D2)1/2, SµS

∗
ν ](1 + D2)−1/2 on x =∑

k∈Z xk. We find

∑

k∈Z

[(1 + D2)1/2, SµS
∗
ν ](1 + D2)−1/2xk

=
∑

k∈Z

(
(1 + (|µ| − |ν| + k)2)1/2 − (1 + k2)1/2

)
(1 + k2)−1/2SµS

∗
νxk

=
∑

k∈Z

fµ,ν(k)SµS
∗
νΦkx. (16)

The function

fµ,ν(k) =
(
(1 + (|µ| − |ν| + k)2)1/2 − (1 + k2)1/2

)
(1 + k2)−1/2

goes to 0 as k → ±∞, and as the SµS
∗
νΦk are finite rank with orthogonal

ranges, the sum in (16) converges in the endomorphism norm, and so con-
verges to a compact endomorphism. For a ∈ Ac we write a as a finite linear
combination of generators SµS

∗
ν , and apply the above reasoning to each term

in the sum to find that [(1+D2)1/2, a](1+D2)−1/2 is a compact endomorphism.
Now let a ∈ A be the norm limit of a Cauchy sequence {ai}i≥0 ⊂ Ac. Then

‖[V, ai − aj ]‖End ≤ 2‖ai − aj‖End → 0,

so the sequence [V, ai] is also Cauchy in norm, and so the limit is compact.
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5 The Gauge Spectral Triple of a Graph Algebra

In this section we will construct a semifinite spectral triple for those graph
C∗-algebras which possess a faithful gauge invariant trace, τ . Recall from
Proposition 3.9 that such traces arise from faithful graph traces.

We will begin with the right Fc module Xc. In order to deal with the spectral
projections of D we will also assume throughout this section that E is locally
finite and has no sources. This ensures, by Lemma 4.7 that for all a ∈ A the
endomorphisms aΦk of X are compact endomorphisms.

As in the proof of Proposition 3.9, we define a C-valued inner product on Xc:

〈x, y〉 := τ((x|y)R) = τ(Φ(x∗y)) = τ(x∗y).

This inner product is linear in the second variable. We define the Hilbert space
H = L2(X, τ) to be the completion of Xc for 〈·, ·〉. We need a few lemmas in
order to obtain the ingredients of our spectral triple.

Lemma 5.1. The C∗-algebra A = C∗(E) acts on H by an extension of left
multiplication. This defines a faithful nondegenerate ∗-representation of A.
Moreover, any endomorphism of X leaving Xc invariant extends uniquely to
a bounded linear operator on H.

Proof. The first statement follows from the proof of Proposition 3.9. Now let
T be an endomorphism of X leaving Xc invariant. Then [27, Cor 2.22],

(Tx|Ty)R ≤ ‖T‖2
End(x|y)R

in the algebra F . Now the norm of T as an operator on H, denoted ‖T‖∞,
can be computed in terms of the endomorphism norm of T by

‖T‖2
∞ := sup

‖x‖H≤1
〈Tx, Tx〉 = sup

‖x‖H≤1
τ((Tx|Tx)R)

≤ sup
‖x‖H≤1

‖ T ‖2
End τ((x|x)R) =‖ T ‖2

End . (17)

Corollary 5.2. The endomorphisms {Φk}k∈Z define mutually orthogonal pro-
jections on H. For any K ⊂ Z the sum

∑
k∈K Φk converges strongly to a pro-

jection in B(H). In particular,
∑

k∈Z Φk = IdH, and for all x ∈ H the sum∑
k Φkx converges in norm to x.

Proof. As in Lemma 4.2, we can use the continuity of the Φk on H, which
follows from Corollary 5.1, to see that the relation ΦkΦl = δk,lΦk extends from
Xc ⊂ H to H. The strong convergence of sums of Φk’s is just as in Lemma 4.2
after replacing the C∗-module norm with the Hilbert space norm.
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Lemma 5.3. The operator D restricted to Xc extends to a closed self-adjoint
operator on H.

Proof. The proof is essentially the same as Proposition 4.6.

Lemma 5.4. Let H,D be as above and let |D| =
√
D∗D =

√
D2 be the absolute

value of D. Then for SαS
∗
β ∈ Ac, the operator [|D|, SαS

∗
β] is well-defined on

Xc, and extends to a bounded operator on H with

‖[|D|, SαS
∗
β]‖∞ ≤

∣∣∣∣|α| − |β|
∣∣∣∣.

Similarly, ‖[D, SαS
∗
β]‖∞ =

∣∣∣∣|α| − |β|
∣∣∣∣.

Proof. It is clear that SαS
∗
βXc ⊂ Xc, so we may define the action of the

commutator on elements of Xc. Now let x =
∑

k xk ∈ H and consider the
action of [|D|, SαS

∗
β] on xk. We have

[|D|, SαS
∗
β ]xk =

(∣∣∣∣|α| − |β| + k

∣∣∣∣−
∣∣∣∣k
∣∣∣∣
)
SαS

∗
βxk,

and so, by the triangle inequality,

‖[|D|, SαS
∗
β]xk‖∞ ≤

∣∣∣∣|α| − |β|
∣∣∣∣‖xk‖∞,

since ‖SαS
∗
β‖∞ = 1. As the xk are mutually orthogonal, ‖[|D|, SαS

∗
β ]‖∞ ≤∣∣∣∣|α| − |β|

∣∣∣∣. The statements about [D, SαS
∗
β] = (|α| − |β|)SαS

∗
β are easier.

Corollary 5.5. The algebra Ac is contained in the smooth domain of the
derivation δ where for T ∈ B(H), δ(T ) = [|D|, T ]. That is

Ac ⊆
⋂

n≥0

dom δn.

Definition 5.6. Define the ∗-algebra A ⊂ A to be the completion of Ac in
the δ-topology. By Lemma 2.5, A is Fréchet and stable under the holomorphic
functional calculus.

Lemma 5.7. If a ∈ A then [D, a] ∈ A and the operators δk(a), δk([D, a]) are
bounded for all k ≥ 0. If φ ∈ F ⊂ A and a ∈ A satisfy φa = a = aφ, then
φ[D, a] = [D, a] = [D, a]φ. The norm closed algebra generated by A and [D,A]
is A. In particular, A is quasi-local.

We leave the straightforward proofs of these statements to the reader.
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5.1 Traces and Compactness Criteria

We still assume that E is a locally finite graph with no sources and that τ is
a faithful semifinite lower semicontinuous gauge invariant trace on C∗(E). We
will define a von Neumann algebra N with a faithful semifinite normal trace τ̃
so that A ⊂ N ⊂ B(H), where A and H are as defined in the last subsection.
Moreover the operator D will be affiliated to N . The aim of this subsection
will then be to prove the following result.

Theorem 5.8. Let E be a locally finite graph with no sources, and let τ be
a faithful, semifinite, gauge invariant, lower semiconitnuous trace on C∗(E).
Then (A,H,D) is a QC∞, (1,∞)-summable, odd, local, semifinite spectral
triple (relative to (N , τ̃)). For all a ∈ A, the operator a(1 + D2)−1/2 is not
trace class. If v ∈ E0 has no sinks downstream

τ̃ω(pv(1 + D2)−1/2) = 2τ(pv),

where τ̃ω is any Dixmier trace associated to τ̃ .

We require the definitions of N and τ̃ , along with some preliminary results.

Definition 5.9. Let End00
F (Xc) denote the algebra of finite rank operators on

Xc acting on H. Define N = (End00
F (Xc))

′′, and let N+ denote the positive
cone in N .

Definition 5.10. Let T ∈ N and µ ∈ E∗. Let |v|k = the number of paths of
length k with range v, and define for |µ| 6= 0

ωµ(T ) = 〈Sµ, TSµ〉 +
1

|r(µ)||µ|
〈S∗

µ, TS
∗
µ〉.

For |µ| = 0, Sµ = pv, for some v ∈ E0, set ωµ(T ) = 〈Sµ, TSµ〉. Define

τ̃ : N+ → [0,∞], by τ̃(T ) = lim
L↑

∑

µ∈L⊂E∗

ωµ(T )

where L is in the net of finite subsets of E∗.

Remark For T, S ∈ N+ and λ ≥ 0 we have

τ̃(T + S) = τ̃(T ) + τ̃(S) and τ̃ (λT ) = λτ̃(T ) where 0 ×∞ = 0.

Proposition 5.11. The function τ̃ : N+ → [0,∞] defines a faithful normal
semifinite trace on N . Moreover,

End00
F (Xc) ⊂ Nτ̃ := span{T ∈ N+ : τ̃ (T ) <∞},

the domain of definition of τ̃ , and

τ̃(ΘR
x,y) = 〈y, x〉 = τ(y∗x), x, y ∈ Xc.
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Proof. First, since τ̃ is defined as the limit of an increasing net of sums of
positive vector functionals, τ̃ is a positive ultra-weakly lower semicontinuous
weight on N+, [18], that is a normal weight. Now observe (using the fact that
pvΦk is a projection for all k ∈ Z and v ∈ E0) that for any vertex v ∈ E0,
k ∈ Z and T ∈ N+

τ̃ (pvΦkTpvΦk) = 〈Φkpv, TΦkpv〉 +
∑

s(µ)=v

〈ΦkSµ, TΦkSµ〉

+
∑

r(µ)=v

1

|r(µ)||µ|
〈ΦkS

∗
µ, TΦkS

∗
µ〉.

If k = 0 this is equal to 〈pv, T pv〉 <∞. If k > 0 we find

τ̃ (pvΦkTpvΦk) =
∑

s(µ)=v,|µ|=k

〈Sµ, TSµ〉 ≤ ‖T‖
∑

s(µ)=v,|µ|=k

τ(S∗
µSµ)

= ‖T‖
∑

s(µ)=v,|µ|=k

τ(pr(µ)) ≤ ‖T‖τ(pv) <∞,

the last inequality following from the fact that τ arises from a graph trace, by
Proposition 3.9, and Equations (7) and (8). Similarly, if k < 0

τ̃ (pvΦkTpvΦk) =
∑

r(µ)=v,|µ|=|k|

1

|v||k|
〈S∗

µ, TS
∗
µ〉 ≤ ‖T‖

∑

r(µ)=v,|µ|=|k|

1

|v||k|
τ(S∗

µSµ)

= ‖T‖
∑

r(µ)=v,|µ|=k

1

|v||k|
τ(pr(µ)) = ‖T‖τ(pv) <∞.

Hence τ̃ is a finite positive function on each pvΦkN pvΦk. Taking limits over
finite sums of vertex projections, p = pv1 + · · ·+pvn, converging to the identity,
and finite sums P = Φk1 + · · ·+ Φkm , we have for T ∈ N+

lim
pPր1

sup τ̃(pPTpP ) ≤ τ̃(T ) ≤ lim
pPր1

inf τ̃(pPTpP ),

the first inequality following from the definition of τ̃ , and the latter from the
ultra-weak lower semicontinuity of τ̃ , so for T ∈ N+

lim
pPր1

τ̃(pPTpP ) = τ̃(T ). (18)

For x ∈ Xc ⊂ H, ΘR
x,x ≥ 0 and so we compute

τ̃ (ΘR
x,x)= sup

F

∑

µ∈F

〈Sµ, x(x|Sµ)R〉 +
1

|r(µ)||µ|
〈S∗

µ, x(x|S∗
µ)R〉

= sup
F

∑

µ∈F

τ(Φ(S∗
µxΦ(x∗Sµ))) +

1

|r(µ)||µ|
τ(Φ(SµxΦ(x∗S∗

µ))).
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Now since x ∈ Xc, there are only finitely many ωµ which are nonzero on ΘR
x,x,

so this is always a finite sum, and τ̃ (ΘR
x,x) <∞.

To compute ΘR
x,y, suppose that x = SαS

∗
β and y = SσS

∗
ρ . Then (y|Sµ)R =

Φ(SρS
∗
σSµ) and this is zero unless |σ| = |µ|+ |ρ|. In this case, |σ| ≥ |µ| and we

write σ = σσ where |σ| = |µ|. Similarly, (y|S∗
µ)R = Φ(SρS

∗
σS

∗
µ) is zero unless

|ρ| = |σ| + |µ|. We also require the computation

SαS
∗
βSρS

∗
σSµS

∗
µ = SαS

∗
βSρS

∗
σδσ,µ, |σ| ≥ |µ|

SαS
∗
βSρS

∗
σS

∗
µSµ = SαS

∗
βSρS

∗
σδr(µ),s(σ) |µ| ≥ |σ|.

Now we can compute for |ρ| 6= |σ| , so that only one of the sums over |µ| =
±(|σ| − |ρ|) in the next calculation is nonempty:

τ̃ (ΘR
x,y) =

∑

µ

τ(S∗
µxΦ(y∗Sµ)) +

∑

µ

1

|r(µ)||µ|
τ(SµxΦ(y∗S∗

µ))

=
∑

|µ|=|σ|−|ρ|

τ(xy∗SµS
∗
µ) +

∑

|µ|=|ρ|−|σ|

1

|r(µ)||µ|
τ(xy∗S∗

µSµ)

=
∑

|µ|=|σ|−|ρ|

τ(xy∗δσ,µ) +
∑

|µ|=|ρ|−|σ|,r(µ)=s(σ)

1

|r(µ)||µ|
τ(xy∗)

= τ(xy∗) = τ(y∗x) = τ((y|x)R) = 〈y, x〉.

When |σ| = |ρ|, we have

τ̃(ΘR
x,y) =

∑

v∈E0

τ(Φ(pvxy
∗pv)) =

∑

v∈E0

τ(y∗pvx)

and the same conclusion is obtained as above. By linearity, whenever x, y ∈ Xc,
τ̃ (ΘR

x,y) = τ((y|x)R). For any two ΘR
x,y, ΘR

w,z ∈ End00
F (Xc) we find

τ̃ (ΘR
w,zΘ

R
x,y)= τ̃(ΘR

w(z|x)R,y) = τ((y|w(z|x)R)R) = τ((y|w)R(z|x)R)

= τ((z|x)R(y|w)R) = τ̃(ΘR
x(y|w)R,z) = τ̃(ΘR

x,yΘ
R
w,z).

Hence by linearity, τ̃ is a trace on End00
F (Xc) ⊂ N .

We saw previously that τ̃ is finite on pPN pP whenever p is a finite sum of
vertex projections pv and P is a finite sum of the spectral projections Φk.

Since τ̃ is ultra-weakly lower semicontinuous on pPN+pP , it is completely
additive in the sense of [18, Definition 7.1.1], and therefore is normal by [18,
Theorem 7.1.12], which is to say, ultra-weakly continuous.

The algebra End00
F (Xc) is strongly dense in N , so pPEnd00

F (Xc)pP is strongly
dense in pPN pP . Let T ∈ pPN pP , and choose a bounded net Ti, converging
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∗-strongly to T , with Ti ∈ pPEnd00
F (Xc)pP . Then, since multiplication is

jointly continuous on bounded sets in the ∗-strong topology,

τ̃ (TT ∗) = lim
i
τ̃(TiT

∗
i ) = lim

i
τ̃ (T ∗

i Ti) = τ̃ (T ∗T ).

Hence τ̃ is a trace on each pPN pP and so on ∪pPpPN pP , where the union
is over all finite sums p of vertex projections and finite sums P of the Φk.

Next we want to show that τ̃ is semifinite, so for all T ∈ N we want to find a
net Ri ≥ 0 with Ri ≤ T ∗T and τ̃ (Ri) <∞. Now

lim
pPր1

T ∗pPT = T, T ∗pPT ≤ T

and we just need to show that τ̃(T ∗pPT ) < ∞. It suffices to show this for
pP = pvΦk, v ∈ E0, k ∈ Z. In this case we have (with q a finite sum of vertex
projections and Q a finite sum of Φk)

τ̃ (T ∗pvΦkT )= lim
qQր1

τ̃ (qQT ∗pvΦkTqQ) by equation (18)

= lim
qQր1

τ̃ (qQT ∗qQpvΦkTqQ) eventually qQpvΦk = pvΦk

= lim
qQր1

τ̃ (qQpvΦkT
∗qQTqQpvΦk) τ̃ is a trace on qQN qQ

= lim
qQր1

τ̃ (pvΦkT
∗qQTpvΦk) = τ̃(pvΦkTpvΦk) <∞

Thus τ̃ is semifinite, normal weight on N+, and is a trace on a dense subalge-
bra. Now let T ∈ N . By the above

τ̃ (T ∗pPT ) = τ̃ (pPT ∗TpP ). (19)

By lower semicontinuity and the fact that T ∗pPT ≤ T ∗T , the limit of the left
hand side of Equation (19) as pP → 1 is τ̃(T ∗T ). By Equation (18), the limit
of the right hand side is τ̃(TT ∗). Hence τ̃(T ∗T ) = τ̃ (TT ∗) for all T ∈ N , and
τ̃ is a normal, semifinite trace on N .

Notation If g : E0 → R+ is a faithful graph trace, we shall write τg for
the associated semifinite trace on C∗(E), and τ̃g for the associated faithful,
semifinite, normal trace on N constructed above.

Lemma 5.12. Let E be a locally finite graph with no sources and a faithful
graph trace g. Let v ∈ E0 and k ∈ Z. Then

τ̃g(pvΦk) ≤ τg(pv)

with equality when k ≤ 0 or when k > 0 and there are no sinks within k
vertices of v.
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Proof. Let k ≥ 0. Then, by Lemma 4.7 we have

τ̃g (pvΦk) = τ̃g


pv

∑

|ρ|=k

ΘR
Sρ,Sρ


 = τ̃g


∑

|ρ|=k

ΘR
pvSρ,Sρ




= τg


∑

|ρ|=k

(Sρ|pvSρ)R


 = τg


∑

|ρ|=k

Φ(S∗
ρpvSρ)




= τg


 ∑

|ρ|=k,s(ρ)=v

S∗
ρSρ


 = τg


 ∑

|ρ|=k,s(ρ)=v

pr(ρ)


 .

Now τg(pv) = g(v) where g is the graph trace associated to τg, Proposition
3.9, and Equation (8) shows that

g(v) =
∑

|ρ|�k, s(ρ)=v

g(r(ρ)) ≥
∑

|ρ|=k,s(ρ)=v

g(r(ρ)), (20)

with equality provided there are no sinks within k vertices of v (always true
for k = 0). Hence for k ≥ 0 we have τ̃g(pvΦk) ≤ τg(pv), with equality when
there are no sinks within k vertices of v. For k < 0 we proceed as above and
observe that there is at least one path of length |k| ending at v since E has
no sources. Then

τ̃g(pvΦk) =
1

|v|k
∑

|ρ|=|k|, r(ρ)=v

τg(SρpvS
∗
ρ) =

1

|v|k
∑

|ρ|=|k|, r(ρ)=v

τg(S
∗
ρSρpv)

=
1

|v|k
∑

|ρ|=|k|, r(ρ)=v

τg(pv) = τg(pv). (21)

Proposition 5.13. Assume that the directed graph E is locally finite, has no
sources and has a faithful graph trace g. For all a ∈ Ac the operator a(1 +
D2)−1/2 is in the ideal L(1,∞)(N , τ̃g).

Proof. It suffices to show that a(1 + D2)−1/2 ∈ L(1,∞)(N , τ̃g) for a vertex
projection a = pv for v ∈ E0, and extending to more general a ∈ Ac using
the arguments of Lemma 4.7. Since pvΦk is a projection for all v ∈ E0 and
k ∈ Z, we may compute the Dixmier trace using the partial sums (over k ∈ Z)
defining the trace of pv(1 +D2)−1/2. For the partial sums with k ≥ 0, Lemma
5.12 gives us

τ̃g

(
pv

N∑

0

(1 + k2)−1/2Φk

)
≤

N∑

k=0

(1 + k2)−1/2τg(pv). (22)

We have equality when there are no sinks within N vertices of v. For the
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partial sums with k < 0 Lemma 5.12 gives

−1∑

k=−N

(1 + k2)−1/2τ̃g(pvΦk) =
−1∑

k=−N

(1 + k2)−1/2τg(pv),

and the sequence

1

log 2N + 1

N∑

k=−N

(1 + k2)−1/2τ̃g(pvΦk)

is bounded. Hence pv(1 + D2)−1/2 ∈ L(1,∞) and for any ω-limit we have

τ̃gω(pv(1 + D2)−1/2) = ω-lim
1

log 2N + 1

N∑

k=−N

(1 + k2)−1/2τ̃g(pvΦk).

When there are no sinks downstream from v, we have equality in Equation
(22) for any v ∈ E0 and so

τ̃gω(pv(1 + D2)−1/2) = 2τg(pv).

Remark Using Proposition 2.11, one can check that

ress=0τ̃g(pv(1 + D2)−1/2−s) =
1

2
τ̃gω(pv(1 + D2)−1/2). (23)

We will require this formula when we apply the local index theorem.

Corollary 5.14. Assume E is locally finite, has no sources and has a faithful
graph trace g. Then for all a ∈ A, a(1 + D2)−1/2 ∈ KN .

Proof. (of Theorem 5.8.) That we have a QC∞ spectral triple follows from
Corollary 5.5, Lemma 5.7 and Corollary 5.14. The properties of the von Neu-
mann algebra N and the trace τ̃ follow from Proposition 5.11. The (1,∞)-
summability and the value of the Dixmier trace comes from Proposition 5.13.
The locality of the spectral triple follows from Lemma 5.7.

6 The Index Pairing

Having constructed semifinite spectral triples for graph C∗-algebras arising
from locally finite graphs with no sources and a faithful graph trace, we can
apply the semifinite local index theorem described in [6]. See also [7,9,15].

There is a C∗-module index, which takes its values in the K-theory of the
core which is described in the Appendix. The numerical index is obtained by
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applying the trace τ̃ to the difference of projections representing the K-theory
class. Thus for any unitary u in a matrix algebra over the graph algebra A

〈[u], [(A,H,D)]〉 ∈ τ̃∗(K0(F )).

We compute this pairing for unitaries arising from loops (with no exit), which
provide a set of generators of K1(A). To describe the K-theory of the graphs
we are considering, recall the notion of ends introduced in Definition 3.6.

Lemma 6.1. Let C∗(E) be a graph C∗-algebra such that no loop in the locally
finite graph E has an exit. Then,

K0(C
∗(E)) = Z#ends, K1(C

∗(E)) = Z#loops.

Proof. This follows from the continuity of K∗ and [28, Corollary 5.3].

If A = C∗(E) is nonunital, we will denote by A+ the algebra obtained by
adjoining a unit to A; otherwise we let A+ denote A.

Definition 6.2. Let E be a locally finite graph such that C∗(E) has a faithful
graph trace g. Let L be a loop in E, and denote by p1, . . . , pn the projections
associated to the vertices of L and S1, . . . , Sn the partial isometries associated
to the edges of L, labelled so that S∗

nSn = p1 and

S∗
i Si = pi+1, i = 1, . . . , n− 1, SiS

∗
i = pi, i = 1, . . . , n.

Lemma 6.3. Let A = C∗(E) be a graph C∗-algebra with faithful graph trace
g. For each loop L in E we obtain a unitary in A+,

u = 1 + S1 + S2 + · · ·+ Sn − (p1 + p2 + · · ·+ pn),

whose K1 class does not vanish. Moreover, distinct loops give rise to distinct
K1 classes, and we obtain a complete set of generators of K1 in this way.

Proof. The proof that u is unitary is a simple computation. TheK1 class of u is
the generator of a copy of K1(S

1) in K1(C
∗(E)), as follows from [28]. Distinct

loops give rise to distinct copies of K1(S
1), since no loop has an exit.

Proposition 6.4. Let E be a locally finite graph with no sources and a faithful
graph trace g and A = C∗(E). The pairing between the spectral triple (A,H,D)
of Theorem 5.8 with K1(A) is given on the generators of Lemma 6.3 by

〈[u], [(A,H,D)]〉 = −
n∑

i=1

τg(pi) = −nτg(p1).
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Proof. The semifinite local index theorem, [6] provides a general formula for
the Chern character of (A,H,D). In our setting it is given by a one-cochain

φ1(a0, a1) = ress=0

√
2πiτ̃g(a0[D, a1](1 + D2)−1/2−s),

and the pairing (spectral flow) is given by

sf(D, uDu∗) = 〈[u], (A,H,D)〉 =
1√
2πi

φ1(u, u
∗).

Now [D, u∗] = −∑S∗
i and u[D, u∗] = −∑n

i=1 pi. Using Equation (23) and
Proposition 5.13,

sf(D, uDu∗) = −ress=0τ̃g(
n∑

i=1

pi(1 + D2)−1/2−s) = −
n∑

i=1

τg(pi) = −nτg(p1),

the last equalities following since all the pi have equal trace and there are no
sinks ‘downstream’ from any pi, since no loop has an exit.

Remark The C∗-algebra of the graph consisting of a single edge and single
vertex is C(S1) (we choose Lebesgue measure as our trace, normalised so that
τ(1) = 1). For this example, the spectral triple we have constructed is the
Dirac triple of the circle, (C∞(S1), L2(S1), 1

i
d
dθ

), (as can be seen from Corollary
6.6.) The index theorem above gives the correct normalisation for the index
pairing on the circle. That is, if we denote by z the unitary coming from the
construction of Lemma 6.3 applied to this graph, then 〈[z̄], (A,H,D)〉 = 1.

Proposition 6.5. Let E be a locally finite graph with no sources and a faith-
ful graph trace g, and A = C∗(E). The pairing between the spectral triple
(A,H,D) of Theorem 5.8 with K1(A) can be computed as follows. Let P be
the positive spectral projection for D, and perform the C∗ index pairing of
Proposition A.1:

K1(A) ×KK1(A,F ) → K0(F ), [u] × [(X,P )] → [kerPuP ] − [cokerPuP ].

Then we have

sf(D, uDu∗) = τ̃g(kerPuP )− τ̃g(cokerPuP ) = τ̃g∗([kerPuP ] − [cokerPuP ]).

Proof. It suffices to prove this on the generators of K1 arising from loops L
in E. Let u = 1 +

∑
i Si −

∑
i pi be the corresponding unitary in A+ defined

in Lemma 6.3. We will show that kerPuP = {0} and that cokerPuP =∑n
i=1 piΦ1. For a ∈ PX write a =

∑
m≥1 am. For each m ≥ 1 write am =∑n

i=1 piam + (1 −∑n
i=1 pi)am. Then
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PuPam = P (1 −
n∑

i=1

pi +
n∑

i=1

Si)am

=P (1 −
n∑
pi +

n∑
Si)(

n∑
piam) + P (1 −

n∑
pi +

n∑
Si)(1 −

n∑
pi)am

=P
n∑
Siam + P (1 −

n∑
pi)am

=
n∑
Siam + (1 −

n∑
pi)am.

It is clear from this computation that PuPam 6= 0 for am 6= 0.

Now suppose m ≥ 2. If
∑n

i=1 piam = am then am = limN
∑N

k=1 Sµk
S∗

νk
with

|µk|−|νk| = m ≥ 2 and Sµk1
= Si for some i. So we can construct bm−1 from am

by removing the initial Si’s. Then am =
∑n

i=1 Sibm−1, and
∑n

i=1 pibm−1 = bm−1.
For arbitrary am, m ≥ 2, we can write am =

∑
i piam + (1 −∑

i pi)am, and so

am =
n∑
piam + (1 −

n∑
pi)am

=
n∑
Sibm−1 + (1 −

n∑
pi)am and by adding zero

=
n∑
Sibm−1 + (1 −

n∑
pi)bm−1 +

( n∑
Si + (1 −

n∑
pi)
)
(1 −

n∑
pi)am

=ubm−1 + u(1 −
n∑
pi)am

=PuPbm−1 + PuP (1−
n∑
pi)am.

Thus PuP maps onto
∑

m≥2 ΦmX.

Form = 1, if we try to construct b0 from
∑n

i=1 pia1 as above, we find PuPb0 = 0
since Pb0 = 0. Thus cokerPuP =

∑n piΦ1X. By Proposition 6.4, the pairing
is then

sf(D, uDu∗) = −
n∑
τg(pi) = −τ̃g(

n∑
piΦ1)

= −τ̃g∗([cokerPuP ]) = −τ̃g(cokerPuP ). (24)

Thus we can recover the numerical index using τ̃g and the C∗-index.

The following example shows that the semifinite index provides finer invariants
of directed graphs than those obtained from the ordinary index. The ordinary
index computes the pairing between the K-theory and K-homology of C∗(E),
while the semifinite index also depends on the core and the gauge action.

Corollary 6.6 (Example). Let C∗(En) be the algebra determined by the graph

· · · • • • • L
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
..
..
..
.
..
..
..
..
..
..
...
...
....
...........................................

...
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
..
..
....
........................................

....
...
...
...
..
..
..
..
..
..
..
.
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.

.....................................................................................................................................

....
....
....
...
...
.

.....................................................................................................................................

....
....
....
...
...
.

.....................................................................................................................................

....
....
....
...
...
.

.....................................................................................................................................

....
....
....
...
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

where the loop L has n edges. Then C∗(En) ∼= C(S1)⊗K for all n, but n is an
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invariant of the pair of algebras (C∗(En), Fn) where Fn is the core of C∗(En).

Proof. Observe that the graph En has a one parameter family of faithful graph
traces, specified by g(v) = r ∈ R+ for all v ∈ E0.

First consider the case where the graph consists only of the loop L. The C∗-
algebra A of this graph is isomorphic to Mn(C(S1)), via

Si → ei,i+1, i = 1, . . . , n− 1, Sn → idS1en,1,

where the ei,j are the standard matrix units for Mn(C), [1]. The unitary

S1S2 · · ·Sn + S2S3 · · ·S1 + · · ·+ SnS1 · · ·Sn−1

is mapped to the orthogonal sum idS1e1,1 ⊕ idS1e2,2 ⊕ · · · ⊕ idS1en,n. The core
F of A is Cn = C[p1, . . . , pn]. Since KK1(A,F ) is equal to

⊕nKK1(A,C) = ⊕nKK1(Mn(C(S1)),C) = ⊕nK1(C(S1)) = Zn

we see that n is the rank of KK1(A,F ) and so an invariant, but let us link
this to the index computed in Propositions 6.4 and 6.5 more explicitly. Let
φ : C(S1) → A be given by φ(idS1) = S1S2 · · ·Sn ⊕∑n

i=2 ei,i. We observe that
D =

∑n
i=1 piD because the ‘off-diagonal’ terms are piDpj = Dpipj = 0. Since

S1S
∗
1 = S∗

nSn = p1, we find (with P the positive spectral projection of D)

φ∗(X,P ) = (p1X, p1Pp1) ⊕ degenerate module ∈ KK1(C(S1), F ).

Now let ψ : F → Cn be given by ψ(
∑

j zjpj) = (z1, z2, ..., zn). Then

ψ∗φ
∗(X,P ) = ⊕n

j=1(p1Xpj , p1Pp1) ∈ ⊕nK1(C(S1)).

Now X ∼= Mn(C(S1)), so p1Xpj
∼= C(S1) for each j = 1, . . . , n. It is easy to

check that p1Dp1 acts by 1
i

d
dθ

on each p1Xpj, and so our Kasparov module
maps to

ψ∗φ
∗(X,P ) = ⊕n(C(S1), P 1

i
d
dθ

) ∈ ⊕nK1(C(S1)),

where P 1
i

d
dθ

is the positive spectral projection of 1
i

d
dθ

. The pairing with idS1 is

nontrivial on each summand, since φ(idS1) = S1 · · ·Sn ⊕∑n
i=2 ei,i is a unitary

mapping p1Xpj to itself for each j. So we have, [16],

idS1 × ψ∗φ
∗(X,P ) =

n∑

j=1

Index(PidS1P : p1PXpj → p1PXpj)

= −
n∑

j=1

[pj] ∈ K0(C
n). (25)

By Proposition 6.5, applying the trace to this index gives −nτg(p1). Of course
in Proposition 6.5 we used the unitary S1 + S2 + · · ·+ Sn, however in K1(A)

[S1S2 · · ·Sn] = [S1 + S2 + · · · + Sn] = [idS1].
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To see this, observe that

(S1 + · · ·+ Sn)n = S1S2 · · ·Sn + S2S3 · · ·S1 + · · ·+ SnS1 · · ·Sn−1.

This is the orthogonal sum of n copies of idS1 , which is equivalent in K1 to
n[idS1 ]. Finally, [S1 + · · ·+ Sn] = [idS1] and so

[(S1 + · · · + Sn)n] = n[S1 + · · ·+ Sn] = n[idS1 ].

Since we have cancellation in K1, this implies that the class of S1 + · · · + Sn

coincides with the class of S1S2 · · ·Sn.

Having seen what is involved, we now add the infinite path on the left. The core
becomes K⊕K⊕· · ·⊕K (n copies). Since A = C(S1)⊗K = Mn(C(S1))⊗K,
the intrepid reader can go through the details of an argument like the one
above, with entirely analogous results.

Since the invariants obtained from the semifinite index are finer than the
isomorphism class of C∗(E), depending as they do on C∗(E) and the gauge
action, they can be regarded as invariants of the differential structure. That
is, the core F can be recovered from the gauge action, and we regard these
invariants as arising from the differential structure defined by D. Thus in this
case, the semifinite index produces invariants of the differential topology of
the noncommutative space C∗(E).

A Toeplitz Operators on C∗-modules

In this Appendix we define a bilinear product

K1(A) ×KK1(A,B) → K0(B).

Here we suppose that A,B are ungraded C∗-algebras. This product should
be the Kasparov product, though it is difficult to compare the two (see the
footnote to Proposition A.1 below).

We denote by A+ the minimal (one-point) unitization if A is nonunital. Oth-
erwise A+ will mean A. To deal with unitaries in matrix algebras over A, we
recall that K1(A) may be defined by considering unitaries in matrix algebras
over A+ which are equal to 1n mod A (for some n), [16, p 107].

We consider odd Kasparov A-B-modules. So let E be a fixed countably gen-
erated ungraded B-C∗-module, with φ : A → EndB(E) a ∗-homomorphism,
and let P ∈ EndB(E) be such that a(P−P ∗), a(P 2−P ), [P, a] are all compact
endomorphisms. Then by [19, Lemma 2, Section 7], the pair (φ, P ) determines
a KK1(A,B) class, and every class has such a representative. The equiva-
lence relations on pairs (φ, P ) that give KK1 classes are unitary equivalence
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(φ, P ) ∼ (UφU∗, UPU∗) and homology, P1 ∼ P2 if P1φ1(a) − P2φ2(a) is a
compact endomorphism for all a ∈ A.

Now let u ∈Mm(A+) be a unitary, and (φ, P ) a representative of a KK1(A,B)
class. Observe that (P ⊗ 1m)E ⊗ Cm is a B-module, and so can be extended
to a B+ module. Writing Pm = P ⊗ 1m, the operator Pmφ(u)Pm is Fredholm,
since (dropping the φ for now)

PmuPmPmu
∗Pm = Pm[u, Pm]u∗Pm + Pm,

and this is Pm modulo compact endomorphisms. To ensure that kerPmuPm

and kerPmu
∗Pm are closed submodules, we need to know that PmuPm is reg-

ular, but by [14, Lemma 4.10], we can always replace PmuPm by a regular
operator on a larger module. Then the index of PmuPm is defined as the index
of this regular operator, so there is no loss of generality in supposing that
PmuPm is regular. Then we can define

Index(PmuPm) = [kerPmuPm] − [cokerPmuPm] ∈ K0(B).

This index lies in K0(B) rather than K0(B
+) by [14, Proposition 4.11]. So

given u and (φ, P ) we define a K0(B) class by setting

u× (φ, P ) → [kerPmuPm] − [cokerPmuPm].

Observe the following. If u = 1m then 1m × (φ, P ) → Index(Pm) = 0 so for
any (φ, P ) the map defined on unitaries sends the identity to zero. Given the
unitary u⊕ v ∈M2m(A+) (say) then

u⊕ v × (φ, P ) → Index(P2m(u⊕ v)P2m) = Index(PmuPm) + Index(PmvPm),

so for each (φ, P ) the map respects direct sums. Finally, if u is homotopic
through unitaries to v, then PmuPm is norm homotopic to PmvPm, so

Index(PmuPm) = Index(PmvPm).

By the universal property of K1, [32, Proposition 8.1.5], for each (φ, P ) as
above there exists a unique homomorphism HP : K1(A) → K0(B) such that

HP ([u]) = Index(PmuPm).

Now observe that HUPU∗,Uφ(·)U∗ = HP,φ since

Index(UPU∗(Uφ(u)U∗)UPU∗) = Index(UPuPU∗) = Index(PuP ).

The homomorphisms HP are bilinear, since

HP⊕Q([u])= Index((P ⊕Q)(φ(u) ⊕ ψ(u))(P ⊕Q))

= Index(Pφ(u)P ) + Index(Qψ(u)Q) = HP ([u]) +HQ([u]).
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Finally, if (φ1, P1) and (φ2, P2) are homological, the classes defined by (φ1 ⊕
φ2, P1 ⊕ 0) and (φ1 ⊕ φ2, 0 ⊕ P2) are operator homotopic, [19, p 562], so

Index(P1φ1(u)P1)= Index((P1 ⊕ 0)(φ1(u) ⊕ φ2(u))(P1 ⊕ 0))

= Index((0 ⊕ P2)(φ1(u) ⊕ φ2(u))(0 ⊕ P2))

= Index(P2φ2(u)P2).

So HP depends only on the KK-equivalence class of (φ, P ). Thus

Proposition A.1. With the notation above, the map 2

H : K1(A) ×KK1(A,B) → K0(B)

H([u], [(φ, P )]) := [ker(PuP )]− [cokerPuP ]

is bilinear.

This is a kind of spectral flow, where we are counting the net number of
eigen-B-modules which cross zero along any path from P to uPu∗.
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