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Abstract. This paper examines the issue of summability for spectral triples for the class of nonunital
algebras introduced in [23]. For the case of (p,∞)-summability, we prove that the Dixmier trace can
be used to define a (semifinite) trace on the algebra of the spectral triple. We show this trace is
well-behaved, and provide a criteria for measurability of an operator in terms of zeta functions. We
also show that all our hypotheses are satisfied by spectral triples arising from geodesically complete
Riemannian manifolds. In addition, we indicate how the Local Index Theorem of Connes-Moscovici
extends to our nonunital setting.
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1. Introduction

This paper examines the formulation of summability hypotheses for spectral triples
over nonunital algebras. Similar ideas have been discussed in [14] and [10]. We fo-
cus for the most part on the technical aspects of the (p,∞)-summability hypothesis.

In Section 2 we summarise the definitions and results of [23] relevant for this
paper. Section 3 reviews the Dixmier trace and its relation to the Wodzicki residue
[26], for manifolds in the unital case.

Section 4 extends all these ideas to the nonunital setting, for our local algebras.
In particular, we define (p,∞)-summability for local spectral triples, and derive
the nonunital analogues of the main results in the unital case. These include criteria
for measurability in terms of zeta functions, Theorem 12. Section 5 shows that
the definition is satisfied for spectral triples arising from (geodesically complete)
noncompact manifolds.

In Section 6 we show that our definition also allows an analogue of the theory of
distributions for local spectral triples. Various such distributions are defined using
the Dixmier trace, the usual trace on Hilbert space, and Connes’ pseudodifferential
operators [6]. Finally, we look briefly at the Local Index Theorem. The Local Index
Theorem [7], remains true for local spectral triples with discrete and finite dimen-
sion spectrum, see [7], provided we regard the components of the Chern character
as continuous multilinear functionals on elements with ‘compact support’, giving
the result a more distributional flavour.
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We do not prove the Local Index Theorem here, referring the reader to [7] and
the references therein. Instead we show that interpreted in the above distributional
manner, the proof holds with trivial modifications. We present an example in [24]
where the index pairing can be computed using the Local Index Theorem for a
noncompact space.

Quite recently a new family of examples of nonunital spectral triples was presen-
ted in [10]. These were constructed from the Moyal product on smooth rapidly
decreasing functions on R2N . The main feature of these examples which is relevant
to this work is that the algebra S(R2N) with the Moyal product does not seem
to have a dense ideal with local units. It is however ‘quasilocal’, in that it has a
dense subalgebra with local units. Upon reflection, most of the results presented
here and in [23] continue to hold for quasilocal algebras. Some results relating to
the holomorphic and C∞ functional calculus in [23] require modification, as does
some of the results relating to distributions in this paper. We will return to this
subject in a future work.

2. Summary

In this section we will summarise the important definitions and results concerning
the smooth algebras we employ and spectral triples over them. The appropriate al-
gebras in the nonunital case are smooth local algebras, as described in the following
three definitions.

DEFINITION 1. A ∗-algebra A is smooth if it is Fréchet and ∗-isomorphic to a
proper dense subalgebra i(A) of a separable C∗-algebra A which is stable under
the holomorphic functional calculus.

We will always suppose that we can define the Fréchet topology of A using a
countable collection of submultiplicative seminorms which includes the C∗-norm
of A=A, and note that the multiplication is jointly continuous [20, p 24]. By repla-
cing any seminorm q by (1/2)(q(a) + q(a∗)), we may suppose that q(a)= q(a∗)
for all a ∈A. Thus saying that A is smooth means that A is Fréchet and a pre-C∗-
algebra. Asking for i(A) to be a proper dense subalgebra of A immediately forces
the Fréchet topology of A to be finer than the C∗-topology of A (since Fréchet
means locally convex, metrizable and complete). So convergence in the topology
of A implies convergence in norm.

DEFINITION 2. An algebra A has local units if for every finite subset of elements
{ai}ni=1 ⊂A, there exists φ ∈A such that for each i

φai = aiφ = ai.

DEFINITION 3. Let A be a Fréchet algebra and Ac ⊂ A be a dense ideal with
local units. Then we call A a local algebra (when Ac is understood).
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So a smooth local algebra has a dense ideal whose elements behave like functions
with compact support. The basic properties of these local algebras are summarised
in the following lemmas.

LEMMA 1. If Ac ⊂A is a local algebra, then ∃{φn}n� 1 ⊂ Ac such that

(1) {φn}n� 1 is an approximate unit for A, with φna → a in the Fréchet topology
of A.

(2) ∀a ∈ Ac ∃i such that ∀n� i φna = aφn = a.
(3) For all i < n, φnφi = φiφn = φi .
(4) For all n, φn = φ∗

n , 0 � φn � 1.
(5) Ac = ⋃

n An, where An = {a ∈ A: φna = aφn = a}.
We call such an approximate unit a local approximate unit.

COROLLARY 2. Suppose that Ac ⊆ A is a local algebra, {φn} is a local approx-
imate unit and

An = {a ∈ A: φna = aφn = a}.
Then each An is a Fréchet algebra in the topology induced by A, and the algebra
Ac =∪nAn is complete in the inductive limit topology defined by the inclusion
maps An ↪→ A.

See [23] for more information on all these results.

DEFINITION 4. A spectral triple (A,H,D) is given by

(1) A representation π : A → B(H) of a local ∗-algebra A on the Hilbert space
H.

(2) A self-adjoint (unbounded, densely defined) operator D: domD → H such
that [D, π(a)] extends to a bounded operator on H for all a ∈A and π(a)(1 +
D2)−1/2 is compact for all a ∈ A.

The triple is said to be even if there is an operator � =�∗ such that �2 = 1,
[�, π(a)] = 0 for all a ∈A and �D+D� = 0 (i.e. � is a Z2-grading such that D is
odd and π(A) is even). Otherwise the triple is called odd.

Remark. We will systematically omit the representation π in future.

DEFINITION 5. If (A,H,D) is a spectral triple, then we define �∗
D(A) to be the

algebra generated by A and [D,A].

DEFINITION 6. A spectral triple (A,H,D) is smooth (or regular) if

A and [D,A] ⊆
⋂
m� 0

dom δm

where for x ∈ B(H), δ(x) = [|D|, x].
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The point of contact between smooth algebras and smooth spectral triples is the
following Lemma, proved in [23].

LEMMA 3. If (A,H,D) is a smooth spectral triple, then (Aδ,H,D) is also a
smooth spectral triple, where Aδ is the completion of A in the locally convex
topology determined by the seminorms

qni(a) = ‖δn di (a)‖, n� 0, i = 0, 1,

where d(a) = [D, a]. Moreover, Aδ is a smooth algebra.

We call the topology on A determined by the seminorms qni of Lemma 3 the δ-
topology.

DEFINITION 7. A local spectral triple (A,H,D) is a spectral triple such that
there exists a local approximate unit {φn} ⊂ Ac for A satisfying

�∗
D(Ac) =

⋃
n

�∗
D(A)n, �∗

D(A)n = {ω ∈ �∗
D(A): φnω = ωφn = ω}.

Remark. For a local spectral triple (A,H,D), �∗
D(Ac) is a dense ideal with

local units inside �∗
D(A), and so �∗

D(A) is a local algebra. In [23] the definition of
a local spectral triple was taken to be a spectral triple such that �∗

D(Ac) is a dense
ideal with local units inside �∗

D(A), and the existence of a local approximate unit
{φn} ⊂ Ac for �∗

D(Ac) was assumed to be true. This need not be the case, but the
results in [23] using this earlier definition are true for the definition presented here.

Remark. A local spectral triple has a local approximate unit {φn}n� 1 ⊂ Ac

such that φn+1φn =φnφn+1 =φn and φn+1[D, φn] = [D, φn]φn+1 = [D, φn]. This is
the crucial property we require to prove most of our results.

3. Summability for Unital Spectral Triples

This section describes some technical results which are known for the unital case,
that will guide us in the nonunital case.

We begin by defining the noncommutative integral given by the Dixmier trace,
and relating it to the Wodzicki residue [26]. For more detailed information on these
results, see [5, IV.2.β], [13, Chapter 7] and [26]. To define the Dixmier trace and
relate it to Lebesgue measure, we require the definitions of several normed ideals
of compact operators on Hilbert space. The first of these is

L(1,∞)(H) =
{
T ∈ K(H):

N∑
n=0

µn(T ) = O(log N)

}
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with norm

‖T ‖1,∞ = sup
N � 2

1

log N

N∑
n=0

µn(T ).

In the above the µn(T ) are the eigenvalues of |T | =√
T ∗T arranged in decreasing

order and repeated according to multiplicity so that µ0(T ) � µ1(T ) � . . .. This
ideal will be the domain of definition of the Dixmier trace. Related to this ideal are
the ideals L(p,∞)(H) for 1 < p < ∞ defined as follows

L(p,∞)(H) =
{
T ∈ K(H):

N∑
n=0

µn(T ) = O(N1−1/p)

}

with norm

‖T ‖p,∞ = sup
N � 1

1

N1−1/p

N∑
n=0

µn(T ).

We introduce these ideals because if Ti ∈L(pi,∞)(H) for i = 1, . . . , n and∑
(1/pi)= 1, then [5, p. 304], the product T1, . . . , Tn ∈ L(1,∞)(H). In particular,

if the operator T ∈L(p,∞)(H) then T p ∈L(1,∞)(H).
We want to define the Dixmier trace so that it returns the coefficient of the log-

arithmically divergent part of the trace of an operator. Unfortunately, since the se-
quence (1/ log N)

∑N
µn(T ) is in general only bounded, we can not take the limit

in a well-defined way. The Dixmier trace is defined in terms of linear functionals
ω ∈ (L∞(N))∗ on bounded sequences satisfying certain additional properties [5,
IV.2.β]. One of these properties is that if the above sequence is convergent, the
linear functional returns the limit. For any such functional ω, which we call an
ω-limit, one defines a functional on the positive elements of L(1,∞)(H) by

Trω(T ) = ω

(
σN(T )

log N

)
= ω − lim

σN(T )

log N
, T � 0,

where σN(T )=∑N
µn(T ). For T ∈L(1,∞)(H) with T � 0, we say that T is meas-

urable if Trω(T ) is independent of the choice of ω-limit. We then write

−
∫

T := Trω(T )

for any ω.
It has been shown [5, Proposition 4, p. 306], that for positive T ∈L(1,∞)(H),

measurability is equivalent to the following. Denote by ζT (s) the trace of T s for
s > 1. Then

PROPOSITION 4. With T as above, T is measurable if and only if the limit

lim
s→1+(s − 1)ζT (s) = L < ∞, (1)

exists, and in this case, L = −∫ T .
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In the next section we obtain a nonunital analogue of Proposition 4 based on results
of [2]. It is our strongest means of showing the measurability of operators. One
can also show [5, IV.2.β], that for positive operators Trω is additive and posit-
ively homogenous, so we extend Trω by linearity to all of L(1,∞)(H). The space
of measurable operators is a closed (in the (1,∞) norm) linear space invariant
under conjugation by invertible bounded operators and contains L(1,∞)

0 (H), the
closure of the finite rank operators in the (1,∞) norm.

The following properties are satisfied by all Dixmier traces Trω [5, Proposition
3, p. 306]:

(1) If T � 0 then Trω(T )� 0;
(2) For all S ∈ B(H) and T ∈ L(1,∞)(H), we have Trω(TS) = Trω(ST);
(3) Trω vanishes on L(1,∞)

0 (H).

In the unital case the definition of (p,∞)-summability for spectral triples is as
follows.

DEFINITION 8. A spectral triple (A,H,D) with A unital is (p,∞)-summable,
if p � 1, and (1 + D2)−1/2 ∈ L(p,∞)(H).

Remark. The alternative definition (D − λ)−1 ∈ L(p,∞)(H), for some (and
hence all) λ in the resolvent set of D, is equivalent to the above definition for
p � 1. To see this observe that by definition (D − λ)−1 ∈ L(p,∞)(H) if and only if√

(D − λ̄)−1(D − λ)−1 = (D2 + |λ|2)−1/2 ∈ L(p,∞)(H).

Finally, one can use the resolvent formula to show that replacing |λ|2 by 1 is
inessential.

Using the properties of Trω listed above, we obtain standard results like

• (1 + D2)−p/2 ∈ L(1,∞)(H), and
• if ai → a ∈A then |Trω(ai−a)(1+D2)−p/2|� ‖ai−a‖ ‖(1+D2)−p/2‖(1,∞) →

0 for any Dixmier trace Trω.

In general we can not deduce measurability without further information. Examples
arising from geometric operators give rise to such additional information. We now
discuss the relevant features of these examples.

Let P be a classical pseudodifferential operator acting on sections of a vector
bundle E →M over a compact Riemannian manifold (M, g) of dimension p. The
operator P has a symbol σ (P ): T ∗M → End(E). If P is of order −p, the Wodzicki
residue of P is defined by

WRes(P ) = 1

p(2π)p

∫
S∗M

TraceEσ−p(P )(x, ξ)
√

g dx dξ. (2)

In the above S∗M is the cosphere bundle with respect to the metric g, and σ−p(P )

is the part of the symbol of P homogenous of order −p in the ξ variable. Although
symbols other than principal symbols are coordinate dependent, the Wodzicki
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residue depends only on the conformal class of the metric [6]. We have the fol-
lowing result from Connes [5, 6].

THEOREM 5 (Connes’ Trace Theorem). Let T be a pseudodifferential operator of
order −p acting on sections of a smooth bundle E →M on a p dimensional com-
pact Riemannian manifold M. Then as an operator on the Hilbert space
H=L2(M,E), T ∈L(1,∞)(H), T is measurable and −∫ T = WRes(T ).

It can also be shown that the Wodzicki residue is the unique trace on pseudodif-
ferential operators extending the Dixmier trace [5, 26]. Hence we can define −∫ T

for any pseudodifferential operator on a manifold by setting −∫ T = WRes(T ), and
using Equation (2) to define the Wodzicki residue whatever order the operator is.
In particular, if T is of order strictly less than −p =− dim M, then −∫ T = 0.

EXAMPLE. The principal example where this theory applies is the following.
Suppose that D is the Dirac operator on (complex) spinors on a compact n-
dimensional Riemannian spin manifold X with metric g [21], and that f is a
function on X. The complex spinor bundle SC has rank 2[n/2], and we denote by
IdSC the identity operator on SC and Tr the trace on endomorphisms on SC. Then,
using Theorem 5, and the Wodzicki residue, we have

−
∫

f (1 + D2)−n/2 = 1

n(2π)n

∫
X

f
√

g dnx

∫
Sn−1

Tr(I dSC) dn−1ξ

= Vol(Sn−1)2[n/2]

n(2π)n

∫
X

f (x)
√

g dnx.

This is by no means immediate, and we refer to [5, Chapters IV and VI] where this
is discussed at length. The statement that (1 + D2)−n/2 ∈L(1,∞)(L2(X, SC)) and is
measurable is essentially Weyl’s Theorem, a proof of which can be found in [12,
Lemma 1.12.6].

4. Summability for Nonunital Spectral Triples

We now tackle the nonunital case. We begin by dispensing with the Wodzicki
residue, so that the appropriate geometric notion of summability is made clear.
We will then deal with (p,∞)-summability and the trace on a smooth summable
spectral triple.

In [9], it was shown that one can analyse the Wodzicki residue of operators on
complete noncompact manifolds using the spectral density function. This led to the
identification of the Wodzicki residue in the noncompact case as precisely the same
thing as in the compact case! That is, if T is an elliptic operator of order −p on a
p-dimensional Riemannian manifold X with metric g, then for all f ∈C∞

c (X) we
have

WRes(f T ) = 1

p(2π)p

∫
S∗X

σ−p(f T )(x, ξ)
√

g dx dξ.
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Also, Connes’ Trace Theorem, Theorem 5, remains true in this generality, as we
will show in the next section, supporting results of [13, p. 297].

DEFINITION 9. A local spectral triple is (p,∞)-summable if p � 1 and

a(D − λ)−1 ∈ L(p,∞)(H) ∀a ∈ Ac.

We call it θ-summable if

Trace(ae−t (1+D2)) < ∞
for all a ∈ Ac and t > 0.

Remark. If A is unital, kerD is finite dimensional. This case is well described
in the literature. Note that the summability requirements are only for a ∈Ac. We do
not assume that elements of the algebra A are all integrable in the nonunital case.
Strictly speaking, this definition describes local (p,∞)-summability, and this is
important. However, we have already overused the word local, and as we will only
work with local spectral triples, we will employ the terminology (p,∞)-summable
to be consistent with the unital case.

Our immediate task is to demonstrate that this definition of summability is well-
behaved, in particular that

a(1 + D2)−s/2 ∈ L(p/s,∞)(H), 1 �Re(s)�p, (3)

and that for Re(s) > p the resulting operator is trace class.
We need a series of technical results. In the following, when we observe that an

operator is an element of L(p/k,∞)(H), and p/k < 1, then we mean that it is trace
class. We also frequently use the resolvent formula

[a, (D − λ)−1] = (D − λ)−1[D, a](D − λ)−1, (4)

for the case that [D, a] is bounded and λ is in the resolvent set of D.

LEMMA 6. Let (A,H,D) be a local (p,∞)-summable spectral triple. For all
a ∈ Ac, we have a(1 + D2)−1 ∈ L(p/2,∞)(H), and for all φ ∈ Ac with φ � 0,
(φ(1 + D2)−1φ)1/2 ∈ L(p,∞)(H).

Proof. Let φ be a local unit for a ∈ Ac. Then

a(D − λ)−1 = aφ(D − λ)−1

= a(D − λ)−1φ + a[φ, (D − λ)−1]

= a(D − λ)−1φ + a(D − λ)−1[D, φ](D − λ)−1

= a(D − λ)−1φ + a(D − λ)−1[D, φ]ψ(D − λ)−1,

where [D, φ] has local unit ψ . As the second term is in L(p/2,∞)(H), we find

a(D − λ)−1 = aφ(D − λ)−1φ modL(p/2,∞)(H).
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Our first statement can now be proved. We have

a(1 + D2)−1 = a(D − i)−1(D + i)−1

= a
(
(D − i)−1φ + (D − i)−1[D, φ](D − i)−1

)
(D + i)−1

= a(D − i)−1φ(D + i)−1 + a(D − i)−1[D, φ](D − i)−1 ×
× [D, ψ](D − i)−1(D + i)−1 +
+ a(D − i)−1[D, φ](D − i)−1ψ(D + i)−1.

The term a(D − i)−1φ(D + i)−1 is in L(p/2,∞)(H), and as [D, ψ] has a local
unit, and (D + i)−1 is bounded, the second term is in L(p/3,∞)(H). Finally, a(D −
i)−1[D, φ](D − i)−1ψ(D + i)−1 is in L(p/3,∞)(H), since [D, φ] has local unit ψ .
Thus the first statement is proved. Taking one more commutator in the first term
now gives

a(1 + D2)−1 = aφ(1 + D2)−1φ + a(D − i)−1[φ, (D + i)−1] modL(p/3,∞)(H).

Now

a(D − i)−1[φ, (D + i)−1] = a(D2 + 1)−1[D, φ](D + i)−1

= a(D2 + 1)−1ψ[D, φ]ψ(D + i)−1,

and this is in L(p/3,∞)(H). So

a(1 + D2)−1 = aφ(1 + D2)−1φ modL(p/3,∞)(H). (5)

The final statement follows as (D − i)−1φ ∈ L(p,∞)(H) if and only if
√

φ(D + i)−1(D − i)−1φ =
√

φ(1 + D2)−1φ ∈ L(p,∞)(H). �

COROLLARY 7. Let (A,H,D) be a local (p,∞)-summable spectral triple. If φ
is a local unit for a ∈ Ac then

a(1 + D2)−1(1 − φ) ∈ L(p/3,∞)(H). (6)

Indeed, there exists a local unit φ for a ∈ Ac such that

a(1 + D2)−1(1 − φ) ∈ L1(H). (7)

Proof. For the first statement one just notes that

a(1 + D2)−1 = aφ(1 + D2)−1φ + aφ(1 + D2)−1(1 − φ),

and applies Equation (5) of the previous lemma. To show that we can get equality
modulo trace class operators, let {φn}n� 1 be a local unit with φn+1φn =φn and
[D, φn]φn+1=[D, φn] for all n. It follows, by the Leibniz rule, that φn[D, φn+1]= 0.
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A similar computation works for [D, φn+1]φn. We employ this by noting that if
φna = aφn = a, then for k � 0

a(D − λ)−1 = aφn+k(D − λ)−1

= a(D − λ)−1φn+k + a[φn+k, (D − λ)−1]

= a(D − λ)−1φn+k + a(D − λ)−1[D, φn+k](D − λ)−1.

However, we can go one better, and notice that for k � 1, we can use the properties
of the local approximate unit to show that the second term is ‘very’ summable

aφn+k−1(D − λ)−1[D, φn+k](D − λ)−1

= a(D − λ)−1φn+k−1[D, φn+k](D − λ)−1 +
+ a[φn+k−1, (D − λ)−1][D, φn+k](D − λ)−1

= a(D − λ)−1[D, φn+k−1](D − λ)−1[D, φn+k](D − λ)−1,

the last line following from φn+k−1[D, φn+k] = 0 and Equation (4). Thus by choos-
ing k sufficiently large (in fact k �p − 1) and continuing in this fashion, we
obtain

a(D − λ)−1 = aφn+k(D − λ)−1φn+k + trace class. �
Before we can show that a(1 + D2)−s/2 ∈ L(p/s,∞)(H) for all a ∈ Ac, 1 � s �p,
we require two more technical results. The first will be used several times.

LEMMA 8. Let (A,H,D) be a smooth, local (p,∞)-summable spectral triple
with p � 1. Let a ∈ B(H) have local unit ψ ∈ Ac and let φ ∈ Ac be a local unit
for ψ, [D, ψ]. Then writing Tφ = (1 + D2)φ(1 + D2)−1φ we have

‖a(1 + D2 + λ)−1(1 − Tφ)‖(p/2,∞) �C(1 + λ)−1

and

‖(1 + D2)ψ(1 + D2 + λ)−1(1 − Tφ)‖�C ′(1 + λ)−1

for some positive constants C,C ′.
Proof. First note that as (A,H,D) is smooth,

[D2, φ](1 + D2)−1/2

= |D|[|D|, φ](1 + D2)−1/2 + [|D|, φ]|D|(1 + D2)−1/2

= [|D|, [|D|, φ]](1 + D2)−1/2 + 2[|D|, φ]|D|(1 + D2)−1/2

is bounded, so Tφ is bounded. We begin with the following computation

a(1 + D2 + λ)−1(1 − Tφ)

= aψ(1 + D2 + λ)−1(1 − Tφ)

= a(1 + D2 + λ)−1[D2, ψ](1 + D2 + λ)−1(1 − Tφ) +
+ a(1 + D2 + λ)−1ψ(1 − Tφ)
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= a(1 + D2 + λ)−2[D2, [D2, ψ]](1 + D2 + λ)−1(1 − Tφ) +
+ a(1 + D2 + λ)−2[D2, ψ](1 − Tφ) +
+ a(1 + D2 + λ)−1ψ(1 − Tφ). (8)

In order to obtain estimates on the (p/2,∞) norm, we require several observations.
The first is that if φ is a local unit for ψ, [D, ψ], then

ψ(1 − Tφ) = ψ(1 − φ2 − [D2, φ](1 + D2)−1φ) = −ψ[D2, φ](1 + D2)−1φ.

Now observe that [D, ψ]φ = [D, ψ] implies ψ[D, φ] = 0, by the Leibniz rule. So
for such a ψ

ψ[D2, φ] = ψD[D, φ] + ψ[D, φ]D
= −[D, ψ][D, φ] + Dψ[D, φ]

= −[D, ψ][D, φ],

and this is bounded. Thus

ψ(1 − Tφ) = −ψ[D2, φ](1 + D2)−1φ = [D, ψ][D, φ](1 + D2)−1φ ∈ L(p/2,∞)(H).

(9)

An entirely analogous calculation using [D, ψ]φ = [D, ψ] and [D2, ψ] =
D[D, ψ] + [D, ψ]D shows that

[D2, ψ](1 − Tφ) = −[D, ψ][D, φ2] − [D2, ψ][D2, φ](1 + D2)−1φ. (10)

Both terms on the right hand side of Equation (10) are bounded. For the second
term this follows from the equality (writing δ(·) = [|D|, ·] as usual)

[D2, ψ][D2, φ] = δ2(ψ)δ2(φ) + 2δ(ψ)δ3(φ) + (δ(ψ)δ2(φ) +
+ 2δ2(ψ)δ(φ))|D| + 4δ(ψ)δ(φ)D2,

and the boundedness of the operators |D|(1 +D2)−1, D2(1 +D2)−1 which follows
from the functional calculus. Finally, to estimate the first term on the right hand
side of Equation (8), we need to know that

[D2, [D2, ψ]] = δ4(ψ) + 4δ3(ψ)|D| + 4δ2(ψ)D2,

so that

[D2, [D2, ψ]](1 + D2 + λ)−1 = [D2, [D2, ψ]](1 + D2)−1(1 + D2)(1 + D2 + λ)−1

(11)
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is bounded uniformly in λ (since ‖(1 + D2)(1 + D2 + λ)−1‖� 1 by the functional
calculus). Putting together Equations (9)–(11), along with Equation (8) gives

‖a(1 + D2 + λ)−1(1 − Tφ)‖(p/2,∞)

� ‖a(1 + D2 + λ)−2[D2, [D2, ψ]](1 + D2 + λ)−1(1 − Tφ)‖(p/2,∞)+
+ ‖a(1 + D2 + λ)−2[D2, ψ](1 − Tφ)‖(p/2,∞) +
+ ‖a(1 + D2 + λ)−1ψ(1 − Tφ)‖(p/2,∞)

� ‖(1 + D2 + λ)−1‖((C1 + C2)‖a(1 + D2 + λ)−1‖(p/2,∞) +
+ C3‖ψ(1 − Tφ)‖(p/2,∞))

� (1 + λ)−1((C1 + C2)‖a(1 + D2)−1‖(p/2,∞)‖(1 + D2) ×
× (1 + D2 + λ)−1‖ + C ′

3)

�C(1 + λ)−1.

Here we have again used the estimate ‖(1 +D2)(1 +D2 +λ)−1‖� 1 as well as the
estimate ‖(1 + D2 + λ)−1‖� (1 + λ)−1. This proves the first statement. To obtain
the operator norm estimate, we begin with Equation (8) and find

‖(1 + D2)ψ(1 + D2 + λ)−1(1 − Tφ)‖
� ‖(1 + D2)(1 + D2 + λ)−2[D2, [D2, ψ]](1 + D2 + λ)−1(1 − Tφ)‖ +

+ ‖(1 + D2)(1 + D2 + λ)−2[D2, ψ](1 − Tφ)‖ +
+ ‖(1 + D2)(1 + D2 + λ)−1ψ(1 − Tφ)‖

� ‖(1 + D2 + λ)−1‖((C1 + C2)‖(1 + D2)(1 + D2 + λ)−1‖ +
+ C3‖(1 + D2)ψ(1 − Tφ)‖)

�C(1 + λ)−1.

Here we used the boundedness of (1+D2)ψ(1−Tφ) = (1+D2)[D, ψ][D, φ](1+
D2)−1φ which follows easily from the smoothness assumption. �
LEMMA 9. Let (A,H,D) be a smooth, local (p,∞)-summable spectral triple
with p � 1. Let a ∈ B(H) be such that ψa = aψ = a for some ψ ∈ Ac. If φ ∈ Ac

is a local unit for ψ and [D, ψ], then for 0 < s < 1, we have

a(1 + D2)−s − a(φ(1 + D2)−1φ)s ∈ L(p/2,∞)(H).

Moreover, for some positive constant C

‖a(1 + D2)−s − a(φ(1 + D2)−1φ)s‖(p/2,∞) �C

independent of s ∈ (0, 1).
Proof. To simplify the notation, set

ηφ = φ(1 + D2)−1φ and Tφ = (1 + D2)φ(1 + D2)−1φ.



SUMMABILITY FOR NONUNITAL SPECTRAL TRIPLES 83

For 0 < Re(s) < 1 and B � 0 a bounded positive operator on H, the functional
calculus gives

Bs = sin(sπ)

π

∫ ∞

0
λ−sB(1 + λB)−1 dλ,

where the integral converges in the operator norm. For B = (1 + D2)−1 we get

B(1 + λB)−1 = (1 + D2 + λ)−1,

while for B = φ(1 + D2)−1φ we find

B(1 + λB)−1

= φ(1 + D2)−1φ(1 + λφ(1 + D2)−1φ)−1

= φ(1 + D2)−1φ(1 + λφ(1 + D2)−1φ(1 + D2)(1 + D2)−1)−1

= φ(1 + D2)−1φ((1 + D2 + λφ(1 + D2)−1φ(1 + D2))(1 + D2)−1)−1

= φ(1 + D2)−1φ(1 + D2)((1 + D2) + λφ(1 + D2)−1φ(1 + D2))−1

= T ∗
φ (1 + D2 + λT ∗

φ )−1

= (1 + D2 + λTφ)
−1Tφ,

the last line following since B(1 + λB)−1 is self-adjoint. Now by adding and
subtracting (1 + D2 + λ)−1Tφ, we find

(1 + D2 + λ)−1 − (1 + D2 + λTφ)
−1Tφ

= (1 + D2 + λ)−1 − (1 + D2 + λ)−1Tφ + (1 + D2 + λ)−1Tφ −
− (1 + D2 + λTφ)

−1Tφ

= (1 + D2 + λ)−1(1 − Tφ) + λ(1 + D2 + λ)−1(Tφ − 1) ×
× (1 + D2 + λTφ)

−1Tφ

= (1 + D2 + λ)−1(1 − Tφ)(1 − λ(1 + D2 + λTφ)
−1Tφ)

= (1 + D2 + λ)−1(1 − Tφ)(1 − (1 + ληφ)
−1ληφ)

= (1 + D2 + λ)−1(1 − Tφ)(1 + ληφ)
−1.

Thus the difference (1 + D2)−s − (φ(1 + D2)−1φ)s is given by

sin(sπ)

π

∫ ∞

0
λ−s(1 + D2 + λ)−1(1 − Tφ)(1 + ληφ)

−1 dλ. (12)

Now the functional calculus shows us that ‖(1 + ληφ)
−1‖� 1, so Lemma 8 gives

us, for some positive constant C,

‖a(1 + D2)−s − a(φ(1 + D2)−1φ)s‖(p/2,∞)

� sin(sπ)

π

∫ ∞

0
λ−s‖a(1 + D2 + λ)−1(1 − Tφ)(1 + ληφ)

−1‖(p/2,∞) dλ

� C
sin(sπ)

π

∫ ∞

0
λ−s(1 + λ)−1 dλ,
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and this is finite since s > 0. As [8],∫ ∞

0
λ−s 1

1 + λ
dλ = π

sin(sπ)
, (13)

we have

‖a(1 + D2)−s − a(φ(1 + D2)−1φ)s‖(p/2,∞) �C. �
PROPOSITION 10. Let (A,H,D) be a smooth, local (p,∞)-summable spectral
triple. Let a ∈B(H) satisfy aφ =φa = a for some φ ∈Ac. For all s with
1 � Re(s)�p,

a(1 + D2)−s/2 ∈ L(p/s,∞)(H).

For Re(s) > p, a(1 + D2)−s/2 is trace class.
Proof. For purely imaginary s, (1 + D2)−s is bounded, so we suppose that s is

real. If s/2 is integral, choose φ1 so that a(1 + D2)−1(1 − φ1) is trace class, φ2 so
that φ1(1 +D2)−1(1 −φ2) is trace class, and so on up to φs/2. Then by Corollary 7,

a(1 + D2)−s/2 = a(φ1(1 + D2)−1φ1)(φ2(1 + D2)−1φ2)

· · · (φs/2(1 + D2)−1φs/2) modL1(H)

and so is in L(p/s,∞)(H). Now suppose that s is not an even integer and let b be the
greatest even integer less than or equal to s. Then

a(1 + D2)−s/2 = a(1 + D2)−b/2(1 + D2)−(s−b)/2

= Kφb/2(1 + D2)−(s−b)/2,

where K is in L(p/b,∞)(H). Now for s not an even integer, 0 < (s − b)/2 < 1, so
we may apply the results of the last Lemma. So, for suitable ψ ∈ Ac,

φb/2(1 + D2)−(s−b)/2 = φb/2(ψ(1 + D2)−1ψ)(s−b)/2 modL(p/2,∞)(H),

and (ψ(1 + D2)−1ψ)(s−b)/2 ∈L(p/(s−b),∞)(H). As s − b < 2, L(p/2,∞)(H) ⊆
L(p/(s−b),∞)(H), and we see that φb/2(1 + D2)−(s−b)/2 ∈ L(p/(s−b),∞)(H), since
the error terms are also in L(p/(s−b),∞)(H). So modulo trace class errors

a(1 + D2)−s/2 = Kφb/2(1 + D2)−(s−b)/2 ∈ L(p/s,∞)(H).

A similar argument shows that for s > p the operator a(1 + D2)−s/2 is trace
class. �
COROLLARY 11. Let (A,H,D) be a smooth, local (p,∞)-summable spectral
triple. Then for any Dixmier trace Trω, the function

a −→ Trω(a(1 + D2)−p/2)

defines a trace on Ac ⊂ A.
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Proof. Let a, b ∈ Ac, and let φ be a local unit for b. Then the trace property of
the Dixmier trace gives us

Trω(ab(1 + D2)−p/2) = Trω(b(1 + D2)−p/2a)

= Trω(b[(1 + D2)−p/2, a]) + Trω(ba(1 + D2)−p/2)

= Trω(b[(1 + D2)−p/2, a]φ) + Trω(ba(1 + D2)−p/2).

Now, by the standard resolvent formulae and the Leibniz rule, we have

[(1 + D2)−p/2, a] = −(1 + D2)−p/2[(1 + D2)p/2, a](1 + D2)−p/2

= −(1 + D2)−p/2
p−1∑
j=0

(1 + D2)j/2[(1 + D2)1/2, a] ×

× (1 + D2)(p−j−1)/2(1 + D2)−p/2

= −
p−1∑
j=0

(1 + D2)−(p−j)/2[(1 + D2)1/2, a](1 + D2)−(j+1)/2.

By Proposition 10 and the boundedness of [(1 + D2)1/2, a], we have for 0 � j

�p − 1

b(1 + D2)−(p−j)/2[(1 + D2)1/2, a](1 + D2)−(j+1)/2φ ∈ L(p/(p−j),∞)(H) ·
· L(p/(j+1),∞)(H) ⊂ L1(H).

Thus

Trω(ab(1 + D2)−p/2)

= Trω(b[(1 + D2)−p/2, a]φ) + Trω(ba(1 + D2)−p/2)

= −
p−1∑
j=0

Trω(b(1 + D2)−(p−j)/2[(1 + D2)1/2, a](1 + D2)−(j+1)/2φ) +

+ Trω(ba(1 + D2)−p/2)

= Trω(ba(1 + D2)−p/2). �
We finish this section with a measurability criteria, using [2, Theorem 5.6].

THEOREM 12. Let (A,H,D) be a smooth, local (p,∞)-summable spectral tri-
ple with p � 1. Suppose that T ∈ B(H) is such that ψT = Tψ = T for some
ψ � 0, ψ ∈ Ac. If the limit

lim
s→p/2+(s − p/2)Trace(T (1 + D2)−s) (14)

exists, then it is equal to

p

2
−
∫

T (1 + D2)−p/2.
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Proof. Let ψT = Tψ = T , and choose a local unit φ ∈Ac for ψ and [D, ψ].
Then as φ ∈Ac, Lemma 6 shows that φ(1 + D2)−1φ ∈ L(p/2,∞)(H), and

T (φ(1 + D2)−1φ)s ∈
{
L(p/2s,∞)(H) 1 � s �p/2
L1(H) s > p/2

Let n = [p/2] denote the integer part of p/2 and set r = p/2 − [p/2], so that
0 � r < 1, and p/2 = n + r. Observe that

φ(1 + D2)−1φ = φ2(1 + D2)−1 + K,

where K =φ[(1 + D2)−1, φ] ∈L(p/3,∞). To see that this is so, choose a local unit
χ ∈Ac for φ, [D, φ], and a local unit ρ ∈Ac for χ, [D, χ]. Then we have the
following computation

K = φ[(1 + D2)−1, φ]

= −φ(1 + D2)−1[D2, φ](1 + D2)−1

= −φ(1 + D2)−1D[D, φ](1 + D2)−1 − φ(1 + D2)−1[D, φ]D(1 + D2)−1

= −φ(1 + D2)−1D[D, φ]χ(1 + D2)−1 − φ(1 + D2)−1[D, φ]χD(1 + D2)−1

= −φ(1 + D2)−1[D2, φ]χ(1 + D2)−1 + φ(1 + D2)−1[D, φ][D, χ](1 + D2)−1

= −φ(1 + D2)−1/2((1 + D2)−1/2[D2, φ])χ(1 + D2)−1 +
+ φ(1 + D2)−1[D, φ][D, χ]ρ(1 + D2)−1.

As (1+D2)−1/2[D2, φ] is bounded, along with [D, φ] and [D, χ], we may now use
Proposition 10 to see that K ∈L(p/3,∞)(H) as claimed. This is a mild refinement
of Corollary 7.

Hence for positive integers m,m′, (1+D2)−mK ∈ L(p/(2m+3),∞)(H) and K(1+
D2)−m′ ∈ L(p/(2m′+3),∞)(H), using Proposition 10. This follows because multiplic-
ation on the left gives factors (1 + D2)−mφ · · · = (1 + D2)−mχφ · · · , while multi-
plication on the right gives factors of · · ·χ(1 + D2)−m′−1 or · · · ρ(1 + D2)−m′−1.
Thus (1 + D2)−mK(1 + D2)−m′ ∈ L(p/(2m+2m′+3),∞)(H), and we may iterate this
argument to products

(1 + D2)−m1K(1 + D2)−m2K · · · K(1 + D2)−mj ∈ L(p/(3(j−1)+2
∑

mj ),∞)(H),

0 �mj.

We also note that subsequent commutators [K,φ2i], i = 1, 2, . . ., lie in success-
ively smaller ideals, by repeated application of the above arguments using local
approximate units. In fact we only really require that these commutators remain in
L(p/3,∞)(H), which is immediate since it is an ideal. The form of K then allows us
to apply Proposition 10 as above to [K,φ2i] to see that (1 + D2)−m[K,φ2i](1 +
D2)−m′ ∈ L(p/(2m+2m′+3),∞)(H).

Thus we can write

(φ(1 + D2)−1φ)n = (φ2(1 + D2)−1 + K)n

= φ2n(1 + D2)−n + K1 + · · · + Kn,
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where each Kj is a sum of products of j factors of K and n − j -factors of (1 +
D2)−1. Two points should be made. By the first observation of the last paragraph,
the position of the K’s in the product is irrelevant. Secondly, we have ignored
higher order commutators [K,φ2] which arise when we pull all the φ’s to the left,
and have simply counted terms K ′ = [(1 + D2)−1, φ2] as another K. This will not
affect the following discussion, as K ′ lies in the same ideal as K.

Next observe that Kj ∈ L(p/(2n+j),∞)(H), and in all cases

2n + j > p − 2 + j.

So for j = 2, . . . , n, Kj ∈ L1(H).
The first case we consider is n = p/2 = [p/2] is an integer. Then 2n + j > p

for all j � 1, and in this case K1 ∈ L1(H) also. So for 0 < s < 1

Trace(T (φ(1 + D2)−1φ)p/2+s)

= Trace(T φ(φ(1 + D2)−1φ)p/2+s)

= Trace(T φ(1 + D2)−p/2(φ(1 + D2)−1φ)s) + C(s).

Here C(s) is the sum of the traces of Kj(φ(1+D2)−1φ)s , j = 1, . . . , n. As the Kj

are all trace class, and (φ(1 +D2)−1φ)s is bounded in norm as s → 0, the function
C(s) is bounded as s → 0. So now write

Trace(T (φ(1 + D2)−1φ)p/2+s ) = Trace(T φ(1 + D2)−p/2((φ(1 + D2)−1φ)s −
− (1 + D2)−s + (1 + D2)−s)) + C(s),

and observe that each of the three products is trace class, by applications of
Lemma 6 and Proposition 10. Since T is bounded, we can use the cyclicity of
the trace to obtain

Trace(T (φ(1 + D2)−1φ)p/2+s) = Trace(T φ(1 + D2)−p/2−s +
+ B(s)φ(1 + D2)−p/2) + C(s).

The operator B(s) is the difference

(φ(1 + D2)−1φ)sT − (1 + D2)−sT ,

the adjoint of which we studied in Lemma 9. Using the self-adjointness of the
difference (1+D2)−s−(φ(1+D2)−1φ)s , the proof of Lemma 9 shows that (writing,
as before, Tφ = (1 + D2)φ(1 + D2)−1φ = (1 + D2)ηφ)

B(s)φ(1 + D2)−p/2

= −sin(sπ)

π

∫ ∞

0
λ−s(1 + ληφ)

−1(1 − T ∗
φ )(1 + D2 + λ)−1 ×

× T φ(1 + D2)−p/2 dλ

= −sin(sπ)

π

∫ ∞

0
λ−s(1 + ληφ)

−1(1 − T ∗
φ )(1 + D2 + λ)−1ψ ×

× T φ(1 + D2)−p/2 dλ
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= −sin(sπ)

π

∫ ∞

0
λ−s(1 + ληφ)

−1(1 − T ∗
φ )(1 + D2 + λ)−1 ×

× ψ(1 + D2)(1 + D2)−1T φ(1 + D2)−p/2 dλ.

Since (1+D2)−1T φ(1+D2)−p/2 is trace class, the trace norm of B(s)φ(1+D2)−p/2

is bounded by

‖B(s)φ(1 + D2)−p/2‖1

� sin(sπ)

π

∫ ∞

0
λ−s‖(1 + D2)−1T φ(1 + D2)−p/2‖1 ×

× ‖(1 + ληφ)
−1(1 − T ∗

φ )(1 + D2 + λ)−1ψ(1 + D2)‖ dλ

�C
sin(sπ)

π

∫ ∞

0
λ−s‖(1 − T ∗

φ )(1 + D2 + λ)−1ψ(1 + D2)‖ dλ

�C
sin(sπ)

π

∫ ∞

0
λ−s(1 + λ)−1 dλ

= C,

the second last line following from the norm estimate of Lemma 8, and the last
equality following from Equation (13). Thus

‖B(s)φ(1 + D2)−p/2‖1 �C for all 0 < s < 1.

Hence for p/2 integral and 0 < s < 1

Trace(T (φ(1 + D2)−1φ)s+p/2) = Trace(T (1 + D2)−s−p/2) + b(s),

where b(s) is bounded as s → 0.
For p/2 nonintegral, K1 �∈ L1(H). Set r = p/2 − [p/2] > 0 and consider s

with 0 < s < 1 − r. Then

Trace(T (φ(1 + D2)−1φ)n+s+r )

= Trace(T ((1 + D2)−n + K1)(φ(1 + D2)−1φ)s+r) + C(s)

where C(s) arises from the trace of the terms Kj(φ(1 + D2)−1φ)s+r , and we
observe that C(s) is bounded as s → 0. Recalling that K1 ∈ L(p/(2n+1),∞)(H),
each product arising from expanding

φ((1 + D2)−n + K1)((φ(1 + D2)−1φ)s+r − (1 + D2)−s−r + (1 + D2)−s−r),

is trace class. For K1(1+D2)−s−r this follows from the same argument that showed
K1 ∈ L(p/(2n+1),∞)(H). Thus we have, using the cyclicity of the trace,

Trace(T (φ(1 + D2)−1φ)n+s+r ) − C(s)

= Trace(T φ((1 + D2)−n + K1)((φ(1 + D2)−1φ)s+r − (1 + D2)−s−r +
+ (1 + D2)−s−r))

= Trace(φ(1 + D2)−nB(s + r) + φK1B(s + r) + φ(1 + D2)−n−s−rT +
+ φK1(1 + D2)−s−rT )

= Trace(B(s + r)φ(1 + D2)−n + B(s + r)φK1 + φ(1 + D2)−p/2−sT +
+ φK1(1 + D2)−s−rT ).
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First observe that

‖φK1(1 + D2)−s−rT ‖1 � ‖φK1(1 + D2)−r‖1‖(1 + D2)−sT ‖,
and this is obviously bounded as s → 0. Next, familiar calculations show that both

B(r)φK1 and B(r)φ(1 + D2)−n

are trace class. We show that

B(s + r)φK1 → B(r)φK1 and B(s + r)φ(1 + D2)−n → B(r)φ(1 + D2)−n

in the trace norm topology. Since (1 + D2)−1T φK1 is trace class, we may use the
computations of Lemma 9 and the norm estimate of Lemma 8 to obtain

‖(B(s + r) − B(r))φK1‖1

=
∥∥∥∥

∫ ∞

0

(
λ−s−r sin((s + r)π)

π
− λ−r sin(rπ)

π

)
×

× (1 + ληφ)
−1(1 − T ∗

φ )(1 + D2 + λ)−1T φK1 dλ

∥∥∥∥
1

�C

∫ ∞

0

∣∣∣∣λ
−s−r sin((s + r)π)

π
− λ−r sin(rπ)

π

∣∣∣∣‖(1 + ληφ)
−1 ×

× (1 − T ∗
φ )(1 + D2 + λ)−1ψ(1 + D2)(1 + D2)−1T φK1‖1 dλ

�C‖(1 + D2)−1T φK1‖1

∫ ∞

0

sin(rπ)

π

∣∣∣∣ cos(sπ)λ−s−r +

+ cos(rπ) sin(sπ)

sin(rπ)
λ−s−r − λ−r

∣∣∣∣ 1

1 + λ
dλ

�C‖(1 + D2)−1T φK1‖1

∫ ∞

0

sin(rπ)

π
O(s)λ−s−r 1

1 + λ
dλ +

+ C‖(1 + D2)−1T φK1‖1

∫ ∞

0

sin(rπ)

π

∣∣∣∣λ−s−r − λ−r

∣∣∣∣ 1

1 + λ
dλ

= O(s)‖(1 + D2)−1T φK1‖1
sin(rπ)

sin((s + r)π)
+

+ C‖(1 + D2)−1T φK1‖1

(∫ ∞

0
(λ−r − λ−s−r)

1

1 + λ
dλ +

+ 2
∫ 1

0
(λ−s−r − λ−r )

1

1 + λ
dλ

)
.

In the last equality we have used Equation (13) for the first term, and written the
integral of the absolute value as∫ ∞

0
|λ−s−r − λ−r | 1

1 + λ
dλ
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=
∫ ∞

1
(λ−r − λ−s−r )

1

1 + λ
dλ +

∫ 1

0
(λ−s−r − λ−r )

1

1 + λ
dλ

=
∫ ∞

0
(λ−r − λ−s−r )

1

1 + λ
dλ + 2

∫ 1

0
(λ−s−r − λ−r )

1

1 + λ
dλ.

The first of these integrals is given by

π

sin(πr)
− π

sin((s + r)π)
−→ 0 as s → 0.

The second is given by [8, p. 211],

2
∫ 1

0
(λ−s−r − λ−r )

1

1 + λ
dλ = 2s

(1 − r)(1 − s − r)
− 2s

(2 − r)(2 − s − r)
+

+ 2s

(3 − r)(3 − s − r)
− · · ·

This too goes to zero as s → 0. Putting these estimates together yields

B(s + r)φK1 −→ B(r)φK1 in L1(H).

An entirely analogous calculation shows that

‖(B(s + r) − B(r))φ(1 + D2)−n‖1

�C‖(1 + D2)−1T φ(1 + D2)−n‖1∫ ∞

0

∣∣∣∣λ
−s−r sin((s + r)π)

π
− λ−r sin(rπ)

π

∣∣∣∣ 1

1 + λ
dλ −→ 0.

Hence in all cases and for 0 < s − p/2 < 1 − r

Trace(T (φ(1 + D2)−1φ)s) = Trace(T (1 + D2)−s) + b(s),

where b(s) is some function of s bounded as s → p/2. By [2, Theorem 5.6], if the
limit exists we have

lim
s→p/2+

(
s − p

2

)
Trace(T (1 + D2)−s)

= lim
s→p/2+

(
s − p

2

)
Trace(T (φ(1 + D2)−1φ)s) +

(
s − p

2

)
b(s)

= p

2
−
∫

T (φ(1 + D2)−1φ)p/2

= p

2
−
∫

T (1 + D2)−p/2.

The final equality follows from an argument similar to those used throughout this
proof and the proof of Proposition 10, to show that a(1 + D2)−p/2 = a(φ(1 +
D2)−1φ)p/2 modulo operators in L1(H). �
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5. (p,∞)-Summability for Complete Manifolds

We now show that (p,∞)-summability holds for Euclidean spaces, and then lift
this result to manifolds. This will show that our generalisations are reasonable, and
clear up a persistent ‘folk area’ of noncommutative geometry. A similar result, for
the Laplacian on Euclidean spaces, has been shown in [4], but to be able to employ
our results we need to know that the Dirac operator (or Hodge-de Rham operator)
satisfies (p,∞)-summability in the sense of Definition 9.

PROPOSITION 13. If f ∈ C∞
c (Rp) then for λ �∈ R f (D − λ)−1 ∈ L(p,∞)

(L2(Rp, S)), where D is the Dirac operator acting on sections of the spinor bundle
S, and f acts as a multiplication operator on L2(Rp, S).

Proof. Our proof is an adaptation of the ideas in [4, pp. 16–17]. We first recall
that if B ⊆ Rp is a box, then the Dirac operator with periodic boundary conditions
gives rise to a densely defined self-adjoint operator on L2(T

p

B , S) which we denote
by DB . Here T

p

B is the torus obtained by identifying the opposite faces of B, and
S is the restriction of the spinor bundle on Rp to T

p

B . This makes sense as S is a
trivial bundle, and so the fibres over opposite faces can be canonically identified.

Now for p �= 1, and writing µn for the nth singular value we have

(DB − λ)−1 ∈ L(p,∞)(L2(T
p

B , S)) ⇔ µn(DB − λ)−1 = O(n−1/p)

⇔ µn(1 + D2
B)−1/2 = O(n−1/p).

For p = 1 we have

(DB − λ)−1 ∈ L(1,∞)(L2(T 1
B, S)) ⇔ 1

log(N)

N∑
n=1

µn((DB − λ)−1) bounded

⇐ µn(1 + D2
B)−1/2 = O(n−1).

In all cases p � 1 integral, it is well-known that µn(1 + D2
B)−1/2 = O(n−1/p) (this

is a special case of Weyl’s Theorem [12, Lemma 1.12.6]). Thus (DB − λ)−1 ∈
L(p,∞)(L2(T

p

B , S)).
Next we observe that while multiplication by f ∈ C∞

c (Rp) gives a bounded
operator on L2(Rp, S), we may also regard it as a bounded operator

f : L2(Rp, S) −→ L2(T
p

B , S),

where supp(f ) is contained in the interior of the box B. Moreover, f maps the
domain of D, the Dirac operator on Rp, to the domain of DB described above.
The function f also naturally defines a multiplication operator on L2(T

p

B , S). This
allows us to compute in B(L2(Rp, S), L2(T

p

B , S)), for λ �∈ R

f (D − λ)−1 − (DB − λ)−1f = (DB − λ)−1(DBf − fD)(D − λ)−1

= (DB − λ)−1(df ·)(D − λ)−1.
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Here, by a slight abuse, we have written df · for Clifford multiplication [21], by df

as a map from L2(Rp, S) to L2(T
p

B , S). Thus

f (D − λ)−1 = (DB − λ)−1(df ·)(D − λ)−1 + (DB − λ)−1f.

Composing this with the isometric inclusion ι: L2(T
p

B , S) → L2(Rp, S) (i.e. by
regarding f as a multiplication operator on L2(Rp, S)) we get

‖ιf (D − λ)−1‖Rp

(p,∞)

=
∥∥∥ι(DB − λ)−1

(
f + df · (D − λ)−1

)∥∥∥Rp

(p,∞)

� ‖ι(DB − λ)−1f ‖Rp

(p,∞) + ‖ι(DB − λ)−1df · ‖Rp

(p,∞)‖(D − λ)−1‖Rp

since (D − λ)−1 is a bounded operator. Now as the inclusion map ι is isometric,
and the norms of f, df · (as operators from L2(Rp, S) to L2(B, S)) are attained on
(classes of) spinors with support in B, we have

‖ι(DB − λ)−1f ‖Rp

(p,∞) � ‖(DB − λ)−1‖T p

(p,∞)‖f ‖Rp→T p

,

and similarly for df ·. So

‖f (D − λ)−1‖Rp

(p,∞) � ‖(DB − λ)−1‖T p

(p,∞)‖f ‖Rp→T p +
+ ‖(DB − λ)−1‖T p

(p,∞)‖df · ‖Rp→T p‖(D − λ)−1‖Rp

< ∞.

Thus f (D − λ)−1 ∈ L(p,∞)(L2(Rp, S)). �
COROLLARY 14. The tuple (C∞

c (Rp), L2(Rp, S),D) is a smooth, local (p,∞)-
summable spectral triple. For f ∈C∞

c (Rp) acting by multiplication on spinors and
with D the Dirac operator acting on the (complex) spinor bundle S, we have f (1+
D2)−p/2 ∈ L(1,∞)(L2(Rp, S)). Furthermore, it is measurable and

−
∫

f (1 + D2)−p/2 = 2[p/2]Vol(Sp−1)

p(2π)p

∫
Rp

f (x) dpx.

Proof. That (C∞
c (Rp), L2(Rp, S),D) is a smooth spectral triple follows from

[23, Proposition 20] and the example of [23, pp. 18–19]. Locality follows from the
fact that D preserves supports (being a differential operator) so that if φ is a local
unit for a compactly supported function f , φ is also a local unit for [D, f ] = df ·.
Finally the (p,∞)-summability follows from Proposition 13.

We may now apply Proposition 10, which gives us for s > p

Trace(f (1 + D2)−s/2) < ∞.

Indeed

Trace(f (1 + D2)−s/2) =
∫

Rp

Ks(x, x) dpx
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where Ks(x, y) = 2[p/2](2π)−p/2f (x)gF
s (x − y) is the kernel of TraceSf

(1 + D2)−s/2 [22, Theorem IX.29] and [25, Theorem 3.9]. Here TraceS is the
(matrix) trace of endomorphisms on the spinor bundle S, gF

s is the inverse Fourier
transform of gs = (1+‖x‖2)−s/2, and the factor of 2[p/2] arises from the rank of the
spinor bundle. So

Trace(f (x)(1 + D2)−s/2)

= 2[p/2](2π)−p/2
∫

f (x)gF
s (0) dpx

= 2[p/2](2π)−p

∫
f (x)

( ∫
gs(ξ) dpξ

)
dpx

= 2[p/2]Vol(Sp−1)

(2π)p

∫
f (x) dpx

∫ ∞

0
(1 + r2)−s/2rp−1 dr

= 2[p/2]Vol(Sp−1)�(p/2)�((s − p)/2)

2(2π)p�(s/2)

∫
f (x) dpx,

where the last line comes from evaluating the integral over r explicitly using the
Laplace transform. It is now apparent that there is a simple pole at s = p, and we
have

lim
s→p

(
s

2
− p

2

)
Trace(f (1 + D2)−s/2) = 2[p/2]Vol(Sp−1)

2(2π)p

∫
f (x) dpx

= p

2
−
∫

f (1 + D2)−p/2,

where the last line follows from Corollary 12. �
PROPOSITION 15. Let X be a geodesically complete p-dimensional Riemannian
spin manifold. Let f : X → C be a smooth compactly supported function and D
the Dirac operator on spinors. Then

f (D − λ)−1 ∈ L(p,∞) f (1 + D2)−p/2 ∈ L(1,∞) is measurable

−
∫

f (1 + D2)−p/2 = WRes(f (1 + D2)−p/2)

= 2[p/2]Vol(Sp−1)

p(2π)p

∫
X

f (x) dpx =: c(p)

∫
X

f (x) dpx.

Proof. The proof is very similar to the Rp case, but as we are no longer dealing
with constant coefficient differential operators, we do not have recourse to periodic
boundary conditions and can not reduce the problem to the case of a torus.

Choose coordinate charts Ui which are contractible (so the spinor bundle is
trivial) with compact closure, and coordinates which map

xi : Ui
∼=−→ V i ⊂ Rp,
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where V i has compact closure. Using a partition of unity we can reduce the general
case of f : X → C compactly supported to the case of f with support contained
in the interior of a single chart Ui , and so reduce to the case of Rp. The only real
difference is we are now dealing with an operator on V i ⊂ Rp with nonconstant
coefficients.

Let W ⊂ V i be a closed set with the support of f contained in the interior of W

and such that W has smooth boundary ∂W . To prove the first statement, it suffices
to show that f (D − λ)−1 ∈L(p,∞)(L2(W, S)), where D is of the form

p∑
i=1

γ i∂i + ω,

where for 1 � i �p, γ i are nonconstant Clifford variables on W , the ∂i = ∂/∂xi

are partial derivative operators, and ω is the connection form on W .
Let DI be the invertible double of D defined on the closed manifold W̃ =W∪∂W

(−W) [1, Chapter 9], with spinor bundle S̃. Then by Weyl’s Theorem [12, Lemma
1.12.6], for λ �∈ R, (DI − λ)−1 ∈ L(p,∞)(L2(W̃ , S̃)). We extend f to a function on
all of W̃ by extending by zero.

We now proceed as in the case of Rp, and compute in the space of bounded
operators from L2(W̃ , S̃) to L2(W, S), regarding multiplication by f as such an
operator,

f (DI − λ)−1 − (D − λ)−1f = (D − λ)−1(fDI − Df )(DI − λ)−1.

So letting ι: L2(W, S) → L2(W̃ , S̃) be the isometric inclusion and writing df · for
Clifford multiplication by df from the spinor bundle on W̃ to the spinor bundle on
W , we have

‖(D − λ)−1f ‖W
(p,∞) � ‖df · ((DI − λ)−1ι‖W

(p,∞)‖(D − λ)−1‖W +
+ ‖f (DI − λ)−1ι‖W

(p,∞),

similarly to the Rp case. The proof now follows as in the Rp case by noting that

‖f (DI − λ)−1ι‖W
(p,∞) � ‖(DI − λ)−1‖W̃

(p,∞)‖f ‖W̃→W .

The measurability of f (1 + D2)−p/2 follows because Weyl’s Theorem gives an
estimate on the singular values µn of (DI − λ)−1 of the form [12, Lemma 1.12.6],

µn = Cn−1/p + o(n−1/p),

for some positive constant C. The equality with the Wodzicki residue is from [9],
and this provides the value of the Dixmier trace of f (1 + D2)−p/2. Completeness
of the manifold is only used here to ensure that the Dirac operator is essentially
self-adjoint, to justify the use of the functional calculus. Weaker conditions exist to
ensure the self-adjointness of D [16, p. 274]. �
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COROLLARY 16. If X is a geodesically complete Riemannian spin manifold, then
the triple (C∞

c (X), L2(X, S),D) is a smooth, local (p,∞) summable spectral
triple. Here S is the (complex) spinor bundle on X and D is the Dirac operator.

Proof. As for Rp, the fact that (C∞
c (X), L2(X, S),D) is a smooth spectral triple

follows from [23, Proposition 20], and locality follows because D is a differential
operator. The (p,∞)-summability comes from Proposition 15. �
6. Distributions and the Local Index Theorem

Having shown that the Dixmier trace remains an effective tool in the nonunital
case, we turn to other functionals on Ac defined using the Dixmier trace as well as
the usual trace.

We follow the lead of ordinary distribution theory [22]. If X is a paracompact
manifold, the distributions on X are defined to be the continuous linear forms on
C∞

c (X), where the compactly supported smooth functions carry the inductive limit
topology (defined by any increasing sequence of compact sets whose union is X).

DEFINITION 10. Let (A,H,D) be a smooth spectral triple with A complete in
the δ-topology (c.f. Lemma 3). The distributions on (A,H,D) are the continu-
ous linear functionals on the topological algebra Ac, where Ac carries its natural
inductive limit topology obtained from the smooth topology on A and any local
approximate unit. Denote the linear space of distributions by A′

c.

LEMMA 17. If (A,H,D) is a smooth, local (p,∞)-summable spectral triple
with A complete in the δ-topology, then the map

a → Trω(a(1 + D2)−p/2)

is a distribution, for any Dixmier trace Trω.
Proof. Since Ac is a strict inductive limit, the Dixmier trace is continuous on

Ac if and only if it is continuous when restricted to each of the subalgebras An =
{a ∈ Ac: φna = aφn = a}, for any local approximate unit {φn} [20, 22]. So if the
sequence ai → a ∈ An, then we have

|Trω((a − ai)(1 + D2)−p/2)|
= |Trω((a − ai)φ(1 + D2)−p/2)|
� ‖a − ai‖|Trω(φ(1 + D2)−p/2)| −→ 0. (15)

Since convergence in the δ-topology implies convergence in norm, we are
done. �

Now suppose that A ↪→Ab is an embedding of A as a closed essential ideal in
the smooth unital algebra Ab; i.e. a unitization. Then [23], Ac is also an essential
ideal in Ab, and
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COROLLARY 18. If (A,H,D) is a smooth, local (p,∞)-summable spectral
triple with A complete in the δ-topology, the map F : Ab ↪→ A′

c is a continuous
linear injection, where

F(a)(b) = Trω(ab(1 + D2)−p/2), a ∈ Ab, b ∈ Ac.

Proof. That F is an injection follows from Ac being an essential ideal in
Ab. Continuity follows from the continuity of the multiplication in Ab and
Lemma 17. �
COROLLARY 19. If (A,H,D) is a smooth, local (p,∞)-summable spectral
triple with A complete in the δ-topology, the map FT : Ab ↪→ A′

c is a continuous
linear injection, where

FT (a)(b) = Trace(abe−tD2
), a ∈ Ab, b ∈ Ac.

Similarly, if Re(z) > p then

ζa(b) = Trace(ab(1 + D2)−z/2), a ∈ Ab, b ∈ Ac,

is a distribution. For fixed a, b, the former is C∞ for all t > 0 and the latter is
holomorphic for all z with Re(z) > p.

Proof. We must first show that finitely summable spectral triples are θ-
summable. This is almost the same as the unital version [13], namely for all
a ∈ Ac, t > 0 and s > p

|Trace(ae−t (1+D2))| = |Trace(a(1 + D2)−s/2(1 + D2)s/2e−t (1+D2))|
� ‖(1 + D2)s/2e−t (1+D2)‖|Trace(a(1 + D2)−s/2)|.

The result now follows by using the functional calculus to show that for fixed
t, s as above, (1 + D2)s/2e−t (1+D2) is bounded. Both functionals FT (a) and ζa are
continuous on Ac by an argument similar to that in Lemma 17.

So we are left with the smoothness and continuity. So for fixed a ∈Ab and
b ∈Ac, we want to show that Trace(abe−tD2

) is a smooth function of t > 0.
Observe that for fixed t > 0, b ∈Ac, and any bounded operator A, Abe−tD2/2 ∈
L1(H). Moreover, the function

B −→ Trace(Abe−tD2
B), B ∈ B(H),

is continuous in the strong operator topology. The final ingredient is to note that
for all ξ ∈ domD2,

lim
ε→0

e−tD2/2

(
e−εD2 − Id

ε

)
ξ = −e−tD2/2D2ξ,
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by the definition of the generator of a contraction semigroup. Moreover
‖D2e−tD2/2‖ < ∞, by the functional calculus. So for all t > 0 the function

ε −→ e−tD2/2

(
e−εD2 − Id

ε

)

is a strongly continuous function to the bounded operators. Hence

lim
ε→0

1

ε
Trace(Abe−(t+ε)D2 − Abe−tD2

)

= Trace

(
Abe−tD2/2 lim

ε→0

(
e−tD2/2 e−εD2 − Id

ε

))

= Trace(Abe−tD2/2(−e−tD2/2D2))

= −Trace(AbD2e−tD2
).

The higher derivatives may be shown to exist, and computed, in the same way,
using the fact that AbD2ne−tD2/2 ∈ L1(H) for all n� 0.

To show that Trace(ab(1+D2)−z/2) is holomorphic for Re(z)>p, suppose both
z and z0 have real part greater than p, and suppose that Re(z0)> Re(z). Then, since
(1 + D2)−1/2 is bounded, positive, and has trivial kernel

lim
z0→z

1

z0 − z
(Trace(ab(1 + D2)−z0/2) − Trace(ab(1 + D2)−z/2))

= lim
z0→z

1

z0 − z
Trace(ab(1 + D2)−z/2(e(z0−z) log((1+D2)−1/2)) − 1))

= Trace(ab(1 + D2)−z/2 log((1 + D2)−1/2)).

As log((1 + D2)−1/2) is a bounded operator, the result follows. �
The distributions we are most interested in, which include those above, are those
defined using pseudodifferential operators in the sense of Connes-Moscovici [17].

DEFINITION 11. Let (A,H,D) be a smooth spectral triple, and suppose that
A ↪→ Ab is a smooth unitization in the sense above. Let B(Ab) be the algebra
of polynomials in the operators δn([D, a]) and δn(a), for all a ∈ Ab and n� 0.
Also, define the algebra of pseudodifferential operators G∗(A) to be the algebra of
operators possessing an expansion

P ∼ bq(1 + D2)q/2 + bq−1(1 + D2)q/2−1/2 + · · · , bq ∈ B(Ab),

where the tilde indicates that

P −
∑

−N<n� q

bn(1 + D2)n/2 ∈ OP−N
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and

P ∈ OPα ⇔ (1 + D2)−α/2P ∈
⋂
m� 1

dom δm.

In this definition we should use δ(x) = [(1+D2)1/2, x], and this derivation has the
same domain as [|D|, ·] since the functional calculus shows that |D| − (1 +D2)1/2

is bounded. To see that G∗(A) is indeed an algebra, we recall that there is an
expansion [7],

(1 + D2)α/2b ∼
∞∑
k=0

cα,kδ
k(b)(1 + D2)α/2−k/2,

where cα,k is the coefficient of εk in

(1 + ε)α =
∞∑
0

α(α − 1) · · · (α − k + 1)

k!
εk.

That this is true for nonintegral α follows from results in [6, 7]. We will accept
G∗(A) as the algebra of pseudodifferential operators on (A,H,D), based largely
on the ability to employ asymptotic expansions within G∗(A). Further justification
and information can be found in [6, 7, 13]. The next result follows easily from what
we have shown thus far.

PROPOSITION 20. If P ∈ G∗(A) is a pseudodifferential operator on the smooth
(p,∞)-summable spectral triple (A,H,D), then

a → Trace
(
aP (1 + D2)−

z+deg(P)
2

)
, Re(z) > p, a ∈ Ac

is a distribution.

Distributions of this form appear in the statement and proof of the Local Index
Theorem. Connes and Moscovici’s Local Index Theorem allows one to compute
(the distributional form of) the Chern character in cyclic cohomology. The tools
developed in the previous two sections allow one to extend all the necessary in-
gredients to the nonunital case, by defining and computing the cyclic cocycles on
the ‘compactly supported’ elements of our local algebra.

In order to render the computations tractable, one requires additional informa-
tion. In particular, the asymptotic expansions for pseudodifferential operators are
only effective in this regard when we can remove all but finitely many terms. The
assumption employed by Connes-Moscovici (in the unital case), see [7, Definition
II.1] to do this is that the functions

ζb(z) = Trace(b(1 + D2)−z/2), Re(z) > p, b ∈ B(A)

have meromorphic extensions as functions of z. The poles of all of these extensions
must have uniformly bounded order, and all lie in the same discrete set Sd. This
‘discrete and finite dimension spectrum’ hypothesis [7], extends to local algebras
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simply by replacing the hypothesis b ∈ B(A) by b ∈ B(Ac), where B(Ac) is
defined analogously to B(Ab) in Definition 11. Alternative proofs of the (unital)
Local Index Theorem appear in [3, 15].

For local spectral triples, all the estimates necessary to prove the Local Index
Theorem, and show that the JLO cocycle is entire, are essentially the same as in
[11, 7], with minor adjustments employing local units. The only serious adjustment
necessary is that one must consider the continuous cyclic cohomology of Ac, where
Ac carries the inductive limit topology. There is no loss of generality in this as far as
index theory is concerned, because Ac is stable under the holomorphic functional
calculus [23], so K∗(Ac) ∼= K∗(A); see [23]. We also note that the algebra Ac is
H-unital because it has local units [23, 19].

With these minor modifications, the Local Index Theorem can be used to com-
pute index pairings. A class of examples (with simple dimension spectrum) and a
detailed computation using this extended Local Index Theorem appears in [24].

7. Conclusion

The main result of this paper is that the various summability hypotheses in non-
commutative geometry can be extended to the nonunital case in the context of local
algebras. This allows us to show that most of the ‘summability type’ results in the
unital case (trace on the algebra of a spectral triple, relation between measurability
and zeta functions, Local Index Theorem) all have reasonable analogues in the
nonunital case. The restriction that the ‘Clifford algebra’, �∗

D(Ac), has local units
in Ac is an extra locality requirement that we have found necessary to impose
throughout.
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