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Abstract

We generalise the even local index formula of Connes and Moscovici to the case of spectral triples
for a ∗-subalgebra A of a general semifinite von Neumann algebra. The proof is a variant of that
for the odd case which appears in Part I. To allow for algebras with a non-trivial centre we have
to establish a theory of unbounded Fredholm operators in a general semifinite von Neumann
algebra and in particular prove a generalised McKean-Singer formula. 2

2AMS Subject classification: Primary: 19K56, 46L80; secondary: 58B30, 46L87. Keywords and Phrases: von
Neumann algebra, Fredholm module, cyclic cohomology, chern character, McKean-Singer formula.
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1. Introduction

There have been two new proofs of the local index theorem in noncommutative geometry of
Connes and Moscovici [CoM]), by Higson [H] and, for the odd case, by the present authors in
part I of this two part series of papers [CPRS2]. The novelty in [CPRS2] is consideration of
spectral triples “inside” a general semifinite von Neumann algebra and in the introduction of a
new odd cocycle (in the (b, B) bicomplex of cyclic cohomology) which provides a substitute in
our approach for the JLO cocycle [Co4] used in [CoM]. Our new cocycle is reminiscent of, but
distinct from, Higson’s ‘improper cocycle’ [H]. In subsequent work [CPRS4], we will relate these
two cocycles showing how to obtain a renormalised version of Higson’s cocycle from our resolvent
cocycle.

The present paper is concerned with two primary results, the even semifinite local index formula
proved via the even resolvent cocycle and a prerequisite, a general theory of Fredholm operators
in von Neumann algebras which may have non-trivial centre. This extension is essential to
encompass examples such as arise in the L2 index theorem of Atiyah. (Other applications are
referenced in Part I.)

For a finitely summable even spectral triple with spectral dimension q (see [CPRS2] for the
latter terminology) we use the even resolvent cocycle to obtain an expression for the index. The
even resolvent cocycle is a (b, B) cocycle with values in functions defined and holomorphic in
a certain half-plane modulo those functions holomorphic in a larger half-plane containing the
critical point r = (1− q)/2. By taking residues at the critical point as in [CPRS2] we prove the
even case of a local index formula for smooth finitely summable semifinite spectral triples. Thus
as in [CPRS2] we need the property of ‘isolated spectral dimension’ to analytically continue our
resolvent cocycle term-by-term to a deleted neighbourhood of r = (1 − q)/2. This then defines
a generalisation of the Connes-Moscovici even residue cocycle in the finite (b, B) bicomplex.

There remains one gap in our treatment in that we do not prove that the residue cocycle represents
the Chern character of our semifinite spectral triple. This gap will be filled in a subsequent paper,
[CPRS4], as the proof is not short.

Our exposition is organised as follows. We assume all of the notation of the first part [CPRS2]
but include additional preliminary material, notation and definitions needed for this paper in
Section 2. Our main theorem starts from a version of the McKean-Singer formula for the index.
However, we found that Fredholm theory in semifinite von Neumann algebras with a non-trivial
centre did not exist in a form that was suitable for this purpose. In particular, the case of an
operator which is Fredholm from the range of one projection to the range of another projection
(which is the case of the McKean-Singer formula) had not been touched in this setting, and is
rather subtle. Thus Section 3 establishes such a theory. We note that in this paper we fix a
faithful normal semifinite trace τ on our algebra once and for all. Thus strictly speaking we deal
always with τ -Fredholm theory, and do not give a full treatment involving centre-valued traces
and related machinery. Those expert in all these matters can move straight to Section 4 where
we state our main theorem, the local index theorem for even semi-finite spectral triples.

The main theorem has three parts. The first expresses an index pairing as the residue of the
pairing between the resolvent cocycle and the Chern character of a projection. This residue exists
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with no assumptions concerning analytic continuations. The second statement is similar to the
first, but the index is expressed as the residue of a sum of zeta functions. The third part finally
assumes that we can analytically continue the individual zeta functions, so that we express the
index pairing as a sum of residues of zeta functions. These residues assemble to form a (b, B)
cocycle, called the residue cocycle.

The proof has a number of important differences with that of the odd case and these are high-
lighted in subsection 5.1 where we establish an analytic formula for the even index which is the
starting point for our proof. The rest of Section 5 contains the computations needed to prove
the main theorem. By Subsection 5.6 we have enough to prove part 2) of the main theorem and
the index formula of part 3). To prove part 1) and the cohomological part of 3), we introduce
the resolvent cocycle for the even case in Section 6.

We conclude this introduction with some general comments on the existing proofs of the Local
Index theorem which may help put our results in context. Connes and Moscovici begin with a
representative of the Chern character (the JLO cocycle) and deform it to obtain the unrenor-
malised residue cocycle. It is automatically a representative of the Chern character, and so an
index cocycle. While this cocycle can be renormalised, it is unclear to us whether a procedure
exists to modify the JLO cocycle so that it yields the renormalised version automatically.

Higson writes down a function valued cocycle, proves that it is an index cocycle and then proves
it is in the class of the Chern character [H]. The unrenormalised local index theorem follows
from Higson’s cocycle and the pseudodifferential calculus. We show in [CPRS4] that there is a
simple modification of Higson’s cocycle which leads directly to the renormalised residue cocycle.
In this paper, as in [CPRS2], we begin with an analytic formula for the index pairing and
apply perturbation theory and the pseudodifferential calculus to obtain the renormalised residue
cocycle directly. As part of this process we also obtain a function valued (almost) cocycle similar
to Higson’s, but with superior holomorphy properties. Our cocycles are automatically index
cocycles, and so we need only show that they are in the class of the Chern character. This will
be shown in [CPRS4], closely following Higson’s methods.

2. Definitions and Background

We adopt the notational conventions of [CPRS2]. Thus N is semifinite von Neuman algebra
acting on a Hilbert space H and τ is a faithful normal semifinite trace on N . An even semifinite
spectral triple (A,H,D) is given by a ∗-algebra A ⊂ N , a densely defined unbounded operator
D affiliated with N on H and in addition to the properties of definition 2.1 of [CPRS2], has a
grading γ ∈ N such that γ∗ = γ, γ2 = 1, aγ = γa for all a ∈ A and Dγ + γD = 0. As in
[CPRS2] we deal only with unital algebras A where the identity of A is that of N . We write
P = (1 +γ)/2 and D+ = (1−P )DP = P⊥DP . The operator D+ : H+ = P (H)→ H− = P⊥(H)
is, as we shall see, an unbounded Breuer-Fredholm operator.

The numerical index discussed here is the result of a pairing between an even K-theory class
represented by a projection p, and an even K-homology class represented by (A,H,D), [Co4,
Chapter III,IV]. This point of view also makes sense in the general semifinite setting after suitably
interpreting K-homology classes, [CPRS1, CP2]. The pairing of (b, B) cocycles with K-homology
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classes is written in the even case as

(1) 〈[p], [(A,H,D)]〉 = 〈[Ch∗(p)], [Ch∗(A,H,D)]〉,
where [p] ∈ K0(A) is a K-theory class with representative p and [(A,H,D)] is the K-homology
class of the even spectral triple (A,H,D). On the right hand side, Ch∗(p) is the Chern character
of p, and [Ch∗(p)] its periodic cyclic homology class. Similarly [Ch∗(A,H,D)] is the periodic
cyclic cohomology class of the Chern character of (A,H,D). The analogue of Equation (1), for a
suitable cocycle associated to (A,H,D), in the general semifinite case is part of our main result.

We refer to [Co4, Lo, CPRS2] for the definition of the (b, B) bicomplex. The (b, B) Chern
character of a projection in an algebra A is an even (b, B) cycle with 2m-th term,m ≥ 1, given
by

Ch2m(p) = (−1)m
(2m)!

2(m!)
(2p− 1)⊗ p⊗2m.

For m = 0 the definition is Ch0(p) = p.

3. Fredholm Theory in Semifinite von Neumann Algebras

We need to generalise the real-valued Fredholm index theory outlined in [PR, Appendix B].

♠ In particular, we must study Fredholm operators in a “skew-corner” of our semifinite von
Neumann algebra N . That is, if P and Q are projections in N (not necessarily infinite and
not necessarily equivalent) we will extend the notion of τ -index and τ -Fredholm to operators
T ∈ PNQ. If N is a factor, this is much easier and is done in Appendix A of [Ph1]. We simply
refer to them as (P ·Q)-Fredholm operators. Most results work in this setting; however the ploy
used in [Ph1] of invoking the existence of a partial isometry from P to Q to reduce to the case
PNP (solved in [PR]) is not available. In fact, because of examples to which our version of the
McKean-Singer Theorem applies, P and Q are not generally equivalent. One notable result that
is different in the nonfactor setting (even if P = Q) is that the set of (P ·Q)-Fredholm operators
with a given index is open but is not generally connected: information is lost when one fixes
a trace to obtain a real-valued index. That the set of (P · Q)-Fredholm operators with a given
index is open (and other facts) is very sensitive to the order in which the expected results are
proved. As the Fredholm alternative is not available in the (P · Q) setting, we take a novel
approach and deduce many facts from the formula for the index of a product. We also study
unbounded operators affiliated to a “skew-corner”. ♠

Notation. If T is an operator in the von Neumann algebra N (or T is closed and affiliated
to N ) then we let RT and NT be the projections on the closure of the range of T and the
kernel of T , respectively. If T ∈ PNQ, (or T is closed and affiliated to PNQ) then we will

denote the projection on kerQ(T ) = ker(T|Q(H)
) = ker(T ) ∩ Q(H) by NQ

T and observe that

NQ
T = QNT = NTQ ≤ Q while RT ≤ P.

Definition 3.1. With the usual assumptionis on N let P and Q be projections (not necessarily
infinite, or equivalent) in N , and let T ∈ PNQ. Then T is called (P ·Q)-Fredholm if and only
if

(1) τ(NQ
T ) <∞, and τ(NP

T ∗) <∞, and
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(2) There exists a τ -finite projection E ≤ P with range(P − E) ⊆ range(T ).

If T is (P ·Q)-Fredholm then the (P ·Q)-index of T is

Ind(T ) = τ(NQ
T )− τ(NP

T ∗).

Lemma 3.2. With the usual assumptions on N , let T ∈ PNQ. Then,

(1) With P1 = RT and Q1 = Q − NQ
T = supp(T ) = RT ∗, we have that T is (P · Q)-Fredholm

if and only if T is (P1 · Q1)-Fredholm and in this case, the (P1 · Q1)-Index of T is 0, while the
(P ·Q)-Index of T is τ(Q−Q1)− τ(P − P1).

(2) If T is (P ·Q)-Fredholm, then T ∗ is (Q ·P )-Fredholm and Ind(T ∗) = −Ind(T ). If T = V |T |
is the polar decomposition, then V is (P ·Q)-Fredholm with Ind(V ) = Ind(T ) and |T | is (Q ·Q)-
Fredholm of index 0.

(3) If T = V |T | is (P ·Q)-Fredholm, then there exists a spectral projection Q0 ≤ Q for |T | so that
τ(Q−Q0) <∞, and P0 = V Q0V

∗ satisfies: τ(P −P0) <∞, P0(H) = range(TQ0) ⊂ range(T ),
Q0(H) ⊂ range(T ∗), TQ0 = P0TQ0 : Q0(H) → P0(H) and T ∗P0 = Q0T

∗P0 : P0(H) → Q0(H)
are invertible as bounded linear operators.

(4) The set of all (P ·Q)-Fredholm operators in PNQ is open in the norm topology.

Proof. (1) is straightforward, noting that Q1 = 1−NT = RT ∗ = supp(T ).

(2) In the notation of part (1), V V ∗ = P1 and V ∗V = Q1 so that V is (P · Q)-Fredholm with
Ind(V ) = Ind(T ). Since both T ∗ and |T | have τ -finite kernel and cokernel, it suffices to observe
that if P̃ ≤ P is τ -cofinite in P and P̃ (H) ⊆ T (H) then Q̃ := V ∗P̃ V is τ -cofinite in Q and
satisfies Q̃(H) ⊆ T ∗(H) = |T |(H). The index statements are clear.

(3) By part (1), we can assume that P = RT and Q = RT ∗ = supp(T ). Now |T | ≥ 0 is
1:1 and τ -Fredholm in QNQ. As |T | is invertible modulo KQNQ by Theorem B1 of [PR], the
argument of Lemma 3.7 of [CP0] shows that there exists a spectral projection Q0 ≤ Q for |T |
with τ(Q − Q0) < ∞ and |T |Q0 is bounded below on Q0(H). Let P0 = V Q0V

∗ this satisfies:
τ(P − P0) < ∞. Now, TQ0 = V |T |Q0 = · · · = P0TQ0, and similarly, T ∗P0 = · · · = Q0T

∗P0.
Since, TQ0(H) = V |T |Q0(H) = V (Q0(H)) = P0(H), we see P0(H) = range(TQ0) ⊂ range(T )
and TQ0 = P0TQ0 : Q0(H) → P0(H) is invertible as a bounded operator. The remaining bits
are similar.

(4) Using (1), we have that T is (P1 · Q1)-Fredholm of index 0 and V is a partial isometry in
N with V V ∗ = P1 and V ∗V = Q1. By part (3) choose Q0 ≤ Q1 such that τ(Q1 − Q0) < ∞
and P0 = V Q0V

∗ so that τ(P1 − P0) < ∞ satisfies P0(H) ⊂ range(T ), and TQ0 = P0TQ0 is
invertible as a bounded operator from Q0(H) to P0(H). In particular, there exists c > 0 so that
for all x ∈ H:

‖ TQ0x ‖=‖ P0TQ0x ‖≥ c ‖ Q0x ‖ & ‖ T ∗P0x ‖=‖ Q0T
∗P0x ‖≥ c ‖ P0x ‖ .

So if A ∈ PNQ and ‖ T − A ‖< c/3, then for all x ∈ H:

‖ AQ0x ‖≥ 2c/3 ‖ Q0x ‖ & ‖ A∗P0x ‖≥ 2c/3 ‖ P0x ‖ .

Now clearly, TQ0 and T ∗P0 have closed ranges P0 and Q0, respectively. Let P̃0 and Q̃0 be the
closed ranges of AQ0 and A∗P0, respectively. Now, if y ∈ P0(H) is a unit vector, then y = TQ0x
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and ‖ Q0x ‖≤ 1/c. Letting y1 = AQ0x ∈ P̃0(H), we have ‖ y − y1 ‖≤ (c/3)(1/c) = 1/3.
Similarly, if z ∈ P̃0(H) is a unit vector, we find z1 ∈ P0(H) with ‖ z1 − z ‖≤ (c/3)(3/2c) = 1/2.
On concludes that ‖ P0 − P̃0 ‖≤ 1/3 + 1/2 < 1, and so P0 and P̃0 are unitarily equivalent by a
unitary in PNP that fixes P . Hence, P − P̃0 is τ -cofinite and not only is P̃0(H) ⊂ range(A),

but also NP
A∗ = P − RA ≤ (P − P̃0) is τ -finite. Similarly, NQ

A ≤ (Q − Q̃0) is τ -finite and A is
(P ·Q)-Fredholm. �

Definition 3.3. If T ∈ PNQ, then a parametrix for T is an operator S ∈ QNP satisfying
ST = Q+ k1 and TS = P + k2 where k1 ∈ KQNQ and k2 ∈ KPNP .

Lemma 3.4. With the usual assumptions on N , then T ∈ PNQ is (P ·Q)-Fredholm if and only
if T has a parametrix S ∈ QNP . Moreover, any such parametrix is (Q · P )-Fredholm.

Proof. Let S be a parametrix for T . Then TS = P + k2 is Fredholm in PNP by Appendix B of
[PR]. Hence there exists a projection P1 ≤ P with τ(P − P1) < ∞ and P1(H) ⊂ range(TS) ⊂
range(T ). So, NP

T ∗ = P − RT ≤ P − P1 is τ -finite. On the other hand, T ∗S∗ = (ST )∗ = Q+ k∗1
is Fredholm in QNQ again by Appendix B of [PR] and so by the same argument NQ

T is also
τ -finite. That is, T is (P ·Q)-Fredholm and similarly S is (Q · P )-Fredholm.

Now suppose that T is (P ·Q)-Fredholm. By part (3) of Lemma 3.2, there exist projections Q0

and P0 which are τ -cofinite in Q and P respectively so that TQ0 = P0TQ0 : Q0(H)→ P0(H) is
invertible as a bounded linear operator. Let S be its inverse. Then S ∈ N so that S = Q0SP0 ∈
QNP , and STQ0 = Q0 and TQ0S = P0. Finally,

ST = STQ0 + ST (Q−Q0) = Q0 + k = Q+ k1 and TS = TQ0S = P0 = P + k2,

where k1 ∈ KQNQ and k2 ∈ KPNP . That is, S is a parametrix for T . �

Lemma 3.5. We retain the usual assumptions on N .

(1) Let T ∈ PNQ be (P ·Q)-Fredholm. If k ∈ PKNQ then T + k is also (P ·Q)-Fredholm.

(2) If T ∈ PNQ is (P · Q)-Fredholm and S ∈ GNP is (G · P )-Fredholm, then ST is (G · Q)-
Fredholm.

Proof. One checks that if S is a parametrix for T then S is also a parametrix for T + k and that
if T1 is a parametrix for T and S1 is a parametrix for S, then T1S1 is a parametrix for ST . �

Proposition 3.6. Let G,P,Q be projections in N (with trace τ) and let T ∈ PNQ be (P ·Q)-
Fredholm and S ∈ GNP be (G · P )-Fredholm, respectively. Then, ST is (G ·Q)-Fredholm and

Ind(ST ) = Ind(S) + Ind(T ).

We follow Breuer in [B2] indicating the changes needed in this generality. Before proving the
proposition we require a Lemma.

Lemma 3.7. (Cf. Lemma 1 of [B2]) With the hypotheses of the Proposition:

NQ
ST −N

Q
T ∼ inf(RT , N

P
S ).
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Proof. We follow Breuer’s arguments replacing ker(T ) with kerQ(T ) = ker(T )∩Q(H); ker(ST )

with kerQ(ST ); and ker(S) with kerP (S). Noting NQ
T = QNT = NTQ and similar identities, we

read Breuer until we choose projections E1 ≤ E2 ≤ E3 ≤ ... as in Lemma 13 of [B1] satisfying
each (P − En) is τ -finite, En(H) ⊂ range(T ), and sup{En| n = 1, 2, ...} = RT . We continue
reading carefully, replacing 1 with P at crucial points. Finally, we get the conclusion from:

NQ
ST −N

Q
T = R(NQ

ST−N
Q
T )T ∗ ∼ RT (NQ

ST−N
Q
T ) = inf(RT , N

P
S ). �

Proof. (Of the Proposition):
Now, S∗, T ∗, ST , and (ST )∗ = T ∗S∗ are all Fredholm, and the above lemma implies:

NQ
ST −N

Q
T ∼ inf(RT , N

P
S ) and NG

(ST )∗ −NG
S∗ ∼ inf(RS∗ , N

P
T ∗).

The projections on the RHS of the two similarities are in PNP , and so by [Dix, Cor. 1, p.216]:

NP
S − inf(P −NP

T ∗ , N
P
S ) ∼ NP

T ∗ − inf(P −NP
S , N

P
T ∗).

Since P −NP
T ∗ = RT and P −NP

S = RS∗ , we get:

NP
S − inf(RT , N

P
S ) ∼ NP

T ∗ − inf(RS∗ , N
P
T ∗).

Using these similarities we calculate:

Ind(ST ) = τ(NQ
ST )− τ(NG

(ST )∗) = τ(NQ
ST −N

Q
T )− τ(NG

(ST )∗ −NG
S∗) + τ(NQ

T )− τ(NG
S∗)

= · · · = τ(NP
S )− τ(NG

S∗) + τ(NQ
T )− τ(NP

T ∗) = Ind(S) + Ind(T ). �

Corollary 3.8. (Invariance properties of the (P ·Q)-Index) Let T ∈ PNQ.
(1) If T is (P ·Q)-Fredholm then there exists δ > 0 so that if S ∈ PNQ and ‖ T − S ‖< δ then
S is (P ·Q)-Fredholm and Ind(S) = Ind(T ).
(2) If T is (P ·Q)-Fredholm and k ∈ PKNQ then T + k is (P ·Q)-Fredholm and
Ind(T + k) = Ind(T ).

Proof. (1) By the Proposition and part (2) of Lemma 3.2, TT ∗ is Fredholm of index 0 in PNP .
So by Corollary B2 of [PR] there exists ε1 > 0 so that if A ∈ PNP satisfies ‖ A−TT ∗ ‖< ε1 then
A is Fredholm of index 0. Moreover, by part (4) of Lemma 3.2 there exists ε2 > 0 so that the ball
of radius ε2 about T in PNQ is contained in the (P · Q)-Fredholms. Let δ = min{ε2, ε1/||T ||}.
Then if S ∈ PNQ and ‖ T − S ‖< δ then S is (P ·Q)-Fredholm and ‖ ST ∗− TT ∗ ‖< ε1 so that
ST ∗ is (P · P )-Fredholm of index 0. By the Proposition and part (2) of Lemma 3.2:

0 = Ind(ST ∗) = Ind(S)− Ind(T ).

(2) This is similar to part (1) but uses Lemma 3.5 part (1) in place of Lemma 3.2 part (4). �

♠ In [Ph1] spectral flow is defined in a semifinite factor using the index of Breuer-Fredholm
operators in a skew-corner PNQ (in particular the operator PQ) and uses the product theorem
for the index and other standard properties. The non-factor case for Toeplitz operators (P = Q)
is covered in [PR] but the more subtle “skew-corner” case has not appeared in the literature.
This section enables one to extend [Ph1] to the nonfactor setting where it was needed for [CP2],
[CPS2] and [CPRS2]. For use in the present paper we generalise some of these results to closed,
densely defined operators affiliated to PNQ by studying the map T 7→ T (1 + |T |2)−1/2.♠
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Definition 3.9. A closed, densely defined operator T affiliated to PNQ is (P ·Q)-Fredholm if

(1) τ(NQ
T ) <∞, and τ(NP

T ∗) <∞, and

(2) There exists a τ -finite projection E ≤ P with range(P − E) ⊂ range(T ).

If T is (P ·Q)-Fredholm then the (P ·Q)-index of T is: Ind(T ) = τ(NQ
T )− τ(NP

T ∗).

Remark Using the equalities: range(1 + |T |2)−1/2 = dom(1 + |T |2)1/2 = dom(|T |) = dom(T )
one can show that: range(T ) = range(T (1 + |T |2)−1/2); ker(T ) = ker(T (1 + |T |2)−1/2) and
ker(T ∗) = ker([T (1 + |T |2)−1/2]∗). A little more thought completes the following:

Proposition 3.10. (Index) If T is a closed, densely defined operator affiliated to PNQ, then
T is (P · Q)-Fredholm if and only if the operator T (1 + |T |2)−1/2 is (P · Q)-Fredholm in PNQ.
In this case,

Ind(T ) = Ind(T (1 + |T |2)−1/2).

Proposition 3.11. (Continuity) If T is a closed, densely defined operator affiliated to PNQ,
and A ∈ PNQ then T + A is also closed, densely defined, and affiliated to PNQ and

‖ T (1 + |T |2)−1/2 − (T + A)(1 + |T + A|2)−1/2 ‖≤‖ A ‖ .

Proof. We define the following self-adjoint operators:

D =

(
0 T ∗

T 0

)
and B =

(
0 A∗

A 0

)
.

Then, D is affiliated to M2(N ) and B ∈M2(N ). By [CP1, Theorem 8, Appendix A], we have:

‖ D(1 +D2)−1/2 − (D +B)(1 + (D +B)2)−1/2 ‖≤‖ B ‖ .
A little calculation yields:

‖ T (1 + |T |2)−1/2 − (T + A)(1 + |T + A|2)−1/2 ‖
≤‖ D(1 +D2)−1/2 − (D +B)(1 + (D +B)2)−1/2 ‖≤‖ B ‖=‖ A ‖ . �

Corollary 3.12. (Index continuity) If T is affiliated to PNQ and T is (P ·Q)-Fredholm then
there exists ε > 0 so that if A ∈ PNQ and ‖ A ‖< ε, then T + A is (P ·Q)-Fredholm and

Ind(T + A) = Ind(T ).

Proposition 3.13. (Compact perturbation) Let T be any closed, densely defined operator
affiliated to PNQ.
(1) If k ∈ PKNQ, then the difference T (1 + |T |2)−1/2 − (T + k)(1 + |T + k|2)−1/2 is in PKNQ!

(2) If T is (P ·Q)-Fredholm then for all k ∈ PKNQ, T + k is (P ·Q)-Fredholm and

Ind(T + k) = Ind(T ).

Proof. We prove the surprisingly subtle (and rather surprising!) first statement, since part (2)
is an immediate corollary by Proposition 3.10 and Corollary 3.8. By the 2× 2 matrix trick, we
can assume that T and k are self-adjoint and that P = Q = 1. By the resolvent equation:

(T + i1)−1 − (T + k + i1)−1 = (T + i1)−1k(T + k + i1)−1 ∈ KN .
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However the identity, (T + i1)−1 = T (1 + T 2)−1− i(1 + T 2)−1 and the corresponding identity for
(T + k + i1)−1 imply that:

T (1 + T 2)−1 − (T + k)(1 + (T + k)2)−1 ∈ KN
since this difference is the self-adjoint part of an element in the C∗-algebra KN . Now for µ > 0
real we can replace T with µT and (T + k) with µ(T + k) and get:

µ
{
µT (1 + (µT )2)−1 − µ(T + k)(1 + (µ(T + k))2)−1

}
∈ KN .

For any real λ ≥ 0, let µ = (1 + λ)−1/2 and a little calculation yields:

T (1 + T 2 + λ)−1 − (T + k)(1 + (T + k)2 + λ)−1 ∈ KN .
By [CP1, Lemma 6, Appendix A] we have the estimate:

‖ T (1 + T 2 + λ)−1 − (T + k)(1 + (T + k)2 + λ)−1 ‖≤ ‖ k ‖
1 + λ

,

and hence the following integral converges absolutely in operator norm to an element in the
C∗-algebra KN :

1

π

∫ ∞
0

λ−1/2
(
T (1 + T 2 + λ)−1 − (T + k)(1 + (T + k)2 + λ)−1

)
dλ.

If we call this element k0, then by [CP1, Lemma 4, Appendix A], we have for all ξ ∈ dom(T ) =
dom(T + k) that the following integrals converge in H and:

T (1 + T 2)−1/2(ξ)− (T + k)(1 + (T + k)2)−1/2(ξ)

=
1

π

∫ ∞
0

λ−1/2T (1 + T 2 + λ)−1(ξ)dλ− 1

π

∫ ∞
0

λ−1/2(T + k)(1 + (T + k)2 + λ)−1(ξ)dλ

=
1

π

∫ ∞
0

λ−1/2
(
T (1 + T 2 + λ)−1 − (T + k)(1 + (T + k)2 + λ)−1

)
(ξ)dλ = k0(ξ).

As both side of this equation are bounded operators, we have:

T (1 + T 2)−1/2 − (T + k)(1 + (T + k)2)−1/2 = k0 ∈ KN . �

Definition 3.14. For many geometric examples, the following is a useful notion. If T is a closed,
densely defined, unbounded operator affiliated to PNQ then a parametrix for T is a bounded
everywhere defined operator S ∈ QNP so that:

(1) TS = P + k1 for k1 ∈ PKNP ,

(2) ST = Q+ k2 for k2 ∈ QKNQ.
Note, since T is closed and S is bounded, TS = TS is everywhere defined and bounded by (1).
For example, if D is an unbounded self-adjoint operator and (1 +D2)−1 ∈ KN then D(1 +D2)−1

is a parametrix for D since D(1 +D2)−1D = D2(1 +D2)−1 = 1− (1 +D2)−1.

Lemma 3.15. If T is a closed, densely defined, unbounded operator affiliated to PNQ then T
has a parametrix if and only if T is (P ·Q)-Fredholm.

Proof. If S is a parametrix for T then by (1) TS is everywhere defined and Fredholm in PNP . So
there exists a projection E ≤ P with τ(E) <∞ and: range(P − E) ⊂ range(TS) ⊂ range(T ).
In particular, this implies (since TS is bounded) that NP

(TS)∗ is τ -finite. But S∗T ∗ ⊆ (TS)∗ and
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so NP
T ∗ ≤ NP

(TS)∗ . That is, τ(NP
T ∗) < ∞. Now, ST = Q + k2 is (Q · Q)-Fredholm and so has a

τ -finite Q-kernel. But NQ
T ≤ NQ

ST
. That is, τ(NQ

T ) <∞ and T is (P ·Q)-Fredholm.

If T = V |T | is (P ·Q)-Fredholm then |T |(1 + |T |2)−1/2 is bounded and (Q ·Q)-Fredholm and
so has a parametrix S which we can take to be a function of |T |(1 + |T |2)−1/2. Thus S commutes
with (1 + |T |2)−1/2. One then checks that (1 + |T |2)−1/2SV ∗ is a parametrix for T . �

Remark In general a parametrix for a genuinely unbounded Fredholm operator is not Fredholm
as its range cannot contain the range of a cofinite projection.

Theorem 3.16. (McKean-Singer) Let D be an unbounded self-adjoint operator affiliated to the
semifinite von Neumann algebra N (with faithful normal semifinite trace τ). Let γ be a self-
adjoint unitary in N which anticommutes with D. Finally, let f be a continuous even function
on R with f(0) 6= 0 and f(D) trace-class. Let D+ = P⊥DP where P = (γ+1)/2 and P⊥ = 1−P .
Then as an operator affiliated to P⊥NP , D+ is (P⊥ · P )-Fredholm and

Ind(D+) = 1
f(0)

τ (γf(D)) .

Proof. LetD− = PDP⊥. Since {D, γ} = 0, we see that relative to the decomposition 1 = P⊕P⊥:

γ =

(
1 0
0 −1

)
, D =

(
0 D−

D+ 0

)
, D2 =

(
D−D+ 0

0 D+D−

)
, |D| =

(
|D+| 0

0 |D−|

)
.

We have already observed that D(1 +D2)−1 is a parametrix for D. But, then:

D(1 +D2)−1 =

(
0 D−(P⊥ + |D−|2)−1

D+(P + |D+|2)−1 0

)
.

Hence D−(P⊥ + |D−|2)−1 is a parametrix for D+ and so D+ is (P⊥ · P )-Fredholm. Let D+ =
V |D+| be the polar decomposition of D+ so that D− = D+∗ = |D+|V ∗. Then V ∈ N is a
partial isometry with initial space P1 = V ∗V = supp(D+) ≤ P and final space Q1 = V V ∗ =
range(D+)− = supp(D−) ≤ P⊥. Then, ker(D+) = P0(H) as an operator on P (H) where
P0 = P − P1. Similarly, coker(D+) = ker(D−) = Q0(H) where Q0 = P⊥ −Q1.

Now, |D+|2 = D−D+ = D−D−∗ = V ∗|D−|2V so that |D+| = V ∗|D−|V and if g is any bounded
continuous function then, g(|D+||P1(H)

) = V ∗g(|D−||Q1(H)
)V. But, as an operators on P (H), and

respectively, P⊥(H) we have:

g(|D+|) = P1g(|D+|)P1 ⊕ g(0)P0 = g(|D+||P1(H)
)⊕ g(0)P0 and

g(|D−|) = Q1g(|D−|)Q1 ⊕ g(0)Q0 = g(|D−||Q1(H)
)⊕ g(0)Q0.

Finally, since f is even, we have f(D) = f(|D|) and so:

γf(D) =

(
f(|D+|) 0

0 −f(|D−|)

)
=

(
f(|D+||P1(H)

)⊕ f(0)P0) 0

0 −f(|D−||Q1(H)
)⊕−f(0)Q0

)
=

(
V ∗f(|D−||Q1(H)

)V ⊕ f(0)P0) 0

0 −f(|D−||Q1(H)
)⊕−f(0)Q0

)
.

Hence, τ(γf(D)) = f(0)τ(P0)− f(0)τ(Q0) = f(0)Ind(D+). �
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Corollary 3.17. Let (A,H,D) be an even spectral triple with grading γ, (1 +D2)−1/2 ∈ Ln(N )
and p ∈ A, a projection. Then, relative to the decomposition afforded by γ as above, we have:

p =

(
p+ 0
0 p−

)
, where p+ = PpP = Pp and p− = P⊥pP⊥ = pP⊥.

So, pD+p = pP⊥DPp = p−Dp+ is an operator affiliated to p−Np+ we have that p−D+p+ is
(p− · p+)-Fredholm and for any fixed a ≥ 0 its (p− · p+)-index is given by:

Ind(pD+p) = Ind(p−D+p+) = (1 + a)n/2τ
(
γp
(
p+ a+ (pDp)2

)−n/2)
.

Proof. In the above version of the McKean-Singer theorem, we replace A with pAp which is a
unital subalgebra of the semifinite von Neumann algebra pNp. Moreover, the operator pDp is
self-adjoint and affiliated to pNp, and pγ is a grading in pNp. One easily checks that

(pDp)+ = p−D+p+.

Letting f(x) = (1 + a + x2)−n/2, we can apply the McKean-Singer theorem once we show that
(p+ a+ (pDp)2)−1/2 ∈ Ln(pNp). It suffices to do this for a = 0 since

(p+ a+ (pDp)2)−1/2 ≤ (p+ (pDp)2)−1/2.

This is a careful calculation:

p(1 +D2)−1p− (p+ (pDp)2)−1

= p[(1 +D2)−1 − {(p+ (pDp)2) + (1− p)}−1]p

= p(1 +D2)−1
(
(p+ (pDp)2) + (1− p)− (1 +D2)

)
{(p+ (pDp)2) + (1− p)}−1p

= p(1 +D2)−1
(
(pDp)2 −D2

)
p(p+ (pDp)2)−1p

= p(1 +D2)−1 ([p,D]pDp+Dp[D, p] +D[p,D]) p(p+ (pDp)2)−1p

= p(1 +D2)−1[p,D]pDp(p+ (pDp)2)−1p

+p(1 +D2)−1Dp[D, p]p(p+ (pDp)2)−1p

+p(1 +D2)−1D[p,D]p(p+ (pDp)2)−1p

Now, since |D(1 +D2)−1| ≤ (1 +D2)−1/2, we have that three terms in the last lines are in Ln/2,
Ln, and Ln, respectively, and so their sum is in Ln. Since, p(1 +D2)−1p ∈ Ln/2, we see from the
first line in the displayed equations that (p+ (pDp)2)−1 is in Ln.

Now, armed with this new information, we look at the three terms in the last line again, and
see that they are in Ln/2, Ln · Ln, and Ln · Ln, respectively, and so their sum is in Ln/2. Thus,
(p+ (pDp)2)−1 is, in fact, in Ln/2: in other words, (p+ (pDp)2)−1/2 is in Ln as claimed. �

♠ From now on, we follow convention and denote the above index by Ind(pD+p); effectively
disguising the fact that pD+p is, in fact, Fredholm relative to the “skew-corner,” p−Np+. ♠

Remark: The ideal Ln(N ) can be replaced by any symmetric ideal I ⊂ KN provided we use an
even function f satisfying f(|T |) ∈ L1 for all T ∈ I. The formula then becomes:

Ind(pD+p) = (1/f(0))τ
(
γpf

(
((p+ (pDp)2)

−1/2
))

.
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In particular, if (A,H,D) is θ-summable, and f(x) = e−tx
2
, t > 0, the formula becomes:

Ind(pD+p) = τ
(
γpe−t(pDp)

2
)
.

4. Statement of the Main Result

We use the notation of [CPRS2]. Denote multi-indices by (k1, ..., km), ki = 0, 1, 2, ..., whose
length m will always be clear from the context and let |k| = k1 + · · ·+ km. Define

α(k) = (k1!k2! · · · km!(k1 + 1)(k1 + k2 + 2) · · · (|k|+m))−1

and σn,j (the elementary symmetric functions of {1, ..., n}) by
∏n−1

j=0 (z + j) =
∑n

j=1 z
jσn,j. If

(A,H,D) is a QC∞ spectral triple and T ∈ N then T (n) is the nth iterated commutator with
D2, that is, [D2, [D2, [· · · , [D2, T ] · · · ]]].

We let q = inf{k ∈ R : τ((1 +D2)−k/2) <∞} be the spectral dimension of (A,H,D) and we
assume it is isolated, ie, for

b = a0[D, a1](k1) · · · [D, am](km)(1 +D2)−m/2−|k|

the zeta functions

ζb(z − (1− q)/2) = τ(b(1 +D2)−z+(1−q)/2)

have analytic continuations to a deleted neighbourhood of z = (1− q)/2. As in [CPRS2] we let
τj(b) = resz=(1−q)/2(z − (1− q)/2)jζb(z − (1− q)/2). Our main result is:

Theorem 4.1 (Semifinite Even Local Index Theorem). Let (A,H,D) be an even QC∞ spectral
triple with spectral dimension q ≥ 1. Let N = [ q+1

2
], where [·] denotes the integer part, and let

p ∈ A be a self-adjoint projection. Then

1) Ind(pD+p) = resr=(1−q)/2

(∑2N
m=0,even φ

r
m(Chm(p))

)
where for a0, ..., am ∈ A, l = {a + iv : v ∈ R}, 0 < a < 1/2, Rs(λ) = (λ− (1 + s2 +D2))−1 and
r > 1/2 we define φrm(a0, a1, ..., am) to be

(m/2)!

m!

∫ ∞
0

2m+1smτ

(
γ

1

2πi

∫
l

λ−q/2−ra0Rs(λ)[D, a1]Rs(λ) · · · [D, am]Rs(λ)dλ

)
ds.

In particular the sum on the right hand side of 1) analytically continues to a deleted neighbourhood
of r = (1 − q)/2 with at worst a simple pole at r = (1 − q)/2. Moreover, the complex function-
valued cochain (φrm)2N

m=0,even is a (b, B) cocycle for A modulo functions holomorphic in a half-plane
containing r = (1− q)/2.

2) The index, Ind(pD+p) is also the residue of a sum of zeta functions:

resr=(1−q)/2

(
2N∑

m=0,even

2N−m∑
|k|=0

|k|+m/2∑
j=1

(−1)|k|+m/2α(k)
(m/2)!

2m!
σ|k|+m/2,j×

×(r − (1− q)/2)jτ
(
γ(2p− 1)[D, p](k1)[D, p](k2) · · · [D, p](km)(1 +D2)−m/2−|k|−r+(1−q)/2)),
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(for m = 0 we replace (2p− 1) by 2p). In particular the sum of zeta functions on the right hand
side analytically continues to a deleted neighbourhood of r = (1− q)/2 and has at worst a simple
pole at r = (1− q)/2.

3) If (A,H,D) also has isolated spectral dimension then

Ind(pD+p) =
2N∑

m=0,even

φm(Chm(p))

where for a0, ..., am ∈ A we have φ0(a0) = resr=(1−q)/2φ
r
0(a0) = τ−1(γa0) and for m ≥ 2

φm(a0, ..., am) = resr=(1−q)/2φ
r
m(a0, ..., am) =

2N−m∑
|k|=0

(−1)|k|α(k)×

×
|k|+m/2∑
j=1

σ(|k|+m/2),jτj−1

(
γa0[D, a1](k1) · · · [D, am](km)(1 +D2)−|k|−m/2

)
,

and (φm)2N
m=0,even is a (b, B) cocycle for A. When [q] = 2n + 1 is odd, the term with m = 2N is

zero, and for m = 0, 2, ..., 2N − 2, all the top terms with |k| = 2N −m are zero.

Corollary 4.2. For 1 ≤ q < 2, the statements in 3) of Theorem 4.1 are true without the
assumption of isolated dimension spectrum.

5. The Local Index Theorem in the Even Case

The main technical device that improves the proof of the local index theorem of [CoM] for odd
spectral triples stems from our use in [CPRS2] of the resolvent cocycle to reduce the hypotheses
needed for the theorem and most importantly to provide a simple proof that the (renormalised)
residue cocycle of Connes-Moscovici is an index cocycle. We will see that these improvements
also apply in the even case.

In this Section we will derive the formulae for the index appearing in parts 2) and 3) of Theorem
4.1. The exposition is broken down into six subsections. Each subsection ends with a new formula
for the index which the next subsection builds on until we eventually obtain, in subsection 5.5,
part 2) of the main theorem. In Subsection 5.6 we will prove the index formula in part 3) of
Theorem 4.1. Our starting point is the McKean-Singer formula (Corollary 3.17) for the index
while in [CPRS2] the starting point was the spectral flow formula of Carey-Phillips [CP2].

5.1. Exploiting Clifford-Bott periodicity. We utilise an idea of Getzler from [G] adapted
to a more functional analytic setting based on [CP0]. We begin with an even semifinite spectral
triple (A,H,D) with Z2-grading γ. We will assume that this spectral triple is n−summable for
any n > q with q ≥ 1 fixed once and for all. If p ∈ A then our aim is to derive from McKean-
Singer a new formula for the index of pD+p = p−D+p+ where D+ = (1− γ)D(1 + γ)/4 = P⊥DP
and p+ = PpP and p− = P⊥pP⊥. (Note that what follows differs significantly from what is done
in [CPRS2])
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Definition 5.1. Form the Hilbert space H̃ = C2⊗H on which acts the semifinite von Neumann
algebra Ñ = M2(C)⊗N . Introduce the two dimensional Clifford algebra in the form

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Let 12 denote the 2× 2 identity matrix and define the grading in Ñ by γ̃ = σ3⊗ γ and a Clifford
element σ̃2 = σ2 ⊗ 1 ∈ Ñ which anticommutes with γ̃ where 1 is the identity operator in N .

Let p ∈ A be a projection. Introduce the following operators affiliated to Ñ on H̃:

D̃ = σ3 ⊗D, Dp = pDp+ (1− p)D(1− p) = D + [D, p](1− 2p),

Dw = (1− w)D + w(pDp+ (1− p)D(1− p)) = (1− w)D + wDp = D + w[D, p](1− 2p),

and noting that σ̃2 (12 ⊗ (2p− 1)) = σ2 ⊗ (2p− 1), we define:

D̃w,s = σ3 ⊗Dw + s(σ2 ⊗ (2p− 1)) =: D̃w + s(σ2 ⊗ (2p− 1)), w ∈ [0, 1], s ∈ (−∞,∞).

Note that σ3 ⊗ Dw is odd (i.e., anticommutes with the grading γ̃) and that σ̃2 and σ3 ⊗ Dw
anticommute. Notice that d

ds
D̃w,s = σ2 ⊗ (2p− 1).

We extend the trace τ on N to τ2 := Tr2 ⊗ τ on Ñ by taking the matrix trace Tr2 in the
first tensor factor. There is a graded Clifford trace (super trace) on Ñ which we write as
Sτ(T ) = 1

2
τ2((σ3 ⊗ 1)γ̃T ), T ∈ Ñ , and note that this reduces to τ(γS) for T = 12 ⊗ S ∈ Ñ .

Now

D̃2
w,s = 12 ⊗D2

w − sσ3σ2 ⊗ (2p− 1)Dw + sσ3σ2 ⊗Dw(2p− 1) + s2

= 12 ⊗D2
w + 2s(1− w)σ3σ2 ⊗ [D, p] + s2.

Here we used Dw(2p− 1)− (2p− 1)Dw = 2(1− w)[D, p]. At w = 0 we have

D̃2
0,s =

(
D2 + s2 −i2s[D, p]
−i2s[D, p] D2 + s2

)
= D̃2 + s2 + 2sσ3σ2 ⊗ [D, p]

and at w = 1:

D̃2
1,s =

(
(pDp+ (1− p)D(1− p))2 + s2 0

0 (pDp+ (1− p)D(1− p))2 + s2

)
= D̃2

p + s2,

where, D̃p := σ3 ⊗Dp. Note that

d

dw
Dw = pDp+ (1− p)D(1− p)−D = [D, p](1− 2p).

Lemma 5.2. Consider the affine space Φ of perturbations, D̂, of D̃ = σ3 ⊗D given by

Φ = {D̂ = D̃ +X | X ∈ Ñsa and [X, σ2 ⊗ γ] = 0}

Notice that each D̂ commutes with σ2 ⊗ γ. Let, for any n > q and D̂ ∈ Φ

αD̂(Y ) = τ2

(
(σ2 ⊗ γ)Y (1 + D̂2)−n/2

)
Then D̂ 7→ αD̂ is an exact one-form (i.e., an exact section of the cotangent bundle to Φ).
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The proof of this Lemma is a trivial variation of the proof of Lemma 5.6 of [CPRS2]: in the
notation of that lemma, let Γ = σ2 ⊗ γ and multiply Sτ by 2.

Now, for n > q + 1 we introduce the function

a(w) =
1

4

∫ ∞
−∞

τ2

(
(12 ⊗ {γ(2p− 1)})(1 + D̃2

w,s)
−n/2

)
ds

This integral converges absolutely due to the following two estimates. The first is from Lemma
5.2 of [CPRS2] (together with the Remark immediately preceding that Lemma) with n = q+ 2r
and all s ≥ 2:

‖ (1 + D̃2
w,s)

−n/2 ‖1=‖ (1 + D̃2
w,s)

−q/2−r ‖1≤‖ (1/2 + D̃2
w)−(q/2+ε) ‖1

(
1/2 + (1/2)(s2)

)−r+ε
where r = n−q

2
> 1

2
+ ε.

The second is from Corollary 8 of Appendix B of [CP1], letting D̃w = D̃ + wA ∈ Φ where A is
in Ñsa. The cited result gives us a constant C = C(A, q, ε) > 0 such that

‖ (1/2 + D̃2
w)−(q/2+ε) ‖1≤ τ2

(
(2(1 + D̃2

w)−1)(q/2+ε)
)
≤ Cτ2

(
(1 + D̃2)−(q/2+ε)

)
.

So, with n = q + 2r and r > 1/2, the function a(w) is well-defined.

With that settled, we now observe that

a(w) =
1

4

∫ ∞
−∞

τ2

(
(σ2 ⊗ γ)(σ2 ⊗ (2p− 1))(1 + D̃2

w,s)
−n/2

)
ds

=
1

4

∫ ∞
−∞

τ2

(
(σ2 ⊗ γ)

(
d

ds
D̃w,s

)
(1 + D̃2

w,s)
−n/2

)
ds

with the last expression designed to link with the result of the previous lemma. In fact, a(w)
does not really depend on w as we now prove.

Lemma 5.3. We have that a(w) is constant, in particular, a(0) = a(1).

Proof. Exactness of the one-form α means that integral of α along any continuous piecewise
smooth closed path in Φ must be 0. Consider the closed (rectangular) path β given by the four
linear paths beginning with:

β0,N(s) = D̃0,s for s ∈ [−N,N ]; then βN(w) = D̃w,N for w ∈ [0, 1]; then

β1,N(s) = D̃1,−s for s ∈ [−N,N ]; then β−N(w) = D̃1−w,−N for w ∈ [0, 1].

Then, the integral of α around β is 0. For example, the integral of α along βN is:∫ 1

0

τ2

(
(σ2 ⊗ γ)

d

dw
(D̃w,N)(1 + D̃2

w,N)−n/2
)
dw =

∫ 1

0

τ2

(
B(1 + D̃2

w,N)−n/2
)
dw,

where B = σ2σ3 ⊗ γ[D, p](1− 2p) ∈ Ñ . Now by the above estimates we have:

‖ B(1 + D̃2
w,N)−n/2 ‖1≤ C||B||τ2

(
(1 + D̃2)−(q/2+ε)

) (
1/2 + (1/2)(N2)

)−r+ε
,
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which for r > ε goes to 0 as N →∞. Similarly, the integral along β−N goes to 0 as N →∞.
Now the integral of α along β0,N is:∫ N

−N
τ2

(
(12 ⊗ γ(2p− 1))(1 + D̃2

0,s)
−n/2

)
ds→ 4a(0) as N →∞.

Similarly, the integral of α along β1,N converges to −4a(1) as N →∞. That is, 4a(0)−4a(1) = 0
or a(0) = a(1). Similarly, a(0) = a(w) for any w ∈ [0, 1]. �

Using the preceding lemma we obtain

a(1) = a(0) =
1

4

∫ ∞
−∞

τ2

(
(12 ⊗ γ(2p− 1))(1 + D̃2

0,s)
−n/2

)
ds

and thus we can calculate a(0) and a(1) to obtain two different expressions for the same quantity.

For the next calculation, observe that the definition of a(w) gives

a(1) =
1

4

∫ ∞
−∞

τ2

(
(12 ⊗ γ(2p− 1))(1 + D̃2

1,s)
−n/2

)
ds

and inserting D̃2
1,s = D̃2

p + s2, we get by an application of McKean-Singer (Corollary 3.17):

a(1) =
1

4

∫ ∞
−∞

τ2

(
(12 ⊗ γ(2p− 1))(1 + (pD̃p+ (1− p)D̃(1− p))2 + s2)−n/2

)
ds

=

∫ ∞
−∞

τ
(
γp(1 + (pDp)2 + s2)−n/2

)
ds

−1

2

∫ ∞
−∞

τ
(
γ(1 + (pDp+ (1− p)D(1− p))2 + s2)−n/2

)
ds

= Ind(pD+p)

∫ ∞
−∞

(1 + s2)−n/2ds− 1

2

∫ ∞
−∞

τ
(
γ(1 +D2

p + s2)−n/2
)
ds

We put Lemma 5.2 to work again to get rid of the subscript p in the last integral above.

Lemma 5.4. With the hypotheses as above and n = q + 2r > q + 1, we have:∫ ∞
−∞

τ
(
γ(1 +D2

p + s2)−n/2
)
ds =

∫ ∞
−∞

τ
(
γ(1 +D2 + s2)−n/2

)
ds.

Proof. For w ∈ [0, 1] and s ∈ R we let:

D̂w,s = D̃w + s(σ2 ⊗ 1) = D̃ + wA+ s(σ2 ⊗ 1)

where A = σ3 ⊗ ([D, p](1 − 2p)), so that D̃ + A = D̃p. Then both perturbations of D̃ commute

with σ2 ⊗ γ and therefore D̂w,s ∈ Φ. Moreover σ2 ⊗ 1 anticommutes with D̃ and with A, and so

D̂2
w,s = D̃2

w + s2. In particular, D̂2
0,s = D̃2 + s2 and D̂2

1,s = D̃2
p + s2. One now applies Lemma 5.2

to the closed rectangular path in Φ described as follows:

β0,N(s) = D̂0,s for s ∈ [−N,N ]; then βN(w) = D̂w,N for w ∈ [0, 1]; then

β1,N(s) = D̂1,−s for s ∈ [−N,N ]; then β−N(w) = D̂1−w,−N for w ∈ [0, 1].
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As in the previous lemma, the integral of the one-form along βN equals:∫ 1

0

τ2

(
(σ2 ⊗ γ)A(1 + D̂2

w,N)−n/2
)
dw

and converges to 0 as N →∞. Similarly, the integral along β−N goes to 0 as N →∞.

Moreover, the integral along β0,N equals:∫ N

−N
τ2

(
(σ2 ⊗ γ)(σ2 ⊗ 1)(1 + D̃2 + s2)−n/2

)
ds = 2

∫ N

−N
τ
(
γ(1 +D2 + s2)−n/2

)
ds,

which as N →∞ converges to 2
∫∞
−∞ τ

(
γ(1 +D2 + s2)−n/2

)
ds. Similarly, the integral along β1,N

converges to: −2
∫∞
−∞ τ

(
γ(1 +D2

p + s2)−n/2
)
ds. The proof is completed by observing that the

integral around the closed path β is 0. �

This establishes the main formula of this section:

Lemma 5.5. For n = q + 2r > q + 1 we have:

Ind(pD+p)Cn/2 = a(1) +
1

2

∫ ∞
−∞

τ
(
γ(1 +D2 + s2)−n/2

)
ds

=
1

4

∫ ∞
−∞

τ2

(
(12 ⊗ γ(2p− 1))(1 + D̃2

0,s)
−n/2

)
ds+

∫ ∞
0

τ
(
γ(1 +D2 + s2)−n/2

)
ds

where

Cn/2 =

∫ ∞
−∞

(1 + s2)−n/2ds =
Γ(1/2)Γ(n/2− 1/2)

Γ(n/2)
.

Note that Cn/2 is the normalisation ‘constant’ that appeared in [CPRS2]. Given the expression
in terms of Γ functions we may take n as a complex variable and see that the first pole is at
n = 1. If we write n = q + 2r then the pole is at r = (1− q)/2 which is the origin of the critical
point in the zeta functions in our main theorem. We reiterate that the the above formula is
only valid for r > 1/2 but that the LHS gives an analytic continuation of the RHS to a deleted
neighbourhood of this critical point r = (1− q)/2.

5.2. Resolvent Expansion of the Index. In this subsection we will take the index formula
of the preceding lemma and apply a resolvent expansion to the integrand. We begin with some
notation. Let N = [(q + 1)/2], where [·] denotes the integer part. If q is an even integer, then
N = q/2. If q is an odd integer, then N = (q + 1)/2. In general, since N ≤ (q + 1)/2 < N + 1
we have 2N − 1 ≤ q < 2N + 1, so that 2N − 1 is the greatest odd integer in q. Also, 2N ≤ q
whenever 2n ≤ q < 2n+ 1 for some positive integer n. In all cases 2N + 2 > q.

We allow q ≥ 1, so (1 +D2)−n/2 ∈ L1(N ) for all n > q. By scale invariance of the index, we may
replace D by εD without changing the index. Since we need ‖ [D, p] ‖<

√
2 below, we assume

this without further comment. We now make use of the Clifford structure. It allows us to employ
the resolvent expansion to study a(0), and we need only retain the even terms.
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Lemma 5.6. Let l be the line {λ = a + iv : −∞ < v < ∞} where 0 < a < 1/2 is fixed. There
exists 1 > δ > 0 such that for r > 1/2

a(1) = a(0) =
1

2

∫ ∞
−∞

Sτ({12 ⊗ (2p− 1)}(1 + D̃2
0,s)
−q/2−r)ds

=
1

2

∫ ∞
−∞

Sτ

(
1

2πi

∫
l

λ−q/2−r(12 ⊗ (2p− 1))(λ− (1 + D̃2
0,s))

−1dλ

)
ds

=
1

2

∫ ∞
−∞

Sτ

(
1

2πi

∫
l

λ−q/2−r(12 ⊗ (2p− 1))
2N∑
m=0

(
(λ− (1 + s2 + D̃2))−12sσ3σ2 ⊗ [D, p]

)m
×

(λ− (1 + s2 + D̃2))−1dλ
)
ds+ holo(2)

where holo is a function of r holomorphic for Re(r) > (1− q)/2− δ/2.

Proof. The first equality is just Cauchy’s formula f(z) = 1
2πi

∫
l
f(λ)(λ − z)−1dλ (see the intro-

ductory remarks of section 6.2 of [CPRS2] addressing the issue of convergence). The expansion
in the statement of the Lemma is just the resolvent expansion:

R̃s(λ) =
2N∑
m=0

(Rs(λ)2sσ3σ2 ⊗ [D, p])mRs(λ) + (Rs(λ)2sσ3σ2 ⊗ [D, p])2N+1 R̃s(λ),

where R̃s(λ) = (λ− (1 + s2 + D̃2 + 2sσ3σ2 ⊗ [D, p]))−1 and Rs(λ) = (λ− (1 + s2 + D̃2))−1. The
remainder term in the resolvent expansion is

(3)
1

2

∫ ∞
−∞

(2s)2N+1Sτ

(
1

2πi

∫
l

λ−q/2−r(12 ⊗ (2p− 1)) (σ3σ2 ⊗Rs(λ)[D, p])2N+1 R̃s(λ)dλ

)
ds.

By Hölder’s inequality

‖ (Rs(λ)[D, p])2N+1 ‖1≤‖ [D, p] ‖2N+1‖ Rs(λ) ‖2N+1
2N+1= C ‖ Rs(λ)2N+1 ‖1,

and by [CPRS2, Lemma 5.3] for all sufficiently small ε > 0 and q ≥ 1.

‖ Rs(λ)2N+1 ‖1≤ Cε((1/2 + s2 − a)2 + v2)−(2N+1)/2+(q+ε)/4

where λ = a+ iv. Moreover for ‖ [D, p] ‖<
√

2 we have by [CPRS2, Lemma 5.1]

‖ R̃s(λ) ‖≤ C ′((1 + s2 − a− s ‖ [D, p] ‖)2 + v2)−1/2.

We put these estimates together to obtain an estimate for the trace norm of the remainder term
(3). We find

‖ (3) ‖1 ≤ C ′′ε

∫ ∞
−∞

s2N+1

∫ ∞
−∞

√
a2 + v2

−q/2−r
((1/2 + s2 − a)2 + v2)−(2N+1)/2+(q+ε)/4 ×

× ((1 + s2 − a− s ‖ [D, p] ‖)2 + v2)−1/2dvds.

Applying [CPRS2, Lemma 5.4] (one easily checks that one can integrate from −∞ instead of 0
there) we find that this integral is finite provided q+ ε < 2N +2 and −2N −2r+ ε < 0. The first
condition is always satisfied by virtue of our choice of 2N and ε ≤ 1. For the second condition
to be true at q + 2r = 1 − δ requires that ε + δ + q < 2N + 1 and a δ satisfying this condition
can always be found since 2N − 1 ≤ q < 2N + 1. That (3) defines a holomorphic function of r



20 THE LOCAL INDEX FORMULA IN SEMIFINITE VON NEUMANN ALGEBRAS II: THE EVEN CASE

for Re(r) > (1 − q)/2 − δ/2 can be seen by an argument essentially identical to the one in the
proof of [CPRS2, Lemma 7.4]. �

Observation Since 12 ⊗ γ commutes with D̃2 and anticommutes with 12 ⊗ [D, p], all the terms
in the expansion with m odd vanish. On the other hand, each of the integrands with m even is
an even function of s and so we may replace 1

2

∫∞
−∞ by

∫∞
0

in the above expansion.

Observation Using [CPRS2, Lemma 7.2], we find that for Re(r) > 0 each term in the above
sum is in fact trace class, so we may interchange the trace and the sum. Having done this, we
examine the m = 0 term. The m = 0 term in the above expansion is given by

2

∫ ∞
0

τ(γp(1 + s2 +D2)−q/2−r)ds−
∫ ∞

0

τ
(
γ(1 +D2 + s2)−q/2−r

)
ds,

where the second term is the same (except for sign) as the second term in Lemma 6.5. Hence if
we write Rs(λ) = (λ− (1 + s2 + D̃2))−1 we have for r > 1/2

Ind(pD+p)Cq/2+r = 2

∫ ∞
0

τ(γp(1 + s2 +D2)−q/2−r)ds +(4)

2N∑
m=2,even

∫ ∞
0

Sτ

(
1

2πi

∫
l

λ−q/2−r(12 ⊗ (2p− 1)) (Rs(λ)2sσ3σ2 ⊗ [D, p])mRs(λ)dλ

)
ds+ holo

where holo is a function of r holomorphic for Re(r) > (1− q)/2− δ/2.

The left hand side of Equation (4) provides an analytic continuation of the right hand side which
is otherwise only defined for Re(r) > 1/2. The simple pole at r = (1 − q)/2 has residue equal
to Ind(pD+p). We intend to compute this residue in terms of the analytic continuations of the
integrals appearing on the right hand side.

5.3. Pseudodifferential Expansion of the Index. In this section we use ideas of [CPRS2]
and Connes-Moscovici’s pseudodifferential calculus to rewrite equation (4) in a form in which
all the resolvents in the integrand are commuted to the right. In this new form we will be in a
position to calculate residues explicitly term by term. Our aim is to prove the following:

Lemma 5.7. There exists a 1 > δ > 0 such that for r > 1/2

Ind(pD+p)Cq/2+r = 2

∫ ∞
0

τ(γp(1 + s2 +D2)−q/2−r)ds +
2N∑

m=2,even

2N−m∑
|k|=0

(−1)m/2C(k) ×

×
∫ ∞

0

(2s)mSτ

(
1

2πi

∫
l

λ−q/2−r
(
12 ⊗ {(2p− 1)[D, p](k1) · · · [D, p](km)}

)
Rs(λ)|k|+m+1dλ

)
ds+ holo

where Rs(λ) = (λ−(1+s2+D̃2))−1, holo is a function of r holomorphic for Re(r) > (1−q)/2−δ/2
and C(k) = (|k|+m)!α(k).

Proof. This is an application of our adaptation of Higson’s version of the pseudodifferential
expansion, and the observation that (σ3σ2)2 = −1. By [CPRS2, Lemma 6.11], the remainder
from the pseudodifferential expansion (applied to the m-th term in the resolvent expansion) is of
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order at most −2m− (2N −m)− 3 = −m− 2N − 3. By [CPRS2, Lemma 6.12], the remainder
Pm,N satisfies

‖ Pm,N(s, λ)(λ− (1 + s2 + D̃2))(m+2N+3)/2 ‖≤ C

where the bound is uniform in s, λ and square roots use the principal branch of log. We use
this to replace Pm,N by powers of the resolvent to estimate the trace norm of the remainder. We
obtain

‖
∫ ∞

0

sm
∫
l

λ−q/2−rPm,Ndλds ‖1

≤ C

∫ ∞
0

sm
∫ ∞
−∞

√
a2 + v2

−q/2−r
‖ Rs(λ)(m+2N+3)/2 ‖1 dvds

≤ C ′
∫ ∞

0

sm
√
a2 + v2

−q/2−r√
(1/2 + s2 − a)2 + v2

−(m+2N+3)/2+(q+ε)/2
dvds

where the final estimate comes from [CPRS2, Lemma 5.3]. Applying [CPRS2, Lemma 5.4]
we find that this integral is finite provided m − 2((m + 2N + 3)/2 − (q + ε)/2) < −1 and
m−2((m+2N+3)/2−(q+ε)/2)+1−q−2r < −2. The former condition requires q+ε < 2+2N ,
which is true by our choice of N . For the second condition to be true at q + 2r = 1− δ requires
ε + δ + q < 2N + 1, and since 2N − 1 ≤ q < 2N + 1, for sufficiently small ε > 0 there exists a
1 > δ > 0 satisfying this condition. �

5.4. Integrating Out the Parameter Dependence. The formula of the last lemma has two
integrals: one over the resolvent parameter λ and the other over s ∈ [0,∞). The λ integral can
be performed by a simple application of Cauchy’s formula for derivatives.

Lemma 5.8. There exists 1 > δ > 0 such that for r > 1/2

Ind(pD+p)Cq/2+r − 2

∫ ∞
0

τ(γp(1 + s2 +D2)−q/2−r)ds

=
2N∑

m=2,even

2N−m∑
|k|=0

(−1)m/2+|k|C(k)
Γ(q/2 + r + |k|+m)

Γ(q/2 + r)(|k|+m)!
×

×
∫ ∞

0

(2s)mSτ
(

12 ⊗ {(2p− 1)[D, p](k1) · · · [D, p](km)}(1 + s2 + D̃2)−q/2−r−|k|−m
)
ds+ holo

where holo is a function of r holomorphic for Re(r) > (1− q)/2− δ/2.

Proof. After “pulling” the unbounded operator 12 ⊗ {(2p − 1)[D, p](k1) · · · [D, p](km)} out of the
integral (how to do this is explained in the proof of [CPRS2, Lemma 7.2]) we just apply Cauchy’s
Formula in the operator setting (also discussed in [CPRS2, Lemma 7.2]):

1

2πi

∫
l

λ−q/2−rRs(λ)|k|+m+1dλ =
1

(|k|+m)!

(
d|k|+m

dλ|k|+m
λ−q/2−r

)∣∣∣∣
λ=(1+s2+D̃2)

= (−1)|k|+m Γ(q/2+r+|k|+m)
Γ(q/2+r)(|k|+m)!

(1 + s2 + D̃2)−q/2−r−|k|−m. �

The remaining s-integral is not difficult either.
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Lemma 5.9. There exists 1 > δ > 0 such that for r > 1/2

Ind(pD+p)Cq/2+r − Cq/2+rτ(γp(1 +D2)(1−q)/2−r)

=
2N∑

m=2,even

2N−m∑
|k|=0

(−1)m/2+|k|C(k)
2m−1Γ((m+ 1)/2)Γ(q/2 + r + |k|+ (m− 1)/2)

Γ(q/2 + r)(|k|+m)!
×

×Sτ
(

12 ⊗ {(2p− 1)[D, p](k1) · · · [D, p](km)}(1 + D̃2)−q/2−r−|k|−(m−1)/2
)

=
2N∑

m=2,even

2N−m∑
|k|=0

(−1)m/2+|k|C(k)
2m−1Γ((m+ 1)/2)Γ(q/2 + r + |k|+ (m− 1)/2)

Γ(q/2 + r)(|k|+m)!
×

×τ
(
γ(2p− 1)[D, p](k1) · · · [D, p](km)(1 +D2)−q/2−r−|k|−(m−1)/2

)
+ holo

where holo is a function of r holomorphic for Re(r) > (1− q)/2− δ/2.

Proof. The integral is a Bochner integral (for a discussion of the subtleties see the proof of
[CPRS2, Proposition 8.2]), and so we can move the s-integral past the supertrace. Then using
the Laplace Transform argument of [CPRS2, Proposition 8.2], we have:∫ ∞

0

(2s)m(1 + s2 + D̃2)−|k|−m−q/2−rds

=
1

Γ(q/2 + r +m+ |k|)

∫ ∞
0

∫ ∞
0

u|k|+m+q/2+r−1(2s)me−(1+D̃2)ue−s
2udsdu

=
Γ((m+ 1)/2)2m

2Γ(|k|+m+ q/2 + r)

∫ ∞
0

u|k|+(m−1)/2+q/2+r−1e−(1+D̃2)udu

=
2m−1Γ((m+ 1)/2)Γ(|k|+ (m− 1)/2 + q/2 + r)

Γ(|k|+m+ q/2 + r)
(1 + D̃2)−|k|−(m−1)/2−q/2−r.

Substituting this into the result of the last lemma almost gives the result. The only extra things
to do are to note the value of the constant arising from the integration for m = 0 and to trace
out the Clifford variables (which could have been done earlier). Removing the Clifford variables
is easy, because it is just a trace over the 2 × 2 identity matrix, and the factor of 1/2 in the
definition of the super trace cancels it out. Hence the result. �

5.5. Simplifying the Constants. To obtain the constants that appear before the residues of
the zeta functions in the statement of our main theorem requires us to manipulate the constants
in front of the zeta functions in the statement of the last lemma of the preceding subsection.
Legendre’s duplication formula for the Gamma function [A, p. 200] says

2m−1Γ((m+ 1)/2) =
√
πΓ(m)/Γ(m/2).

For m = 0 replace the right hand side with
√
π/2. Since for m > 0 and even, Γ(m)

Γ(m/2)
= 1

2
m!

(m/2)!
, we

have 2mΓ((m+ 1)/2)) =
√
πm!/(m/2)!. The functional equation for the Gamma function says

√
πΓ(r + (q − 1)/2 + |k|+m/2)

Γ(q/2 + r)
=

√
πΓ(r + (q − 1)/2)

Γ(q/2 + r)

|k|+m/2−1∏
j=0

(r + (q − 1)/2 + j)
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= Cq/2+r

|k|+m/2∑
j=1

(r + (q − 1)/2)jσ(|k|+m/2),j,

where the σ(|k|+m/2),j are the elementary symmetric functions of the integers 1, 2, ..., |k| + m/2.
Substituting these oddments into the formula from Lemma 5.9 for r > 1/2 and with h = m/2+|k|
gives, modulo functions of r holomorphic for Re(r) > (1− q)/2− δ:

Ind(pD+p)Cq/2+r − Cq/2+rτ(γp(1 +D2)(1−q)/2−r)

=
2N∑

m=2,even

2N−m∑
|k|=0

(−1)m/2+|k|C(k)

√
πm!Γ(q/2 + r + |k|+ (m− 1)/2)

2(m/2)!Γ(q/2 + r)(|k|+m)!
×

×τ
(
γ(2p− 1)[D, p](k1) · · · [D, p](km)(1 +D2)−q/2−r−|k|−(m−1)/2

)
=

2N∑
m=2,even

2N−m∑
|k|=0

(−1)m/2+|k| m!

(m/2)!

α(k)

2

√
πΓ(q/2 + r + |k|+ (m− 1)/2)

Γ(q/2 + r)
×

×τ
(
γ(2p− 1)[D, p](k1) · · · [D, p](km)(1 +D2)−q/2−r−|k|−(m−1)/2

)
=

2N∑
m=2,even

2N−m∑
|k|=0

(−1)m/2+|k| m!

(m/2)!

α(k)

2
Cq/2+r ×

×
h∑
j=1

σh,j(r + (q − 1)/2)jτ
(
γ(2p− 1)[D, p](k1) · · · [D, p](km)(1 +D2)(1−q)/2−r−|k|−m/2) .(5)

Observe that we have not used the isolated spectral dimension assumption at any point in this
calculation. Despite this, the above sum of zeta functions (which includes the m = 0 term
which we have written once on the LHS of the first equality to save space) has a simple pole at
r = (1− q)/2 with residue equal to Ind(pD+p). This proves part 2) of Theorem 4.1.

To proceed further, we need to assume that the individual zeta functions have analytic con-
tinuations.

5.6. Taking the Residues. This step will prove the index formula in part 3) of Theorem 4.1.
We now have to assume isolated spectral dimension. Then, denoting:

ζm,k(z) = τ
(
γ(2p− 1)[D, p](k1) · · · [D, p](km)(1 +D2)−z−|k|−m/2

)
,

we have for r > 1/2

Ind(pD+p)Cq/2+r = Cq/2+rτ(γp(1 +D2)−(q−1)/2−r)

+
2N∑

m=2,even

2N−m∑
|k|=0

(−1)m/2+|k| m!

(m/2)!

α(k)

2
Cq/2+r

h∑
j=1

σh,j(r + (q − 1)/2)jζm,k((q − 1)/2 + r) + holo

where h = |k| + m/2. Now, divide through by Cq/2+r, and multiply by 1/(r + (q − 1)/2). The
remainder term is now

holo

Cq/2+r(r + (q − 1)/2)
,
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which is still holomorphic at the critical point (since it has a removable singularity). Denote the
analytic continuation of ζm,k((q − 1)/2 + r) by Zm,k((q − 1)/2 + r). Define for j = −1, 0, 1, ...

τj
(
γ(2p− 1)[D, p](k1) · · · [D, p](km)(1 +D2)−m/2−|k|

)
= res(1−q)/2(r−(1−q)/2)jZm,k((q−1)/2+r),

(we replace 2p− 1 by 2p when m = 0). Thus taking the residues of the left and right hand sides
of Equation (5) we obtain (setting h = |k|+m/2)

Ind(pD+p) = resr=(1−q)/2
1

(r + (q − 1)/2)
Ind(pD+p)

= resr=(1−q)/2
1

(r + (q − 1)/2)
τ(γp(1 +D2)−(r−(1−q)/2))

+
2N∑

m=2,even

2N−m∑
|k|=0

(−1)h
m!

(m/2)!

α(k)

2

h∑
j=1

σh,jresr=(1−q)/2(r + (q − 1)/2)j−1Zm,k((q − 1)/2 + r)

= τ−1(γp)(6)

+
2N∑

m=2,even

2N−m∑
|k|=0

(−1)h
m!

(m/2)!

α(k)

2

h∑
j=1

σh,jτj−1

(
γ(2p− 1)[D, p](k1) · · · [D, p](km)(1 +D2)−m/2−|k|

)
.

Observe that since j − 1 runs from 0 to |k| + m/2 − 1, at worst, we only need to consider the
first |k|+m/2− 1 terms in the principal part of the Laurent series for Zm,k at r = (1− q)/2, as
well as the constant term. Moreover, this number is bounded by

|k|+m/2− 1 ≤ 2N −m+m/2− 1 = 2N −m/2− 1 ≤ 2N − 1 ≤ q

since 2N − 1 ≤ q < 2N + 1. Hence |k|+m/2− 1 ≤ q. Furthermore, since

γ(2p− 1)[D, p](k1) · · · [D, p](km) ∈ OP |k|, it equals B(1 +D2)|k|/2 for some B bounded, and so:

γ(2p− 1)[D, p](k1) · · · [D, p](km)(1 +D2)−m/2−|k|−r−(q−1)/2 = B(1 +D2)−m/2−|k|/2−r−(q−1)/2

The right hand side has finite trace for

Re(r) > (1−m− |k|)/2 = (1− q)/2 + (q −m− |k|)/2.
Thus whenever m + |k| > q we obtain a term which is holomorphic at r = (1 − q)/2. If [q] is
odd then there exists n ∈ N with 2n+ 1 ≤ q < 2n+ 2 and so N = n+ 1 and 2N = 2n+ 2 > q.
Hence the residues of the terms with m = 2N all vanish, and similarly for any m = 2, ..., 2N − 2
the residues of the top terms with |k| = 2N −m vanish.

This computation, which has produced Equation (5.6) has actually proved the index formula
in part 3) of Theorem 4.1. To prove 1) and the remainder of 3), we need to study the resolvent
cocycle.

6. The Resolvent Cocycle in the Even Case

Part 3) of Theorem 4.1 claims that the index is actually a pairing of a (b, B) cocycle with the
Chern character of the idempotent p. Similarly, in 1) we have an ‘almost’ cocycle, and the residue
of the pairing computes the index. In order to show this we introduce an auxiliary function-
valued (b, B)-cochain called the resolvent cocycle (cf [CPRS2, Section 7]). The definition is
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inspired by the resolvent expansion, and we show that it is a (b, B)-cocycle modulo functions of
r holomorphic in an open half-plane containing r = (1 − q)/2. We use the resolvent cocycle to
complete the proof of Theorem 4.1 in subsection 6.1.

Our starting point for this section is the expansion of a(0) obtained in equation (4) at the end
of Subsection 5.2. We have

Ind(pD+p)Cq/2+r = 2

∫ ∞
0

τ(γp(1 + s2 +D2)−q/2−r)ds

+
2N∑

m=2,even

∫ ∞
0

Sτ

(
1

2πi

∫
l

λ−q/2−r(2p− 1) (Rs(λ)2sσ3σ2 ⊗ [D, p])mRs(λ)dλ

)
ds+ holo

where holo is a function of r holomorphic for r > (1 − q)/2 − δ/2 where 1 > δ > 0. If we now
perform the ‘super bit’ of the trace we obtain

Ind(pD+p)Cq/2+r = 2

∫ ∞
0

τ(γp(1 + s2 +D2)−q/2−r)ds

+
2N∑

m=2,even

(−1)m/2
∫ ∞

0

τ

(
1

2πi

∫
l

λ−q/2−rγ(2p− 1) (Rs(λ)2s[D, p])mRs(λ)dλ

)
ds+ holo

where by abuse of notation we have written Rs(λ) = (λ− (1 + s2 +D2))−1 (as opposed to D̃2).

Assuming that the right hand side is (almost) the pairing of a cocycle with the Chern character
of the projection p, to obtain a formula for the cocycle we expect to remove the normalisations
coming from the Chern character of p, and that is all. Including the powers of two in the
normalisation gives the next definition.

Definition 6.1. For m even, 0 ≤ m ≤ 2N , a0, ..., am ∈ A, and ηm = 2m+1 (m/2)!
m!

define the
following function of r for r > (1−m)/2:

φrm(a0, ..., am) =
ηm
2πi

∫ ∞
0

smτ

(
γ

∫
l

λ−q/2−ra0Rs(λ)[D, a1]Rs(λ) · · ·Rs(λ)[D, am]Rs(λ)dλ

)
ds.

Observe that the definition for m = 0 and the Cauchy formula gives

φr0(a0) = 2

∫ ∞
0

τ(γa0(1 + s2 +D2)−q/2−r)ds.

Proposition 6.2. For 0 ≤ m ≤ 2N − 2, Bφrm+2 + bφrm = 0 and there exists a 1 > δ > 0 such
that (bφr2N)(a0, ..., a2N+1) is holomorphic for Re(r) > (1− q)/2− δ/2.

Proof. We use the discussion of [CPRS2, Subsection 7.2], noting some minor differences which
arise due to the grading, γ. We begin by computing Bφrm+2. Applying the definitions we have,

(Bφrm+2)(a0, ..., am+1) =
m+1∑
j=0

(−1)jφrm+2(1, aj, ..., am+1, a0, ..., aj−1) =

m+1∑
j=0

(−1)jηm+2

2πi

∫ ∞
0

sm+2τ

(
γ

∫
l

λ−q/2−rRs(λ)[D, aj] · · · [D, am+1]Rs(λ) · · · [D, aj−1]Rs(λ)dλ

)
ds
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=
m+1∑
j=0

ηm+2

2πi

∫ ∞
0

sm+2τ

(
γ

∫
l

λ−q/2−r[D, a0]Rs(λ) · · ·Rs(λ)1Rs(λ) · · · [D, am+1]Rs(λ)dλ

)
ds

The last line follows from [CPRS2, Lemma 7.7] modified by the fact that while Rs(λ) commutes
with γ, [D, ai] anticommutes with γ. We now employ [CPRS2, Lemma 7.6]:

−k
∫ ∞

0

sk−1 1

2πi
τ

(
γ

∫
l

λ−q/2−rA0Rs(λ)A1Rs(λ) · · ·AmRs(λ)dλ

)
ds

= 2
m∑
j=0

∫ ∞
0

sk+1 1

2πi
τ

(
γ

∫
l

λ−q/2−rA0Rs(λ)A1Rs(λ) · · ·AjRs(λ)1Rs(λ)Aj+1 · · ·AmRs(λ)dλ

)
ds.

Applying this formula to our computation for Bφrm+2 yields

(Bφrm+2)(a0, ..., am+1)

= −1

2
(m+ 1)

ηm+2

2πi

∫ ∞
0

smτ

(
γ

∫
l

λ−q/2−rRs(λ)[D, a0] · · ·Rs(λ)[D, am+1]Rs(λ)dλ

)
ds

= − ηm
2πi

∫ ∞
0

smτ

(
γ

∫
l

λ−q/2−rRs(λ)[D, a0] · · · [D, am+1]Rs(λ)dλ

)
ds.

Here we used (m+ 1)/2× ηm+2 = ηm. Next one expands the first commutator on the right hand
side, [D, a0] = Da0 − a0D, and anticommutes the second D through the remaining [D, aj] using
D[D, aj] + [D, aj]D = [D2, aj]. Recalling that D anticommutes with γ, we find from the proof of
[CPRS2, Proposition 7.10] that

(Bφrm+2)(a0, ..., am+1) =

ηm
2πi

∫ ∞
0

sm
m+1∑
j=1

(−1)j+1τ

(
γ

∫
l

λ−q/2−rRs(λ)a0Rs(λ)[D, a1] · · · [D2, aj] · · · [D, am+1]Rs(λ)dλ

)
ds.

We recall that Bφr0 = 0, by definition. The computation of bφrm is precisely the same as [CPRS2,
Proposition 7.10], and gives

(bφrm)(a0, ..., am+1) =

ηm
2πi

∫ ∞
0

sm
m+1∑
j=1

(−1)jτ

(
γ

∫
l

λ−q/2−rRs(λ)a0Rs(λ)[D, a1] · · · [D2, aj] · · · [D, am+1]Rs(λ)dλ

)
ds.

Hence Bφrm+2 + bφrm = 0 for 0 ≤ m ≤ 2N − 2 (indeed for all m ≥ 0).

For m = 2N , we use Hölder’s inequality (together with [CPRS2, Lemma 6.10] to see that
|[D2, aj]Rs(λ)| ≤ C ′|Rs(λ)|1/2) which yields a constant C independent of s and λ so that:

‖ Rs(λ)a0Rs(λ)[D, a1] · · ·Rs(λ)[D2, aj]Rs(λ) · · ·Rs(λ)[D, a2N+1]Rs(λ) ‖1≤ C ‖ Rs(λ)2N+5/2 ‖1 .

Consequently, we have the estimate (using [CPRS2, Lemma 5.3])

|(bφr2N)(a0, ..., a2N+1)| ≤ C

∫ ∞
0

s2N

∫ ∞
−∞

√
a2 + v2

−q/2−r
‖ Rs(λ)2N+5/2 ‖1 dvds

≤ Cε

∫ ∞
0

s2N

∫ ∞
−∞

√
a2 + v2

−q/2−r√
(1/2 + s2 − a)2 + v2

−2N−5/2+(q+ε)/2
dvds.
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Consulting [CPRS2, Lemma 5.4] we find that this integral is convergent when 2r = 1 − q − δ
provided q+ε−4 < 2N , which is true, and q+ε+δ < 2N+3, which again is true. As for the case
of the remainder term in the proof of [CPRS2, Lemma 7.4] this shows that the above formula
for (bφr2N)(a0, ..., a2N+1) gives a holomorphic function of r in a neighbourhood of (1 − q)/2 as
claimed. �

Observe that together with Equation (4) the above result proves part 1) of Theorem 4.1.

6.1. The Residue Cocycle. In this subsection we complete the proof of Theorem 4.1. First
we need to define the residue cocycle.

Definition 6.3. Let (A,H,D) be a QC∞ finitely summable spectral triple with isolated spectral
dimension q ≥ 1. For m = 2, ..., 2N and a0, ..., am ∈ A define functionals

φm(a0, ..., am)

=
2N−m∑
|k|=0

(−1)|k|α(k)

|k|+m/2∑
j=1

σ(|k|+m/2),jτj−1

(
γa0[D, a1](k1) · · · [D, am](km)(1 +D2)−m/2−|k|

)
,

and for m = 0 define φ0(a0) = τ−1(γa0).

Theorem 6.4. Let (A,H,D) be a QC∞ finitely summable spectral triple with isolated spectral
dimension q ≥ 1. When evaluated on any a0, ..., am ∈ A, the components φrm of the resolvent
cocycle (φr) analytically continue to a deleted neighbourhood of r = (1 − q)/2. Moreover, if we
denote this continuation by Φr

m(a0, ..., am) then

resr=(1−q)/2
1

Cq/2+r(r + (q − 1)/2)
Φr
m(a0, ..., am) = φm(a0, ..., am).

Remark Observe that, as a function of r, [Cq/2+r(r + (q − 1)/2)]−1 has a removable singularity
at r = (1 − q)/2. Thus all the statements concerning the resolvent cocycle also apply to the
resolvent cocycle multiplied by this function.

Proof. For m even, evaluate φrm on a0, ..., am ∈ A and apply the pseudodifferential expansion.
This yields (modulo functions holomorphic for Re(r) > (1− q)/2− δ)

φrm(a0, ..., am) =

2N−m∑
|k|=0

C(k)
ηm
2πi

∫ ∞
0

smτ

(
γ

∫
l

λ−q/2−ra0[D, a1](k1) · · · [D, am](km)Rs(λ)m+|k|+1dλ

)
ds.

Proceeding according to our previous computations we have

φrm(a0, ..., am)

=
2N−m∑
|k|=0

(−1)m+|k|C(k)Γ(q/2 + r +m+ |k|)
Γ(q/2 + r)(m+ |k|)!

2m+1 (m/2)!

m!
×

×
∫ ∞

0

smτ
(
γa0[D, a1](k1) · · · [D, am](km)(1 + s2 +D2)−(m+|k|+q/2+r)

)
ds Cauchy
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=
2N−m∑
|k|=0

(−1)|k|C(k)2mΓ((m+ 1)/2)Γ(q/2 + r +m/2− 1/2 + |k|)
Γ(q/2 + r)(m+ |k|)!

(m/2)!

m!
×

× τ
(
γa0[D, a1](k1) · · · [D, am](km)(1 +D2)−(m/2−1/2+|k|+q/2+r)

)
s− integral

=
2N−m∑
|k|=0

(−1)|k|C(k)
√
πΓ(q/2 + r +m/2− 1/2 + |k|)

Γ(q/2 + r)(m+ |k|)!
×

× τ
(
γa0[D, a1](k1) · · · [D, am](km)(1 +D2)−(m/2−1/2+|k|+q/2+r)

)
m− factorials

=
2N−m∑
|k|=0

(−1)|k|Cq/2+rα(k)
h∑
j=0

σh,j(r + (q − 1)/2)j ×

× τ
(
γa0[D, a1](k1) · · · [D, am](km)(1 +D2)−(m/2−1/2+|k|+q/2+r)

)
Γ function and constants,

where h = |k|+m/2. The result is now clear. �

Corollary 6.5. Let (A,H,D) be a QC∞ finitely summable spectral triple with isolated spectral
dimension q ≥ 1. The cochain (φ) with components φm, m = 0, 2, ..., 2N , is a (b, B)-cocycle. For
any projection p ∈ A we have

Ind(pD+p) =
2N∑

m=0,even

φm(Chm(p)).

Proof. The first statement follows because
(
(Cq/2+r(r + (q − 1)/2))−1φr

)
is a (b, B)-cocycle mod-

ulo functions holomorphic at r = (1− q)/2 and hence so is its analytic continuation,(
(Cq/2+r(r + (q − 1)/2))−1Φr

)
. For the second statement we recall that

Ch0(p) = p, Chm(p) = (−1)m/2
m!

2(m/2)!
(2p− 1)⊗ p⊗m.

Thus
∑2N

m=0 φm(Chm(p)) is given precisely by the formula on the right hand side of Equation
(5.6), the left hand side of which is Ind(pD+p). This completes the proof. �

We have now completed the proof of Theorem 4.1. We present the easy proof of Corollary 4.2.

Corollary 6.6. For 1 ≤ q < 2, we do not need to assume isolated spectral dimension to compute
the index pairing.

Proof. For 1 ≤ q < 2 we have N = 1, but as we observed after Equation (5.6), the term with
m = 2N is holomorphic at r = (1 − q)/2 when [q] is an odd integer. Hence we have only the
m = 0 term. So,

Ind(pD+p) = τ(γp(1 +D2)−(q−1)/2−r) +
holo

Cq/2+r

.

By the Remark in Theorem 6.4:

1

r + (q − 1)/2
Ind(pD+p) =

1

r + (q − 1)/2
τ(γp(1 +D2)−(q−1)/2−r) + holo.
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Taking residues we have

Ind(pD+p) = resr=(1−q)/2τ(γp(1 +D2)−(q−1)/2−r),

and the residue on the right necessarily exists, and is equal to τ−1(γp). Hence the individual terms
in the expansion of the index analytically continue to a punctured neighbourhood of r = (1−q)/2
with no need to invoke the isolated spectral dimension hypothesis. The single term φ0 forms a
(b, B) cocycle for A since Bφ0 = 0 and bφr0 is holomorphic at r = (1− q)/2. �
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