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Abstract

We show that one can define (p,∞)-summable spectral triples using degenerate metrics on
smooth manifolds. Furthermore, these triples satisfy Connes-Moscovici’s discrete and finite
dimension spectrum hypothesis, allowing one to use the Local Index Theorem, [1], to compute
the pairing with K-theory. We demonstrate this with a concrete example.

1 Introduction

Let X be a p-dimensional, geodesically complete, paracompact, σ-compact Riemannian spin
manifold with metric g. Our aim is to show that if g̃ is another ‘metric’ which is allowed to be
degenerate on a submanifold of measure zero, then a (p,∞)-summable spectral triple can be
constructed by employing the Dirac operator associated to this degenerate metric.

The next section makes some preliminary definitions and fixes notation. Some of these defini-
tions are modifications of standard definitions necessary to be able to encompass the nonunital
setting. More information will be found in [2, 3]. Section 3 describes the spectral triples and
presents our main theorems. The final section provides a detailed example.

The original aim of the constructions in this paper was to find an explicit example of a spec-
tral triple with nonsimple dimension spectrum. This would provide an example where the
index pairing could be computed using Connes and Moscovici’s Local Index Theorem, [1], and
hopefully there would be contributions arising from the higher order poles. This would be of
benefit in obtaining greater understanding of the various terms in the Local Index Theorem.
This original aim failed, but several interesting results were obtained.

This paper shows that one must work quite hard to obtain such an example. The ‘Dirac’
operator of our main example seems to contain a double pole in its zeta function, however
when one considers for a smooth function a

s→ Trace(a(1 +D2)−s), Re(s) > 1,
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either there is a simple pole at s = 1, or the operator a(1 + D2)−s is not compact for any
s ∈ C, so the trace fails to make sense. In some sense there is a trade off between the size of
the (nonzero) point spectrum and the kernel of D, so that the zeta function has a simple pole,
or we do not even obtain a spectral triple.

2 Definitions

Here we review the relevant definitions, language and notation we will employ in the remainder
of the paper.

Definition 1 A ∗-algebra A is smooth if it is Fréchet and ∗-isomorphic to a proper dense
subalgebra i(A) of a C∗-algebra A which is stable under the holomorphic functional calculus.

Definition 2 An algebra A has local units if for every finite subset of elements {ai}ni=1 ⊂ A,
there exists φ ∈ A such that for each i

φai = aiφ = ai.

Definition 3 Let A be a Fréchet algebra and Ac ⊂ A be a dense ideal with local units. Then
we call A a local algebra (when Ac is understood.)

Remark Localizable would be a more descriptive word, and local is over used, but it will do
for now. Note that unital algebras are automatically local. Furthermore, the dense ideal Ac is
saturated in the following sense. If a ∈ A and ∃φ ∈ Ac such that φa = aφ = a, then a ∈ Ac.
This follows because Ac is an ideal.

Example The basic example of a smooth local algebra is C∞0 (X), where X is a noncompact
manifold, and C∞0 (X) denotes the smooth functions all of whose derivatives vanish at infin-
ity. This is Fréchet, stable under the holomorphic functional calculus, and the dense ideal of
compactly supported functions has local units.

Numerous properties of, and constructions with, local algebras are presented in [2, 3]. Next
we present the definition of spectral triples appropriate to our situation, modelled on Connes’
definitions, [9, Chap. VI].

Definition 4 A spectral triple (A,H,D) is given by

1) A representation π : A → B(H) of a local ∗-algebra A on the Hilbert space H.

2) A self-adjoint (unbounded, densely defined) operator D : domD → H such that [D, a] extends
to a bounded operator on H for all a ∈ A and a(1 +D2)−

1
2 is compact for all a ∈ A.

The triple is said to be even if there is an operator Γ = Γ∗ such that Γ2 = 1, [Γ, a] = 0 for all
a ∈ A and ΓD+DΓ = 0 (i.e. Γ is a Z2-grading such that D is odd and A is even.) Otherwise
the triple is called odd.

Definition 5 If (A,H,D) is a spectral triple, then we define Ω∗D(A) to be the algebra generated
by A and [D,A].
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Definition 6 A spectral triple (A,H,D) is smooth if

A and [D,A] ⊆
⋂
m≥0

dom δm

where for x ∈ B(H), δ(x) = [|D|, x].

Remark Note the difference between the definitions of smooth for topological algebras and
spectral triples. In [4] such triples are called regular. In fact we have the following, [2].

Lemma 1 If (A,H,D) is a smooth spectral triple, then (Aδ,H,D) is also a smooth spectral
triple, where Aδ is the completion of A in the locally convex topology determined by the semi-
norms

qn(a) =‖ δn(a) ‖D, where ‖ a ‖D=‖ a ‖ + ‖ [D, a] ‖ .

Moreover, Aδ is a smooth algebra.

The following definition is, if not crucial, hugely simplifying for summability issues, [3].

Definition 7 A local spectral triple (A,H,D) is a spectral triple with A a local algebra (see
Definition 3) such that Ω∗D(Ac) ⊆ Ω∗D(A) is a local algebra.

We may assume without loss of generality that a local spectral triple has a local approximate
unit {φn}n≥1 ⊂ Ac such that φn+1φn = φn and φn+1[D, φn] = [D, φn].

Definition 8 A local spectral triple is (p,∞)-summable if p ≥ 1 and for all λ in the resolvent
set of D

a(D − λ)−1 ∈ L(p,∞)(H) ∀a ∈ Ac.

We call it θ-summable if
Trace(ae−t(1+D2)) <∞

for all a ∈ Ac and t > 0.

Remark If A is unital, kerD is finite dimensional. This case is fairly well described in the
literature, see for instance [9, Chap VI] and [5]. Note that the summability requirements are
only for a ∈ Ac. We do not assume that elements of the algebra A are all ‘integrable’. Note
that Lemma 1 does not guarantee that elements of the completion of A for the seminorms
arising from the derivation δ satisfy the above summability condition in the nonunital case.
Of course, there is no difficulty in the unital case.

In [3], we show that if (A,H,D) is a (p,∞)-summable local spectral triple, then the operator
A = a(1 + D2)−p/2 ∈ L(1,∞)(H). As such, we may apply any Dixmier trace Trω, [9, IV.2.β],
to the operator A. An operator T ∈ L(1,∞)(H) is called measurable if the number Trω(T ) is
independent of the choice of Dixmier trace Trω.

The other main summability requirement is Connes-Moscovici’s ‘discrete and finite dimension
spectrum’ hypothesis, [1, 5].
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Definition 9 A smooth spectral triple (A,H,D) has discrete dimension spectrum Sd if the set
Sd ⊂ {z ∈ C : Re(z) ≤ p}, p ≥ 1, is discrete and for any b ∈ B(Ac) the function

ζb(z) := Trace(b(1 +D2)−
z
2 ), (1)

is defined for all z ∈ C with Re(z) > p and extends holomorphically to C\Sd. Furthermore we
require that

Γ(z)ζb(z)

is of rapid decay on vertical lines with Re(z) > 0. We say that the discrete dimension spectrum
Sd is of finite multiplicity k if for all b ∈ B(Ac), ζb has a pole of order at most k. We say that
Sd is simple if k = 1. Here Γ denotes the gamma function, and B(Ac) is the algebra generated
by δk(a), δn([D, a]) for a ∈ Ac and k, n ≥ 0.

It is important to note that in the case of simple dimension spectrum, this definition implies
the measurability of all the operators b(1 +D2)−p/2, b ∈ B(Ac), by [3, Corollary 18].

The Local Index Theorem of Connes-Moscovici, [1, 3], computes the index pairing between the
K-theory of the algebra A and a smooth local spectral triple with discrete and finite dimension
spectrum.

In the following k = (k1, ..., kn) ∈ Nn, |k| = k1 + · · · kn, da = [D, a] for a ∈ A, and (da)(k) =
∇k(da) where ∇(T ) = [D2, T ]. Finally, if the function

z −→ Trace(T (1 +D2)−m−z), T ∈ B(H)

has a Laurent expansion around z = 0, let

τq(T (1 +D2)−m)

be the coefficient of z−q−1 in this expansion.

Theorem 2 (Local Index Theorem [1, 3]) Let (A,H,D) be a smooth spectral triple, with
discrete and finite dimension spectrum contained in the half plane {z : Re(z) ≤ p}, and suppose
that Ω∗D(A) is local. Then if A is unital, the following formulae define the components of a
cyclic cocycle in the (b, B) bicomplex of A whose class coincides with the class of the Chern
character in HC∗(A). If A is nonunital, then the following formulae define cyclic cocycles in
the distributional sense, and their class coincides with that of the Chern character in the cyclic
cohomology HC∗(Ac).
a) For (A,H,D) even and summing over q ≤ |k|+ n

2 and |k|+ n ≤ p,

φn(a0, ..., an)

=
∑
k,q

(−1)|k|

k1! · · · kn!
αk,nσq(|k|+

n

2
)τq(Γa0(da1)(k1) · · · (dan)(kn)(1 +D2)−

(2|k|+n)
2 )

for n 6= 0 even, while
φ0(a0) = τ−1(Γa0)
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where
τ−1(b) = resz=0z

−1Trace(b(1 +D2)−z).

The σq are the symmetric functions of the numbers 1, 2, ..., |k|+ n
2 ,

|k|+n
2∏

i=1

(s+ i) =
|k|+n

2
−1∑

j=0

σj(|k|+
n

2
)sj ,

and
α−1
k,n = (k1 + 1)(k1 + k2 + 2) · · · (k1 + k2 + · · ·+ kn + n).

b) For (A,H,D) odd and summing over q ≤ |k|+ n−1
2 and |k|+ n ≤ p,

φn(a0, ..., an)

=
√

2πi
∑
k,q

(−1)|k|

k1! · · · kn!
αk,nσm−q(m)τq(a0(da1)(k1) · · · (dan)(kn)(1 +D2)−

(2|k|+n)
2 )

where m = |k|+ n−1
2 and σj is defined by

m−1∏
l=0

(
z +

(2l + 1)
2

)
=
∑

zjσm−j(m).

This statement is slightly different to that in [1], in that it has been extended to the nonunital
case as described in [3]. More details can be found in these papers.

3 Construction of the Triples

Let X be a p-dimensional, geodesically complete, paracompact, σ-compact Riemannian spin
manifold with metric g. Let SC → X be the complex spinor bundle canonically associated to
the spin structure, [6, Appendix D], and D : Γ(SC) → Γ(SC) the Dirac operator of the spin
structure. So in local coordinates x1, ..., xp we have

dxi · dxj + dxj · dxi = −2g(dxi, dxj), D =
p∑
i=1

dxj · ∇LCj ,

where · denotes Clifford multiplication and ∇LC is the lift of the Levi-Civita connection on
the cotangent bundle to the spinor bundle. Finally, let ωC be the complex volume form, [6],
which in local coordinates is given by

ωC = i[
p+1
2

]dx1 · · · dxp.

If we define C∞0 (X) to be the smooth complex-valued functions all of whose partial derivatives
vanish at infinity, we have
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Proposition 3 The tuple (C∞0 (X), L2(X,SC, g),D, ωC) is a spectral triple. It is (p,∞)-
summable, where p = dimX, and has discrete and simple dimension spectrum. For all com-
pactly supported a ∈ C∞0 (X), the operator a(1+D2)−p/2 is measurable, and so for any Dixmier
trace

Trω(a(1 +D2)−p/2) = c(p)
∫
X
a(x)dvol(x),

where c(p) is a constant depending only on p and dvol is the Riemannian volume form.

Proof In [2] it is shown that for a complete spin manifold, the topology (on smooth functions)
of convergence in the seminorms qn(a) =‖ δn(a) ‖D, a : X → C, δ(a) = [|D|, a], is the
topology of uniform convergence of all derivatives. Thus by Lemma 1, it suffices to show that
(C∞c (X), L2(X,SC, g),D, ωC) is a spectral triple, where C∞c (X) denotes the smooth compactly
supported functions. The first step is to show that D is essentially self-adjoint, and so can be
extended to a closed self-adjoint operator on L2(X,SC, g). An integration by parts shows that
D is symmetric. The completeness of X and the finite propagation speed of the Dirac operator
allows us to employ [7, Proposition 10.2.11], which shows that D is essentially self-adjoint.

The compactness and (p,∞)-summability results are proven in [3]. In particular, for all com-
pactly supported functions a on X, a(1 +D2)−p/2 ∈ L(1,∞)(L2(X,SC, g)). The statements on
the dimension spectrum are implied by Seeley’s results, [8, Theorem 4 and section 2], namely
that for any function a with support contained in a single coordinate chart (with compact
closure), the function

s −→ Trace(a(1 +D2)−s/2), s > p,

extends to a meromorphic function with at most simple poles. The value of the residue at
s = p is given by the Wodzicki residue [4, 8, 9, 10],

WRes(a(1 +D2)−p/2) =
2[p/2]

p(2π)p

∫
S∗X

a(x) ‖ ξ ‖−p dS(ξ)dvol = c(p)
∫
X
a(x)dvol(x).

By Connes’ trace theorem, [1, Appendix A], the operator a(1 +D2)−p/2 is in the Dixmier ideal
L(1,∞)(L2(X,SC, g)), and the Wodzicki residue coincides with the value of any Dixmier trace
on a(1+D2)−p/2. These results depend crucially on the self-adjointness and uniform ellipticity
of the Dirac operator.

To conclude that the dimension spectrum is simple we need to check that the above statements
are still true when we replace a ∈ C∞c (X) with b = δk(a) or b = δk([D, a]). In both cases,
b is an order zero pseudodifferential operator with principal symbol a compactly supported
function, [1, 2, 4]. The lower order terms do not contribute to the Wodzicki residue.

The grading conditions are well known, [6], and we have

ωCD + (−1)pDωC = 0

and ωC may be normalised to 1 when p is odd. Hence if dimX is even the triple is even, and
if dimX is odd, the triple is odd. 2

————————————–
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Now let g̃ be a positive semidefinite metric. That is a smooth, bounded, symmetric section of
TX ⊗ TX, possibly degenerate. Let

F = {x ∈ X : ∃0 6= α ∈ Γ(T ∗X) such that g̃(α, α)(x) = 0},

be the degeneracy set of g̃. We assume that F is closed, measure zero (with respect to the Rie-
mannian volume form defined by the original complete metric g) and a smooth submanifold
(possibly with boundary) so that X \ F is a smooth manifold. The Clifford algebra deter-
mined by the semidefinite metric g̃ allows one to define a new Dirac operator, so that in local
coordinates on X

dxi • dxj + dxj • dxi = −2g̃(dxi, dxj), D̃ =
p∑
i=1

dxi • ∇LCi ,

where • is the Clifford multiplication determined by the new metric g̃ and ∇LC is the lift of the
Levi-Civita connection (with respect to the old metric g) on TX to the spinor bundle (again
with respect to the old metric g). Thus we are retaining the spinor bundle and connection
of the complete metric g, and using g̃ to obtain a new Clifford action and hence a new Dirac
operator.

The only remaining issue is to define the action of the new Clifford algebra on the old spinor
bundle. An obviously sufficient condition for this to be possible is that there is an inclusion of
the algebras of sections

Γ(Cliff(TX, g̃)) ⊆ Γ(Cliff(TX, g)).

A sufficient condition for this to hold is as follows. Suppose that in any local coordinates we
have

g̃ij = fijgij ,

with each fij a smooth nonnegative function. Provided that for each i, j we have either
fij =

√
fiifjj or fij = 0, we can define a representation of the new Clifford algebra on the old

spinor bundle by setting

dxi • ξ =
√
fiidxi · ξ, ξ ∈ Γ(X,SC).

One can now check that the Clifford relations for the new metric are satisfied. In the even
case we also have (as operators on the spinor bundle or on Hilbert space) that dxi• and ωC

anticommute.

In the following we assume that the new Clifford algebra acts on the old spinor bundle, by
restricting to the above case if necessary.

Theorem 4 The tuple (C∞c (X \F ), L2(X,SC, g), D̃, ωC), with F and D̃ as above, is a spectral
triple. It is local and (p,∞)-summable, where p = dimX, and has discrete and simple dimen-
sion spectrum. For all functions a ∈ C∞c (X \F ), the operator a(1 + D̃2)−p/2 is measurable and
for any Dixmier trace

Trω(a(1 + D̃2)−p/2) =
1

p(2π)p

∫
X

∫
S∗X

a(x)Trace(g̃(ξ, ξ)−p/2)dS(ξ)dvol(x),
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where dS(ξ)dvol(x) is the volume form of the cosphere bundle S∗X for the complete metric g.

Proof The first portion of the proof is exactly the same as the last proposition, with D̃
self-adjoint by the completeness of X and the finite propagation speed of D̃, [7, Proposition
10.2.11], the finite propagation speed following from the boundedness of the semidefinite metric
g̃. To apply Seeley’s results, as in Proposition 3, to a(1 + D̃2)−s/2, we need to be sure that D̃2

is uniformly elliptic over the support of a. However, the support of a is disjoint from the set
of degeneracy F , so over the support of a, the size of the smallest eigenvalue of the principal
symbol of D̃2 is bounded from below (and is greater than zero). Thus Seeley’s techniques
can be applied, and we deduce the simplicity of the dimension spectrum. The remainder of
the proof now follows as in Proposition 3, the value of the Dixmier trace being given by the
Wodzicki residue, which is given by the formula in the statement of the proposition. 2

Remark The example in the next section employs a degenerate metric which is not bounded,
and so D̃ does not have finite propagation speed. Nevertheless, explicit calculations in the next
section show that D̃ is in fact self-adjoint.

Lemma 5 With (C∞c (X \ F ), L2(X,SC, g), D̃, ωC) as in the proposition, and σ the principal
symbol of D̃2, the algebra

Ah = {a ∈ C∞0 (X\F ) : x→ (∂αa)(x)TraceSC
(σ(x, ξ)−p/2) is integrable for all multi−indices α}

is a smooth algebra. Here integrability is over the cosphere bundle of X with respect to the
volume form of the original metric g.

Proof The algebraAh is dense in C0(X\F ), since it contains the smooth compactly supported
functions.

Define seminorms on Ah by

qn(a) = sup
|α|≤n

sup
x∈X
|∂αa(x)|, qn1(a) = sup

|α|≤n

∫
S∗X

∣∣∣(∂αa)(x)Trace(σ(x, ξ)−p/2)
∣∣∣ dS(ξ)dvol(x).

These seminorms determine a locally convex metrisable topology on Ah, and a standard ε/3
proof shows that Ah is complete, and so Fréchet.

To show that Ah is stable under the holomorphic functional calculus, suppose that a ∈ Ah and
1 + a is invertible in C((X \ F )+), with inverse 1 + b. Then b ∈ C0(X \ F ) and b is smooth.
This is because the equation a+ b+ ab = 0 implies that b = −a/(1 + a), which has derivatives
of all orders by hypothesis, and these all vanish at infinity. The integrability condition follows
similarly, since

bσ−p/2 = −aσ−p/2 − abσ−p/2 = −(1 + b)aσ−p/2,

and 1 + b is bounded whilst a satisfies the integrability criteria by hypothesis. Differentiating
b = −(1 + b)a, and applying the Leibniz rule completes the proof. Hence Ah is stable under
the holomorphic functional calculus, and so smooth. 2

Corollary 6 The results of Proposition 4 remain true with the compactly supported functions
replaced by Ah.
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Proof (Sketch) For a ∈ Ah positive, we may use the monotone convergence theorem for the
measure

µ(E) =
∫
S∗E

TraceSC
(σ(x, ξ)−p/2)dS(ξ)dvol(x), E ⊂ X \ F,

to show that the measurability results hold for a ≥ 0. Linearity allows us to conclude for general
a ∈ Ah. This measurability result, and its proof, is essentially the same as [4, Corollary 7.22].
The boundedness of [D, a], a ∈ Ah, follows from the smoothness of the functions in Ah. 2

This is important for computing the pairing with K-theory. Along with results proved in
[2, 3], this means that we can apply the Local Index Theorem to compute the pairing of the
K-homology class of the spectral triple of a degenerate metric on X with the K-theory of
X \ F . This follows because

K∗(Ah) ∼= K∗(C0(X \ F ),

so any class [x] in the right hand group has a representative x ∈MN (Ah) for some sufficiently
large N . This result of course applies to the case where g̃ is not degenerate; in particular it
aplies to g.

4 A Detailed Example

In this section we present an example which shows how the construction of spectral triples
from degenerate metrics can be used to do index theory on mildly singular spaces. We are
quite explicit in what follows, so that it is clear what prevents us being able to work with some
algebra of functions which is nonzero on the set of degeneracy of the metric.

The computations in this section determine precisely for which functions we obtain a spectral
triple. Once this is done, we compute the K-theory of the singular space on which we work,
and identify generators of the even K-theory. The index pairing between the spectral triple
on this singular space and the K-theory generators is then determined using the Local Index
Theorem of Connes-Moscovici, [1], which reduces to a Wodzicki residue computation.

We build this triple by making a deliberately naive attempt to work on a singular space. The
extremely simple space we choose is the double cone,

C = {(x, y, z) ∈ R3 : x2 + y2 = κ2z2},

where κ = tan(α2 ), and α ∈ (0, π) is the cone angle.

At every point z 6= 0, we have a well-defined cotangent space, and choosing cylindrical coordi-
nates (z, θ), this cotangent space is spanned by dz, dθ. At each such point, we define a Clifford
action of these covectors on C2 by

dz =

(
0 −κ
κ 0

)
, dθ =

(
0 κz

i
κz
i 0

)
.

These satisfy the Clifford relations for the metric

g(z, θ) =

(
κ2z2 0

0 κ2

)
.
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Of course this metric is degenerate at z = 0, but elsewhere reproduces the correct distances
on the cone. The next step is to define the corresponding Dirac operator,

D = dz∂z + dθ∂θ =

(
0 κz

i ∂θ − κ∂z
κz
i ∂θ + κ∂z 0

)
.

We initially regard D, and D2, as defined on the smooth sections of the spinor bundle over the
cylinder, which are of rapid decrease. In the Hilbert space completions below, this will mean
that D is not closed, but by [7, Lemma 10.2.1], it is closable.

The Hilbert space we employ is H = L2(Cyl,C2, dzdθ), where Cyl denotes the doubly infinite
cylinder of unit radius, L2(Cyl,C2) is the L2 sections of the trivial plane bundle (the spinor
bundle) over the cylinder, and dzdθ denotes the usual Riemannian volume form on the cylinder
(not the above Clifford action). By making this choice of Hilbert space we are regarding the
cone as the cylinder imbued with a degenerate metric.

The operator Γ = idzdθ is a Z2-grading for H anticommuting with D. In this expression dz, dθ
act via the usual Clifford action on the cylinder,

dz =

(
0 −1
1 0

)
dθ =

(
0 −i
−i 0

)
, Γ =

(
−1 0
0 1

)
.

So there is a good deal of interplay between the two metrics we have imposed on the cylinder.

Finally, our algebra of functions must encode the topology of the cone, and act on H. We must
expect trouble from the singularity at z = 0, so we adopt the definition

A = {a : C → C : zk∂mθ ∂
l
za is smooth and vanishes at z = 0,±∞ for all k, l,m ≥ 0}.

The vanishing of a function a at z = 0,±∞ is taken in the usual topological sense, so a(z)→ 0
as z → 0,±∞. The algebra A has a local structure, with the dense ideal of functions compactly
supported away from z = 0,±∞ providing Ac ⊆ A. We let A act by multiplication on H.

Next we compute the spectrum of the operator D. The sensible way to tackle the spectrum of
a Dirac operator is to first consider the associated Laplace equation.

Lemma 7 The operator D2 is essentially self-adjoint with spectrum the nonnegative reals. The
kernel is infinite dimensional, the point spectrum consists of the values 2κ2N , N > 0 integral,
with multiplicity 4d(N), where d(N) is the divisor function of N .

Proof We first consider the equation

D2ξ = λ2ξ,(
−z2∂2

θ − ∂2
z − 1

i ∂θ 0
0 −z2∂2

θ − ∂2
z + 1

i ∂θ

)(
ξ1
ξ2

)
=
λ2

κ2

(
ξ1
ξ2

)
.

To solve this equation, we employ separation of variables. If we can span the Hilbert space
with such solutions there will be no need to try anything more esoteric.

For the first component we write ξ1(z, θ) = f(θ)g(z), and we consider three possibilities.
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(1) f is constant. In this case the equation for the first component reduces to

g′′(z) = −λ
2

κ2
g(z).

If λ2 > 0, then the only solutions are oscillatory, and do not vanish at infinity. Provided that
such a λ2 is not an eigenvalue, this shows that it is in the continuous spectrum of D2. If λ2 = 0,
we will obtain a linear solution, again not vanishing at infinity, but we will see later that there
are in fact many solutions in the kernel of D2. Finally, if λ2 < 0, we have the solutions

gλ(z) = e
±
√
−λ2

κ2 z,

and these fail to vanish at one of ±∞ or the other, and they do not belong to the Hilbert
space.

(2) f(θ) = eimθ, m > 0. This yields the equation

g′′(z) = (z2m2 −m− λ2

κ2
)g(z).

The substitution g(z) = g̃(z)e−
m
2
z2 reduces this to

g̃′′(z)− 2mzg̃′(z) +
λ2

κ2
g̃ = 0.

For m = 1 this is the defining equation for the Hermite polynomials, and it is not difficult from
there to see that

g(z) = Hn(
√
mz)e−

m
2
z2 , λ2 = 2κ2nm, m > 0, n ≥ 0

is the unique square integrable solution, [12, 13].

(3) f = e−imθ, m > 0. With the same ansatz as the last case we find

g̃′′(z)− 2mzg̃′(z)− (2m− λ2

κ2
)g̃(z) = 0,

and for λ2 = 2κ2m(n+ 1) this is the same as for the last case. Thus the unique solution is

g(z) = Hn(
√
mz)e−

m
2
z2 , λ2 = 2κ2m(n+ 1), m > 0, n ≥ 0.

The equation for the second component behaves exactly as the first when f is constant, while
the rôles of the two cases f(θ) = eimθ and f(θ) = e−imθ are reversed.

For n ≥ 0 and 0 6= m ∈ Z, define the functions snm = eimθe−|m|z
2/2Hn(

√
mz). For n < 0 we

set snm = 0, and for m = 0 we set sn0 = e−z
2/2Hn(z). Next define spinors

ξnm1(z, θ) =

(
snm

0

)
, ξnm2(z, θ) =

(
0
snm

)
.
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Using the orthogonality relations∫ ∞
−∞

Hn(w)Hm(w)e−w
2
dw = δnm2nn!

√
π,

∫ 2π

0
eilθe−imθdθ = δlm2π

and the completeness of the Hermite and trigonometric polynomials, one can show that these
spinors provide a complete orthogonal basis of L2(Cyl,C2).

The operator D2 is defined on all finite linear combinations of these spinors, which is a dense
subset of the smooth spinors of rapid decrease. Thus it suffices to show that D2 is essentially
self-adjoint on this subspace, for then the unique self-adjoint extension, given by the closure,
will coincide with the closure of D2 defined on all smooth spinors of rapid decrease. Moreover
the projections on to the (closures of the) following three subspaces commute with D2, so we
can write D2 as the direct sum of the restrictions of D2 to these subspaces. The subspaces are:

• The kernel of D2 is the L2 closure of the span of the spinors ξ0m1, m < 0, and ξ0m2, m > 0.
Thus the restriction of D2 to this subspace is a closed operator.

• The restriction of D2 to finite linear combinations of the spinors ξn0i, i = 1, 2 is essentially
self-adjoint. This follows because these basis vectors are independent of θ and so D2 acts as
−∂2

z , which is known to be essentially self-adjoint with continuous spectrum the positive reals.

• Finally, the action of D2 on the subspace of finite linear combinations of the eigenspinors for
nonzero eigenvalues is essentially self-adjoint. This follows from the denseness of the range of
D2± i on this subspace and [11, p 257]. The denseness of the range of D2± i follows from the
explicit computations above.

Since D2 is the direct sum of these three restrictions, D2 is essentially self-adjoint and so has
a unique self-adjoint extension, which we shall also refer to as D2.

Thus the spectrum of D2 is the nonnegative real axis, with the points 2κ2N , N ∈ N, being
eigenvalues and everything else being continuous spectrum. The multiplicity of each λ2 =
2κ2N , N > 0, is 4d(N), where d(N) is the divisor function, the number of divisors of N
including 1 and N , [14]. The origin of the divisor function is clear; the four arises by counting
the eigenvectors for λ2 = 2κ2nm, m > 0, n > 0, namely ξn(−m)1, ξnm2, and those for λ2 =
2κ2m(n+ 1), m > 0, n ≥ 0, which are ξnm1, ξn(−m)2. 2

The presence of the divisor function, whose asymptotics are extremely subtle, [14], indicates
that the zeta function of D2 will have very interesting behaviour.

Lemma 8 The operator D is essentially self-adjoint with spectrum the whole real line. The
kernel is infinite dimensional, the point spectrum consists of the values ±κ

√
2N , N > 0 integral,

with multiplicity 2d(N).

Proof As in Lemma 7, for n ≥ 0 and m > 0, define functions snm = eimθe−mz
2/2Hn(

√
mz).

For n < 0 we set snm = 0, and for m = 0 we set sn0 = e−z
2/2Hn(z).

Using the orthogonality relations and the completeness of the Hermite and trigonometric poly-
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nomials as in Lemma 7, it is easy to check that the spinors

χnm± =



( √
2nsn−1,m

∓snm

)
m < 0(

±snm√
2nsn−1,m

)
m > 0(

sn0

±isn0

)
m = 0

provide a complete orthogonal basis for L2(Cyl,C2). For m 6= 0, Dχnm± = ±κ
√

2nmχnm±,
and for m = 0, Dχn0± = ±(κ/i)∂zχn0±. As in Lemma 7, D is closed on its kernel (spanned
by χ0m±, m 6= 0), acts as ±(κ/i)∂z on two copies of L2(R) (spanned by χn0±), and D ± i has
dense range when restricted to the finite linear combinations of the eigenvectors χnm±, m 6= 0.
As D is the direct sum of these restrictions, and each is essentially self-adjoint, D is essentially
self-adjoint, [11, p 257], and has a unique self-adjoint extension which we also denote by D. 2

In the following we will be estimating traces for operators of the form a(1 + D2)−s, a ∈ A.
The basis described in Lemma 7 is more suitable than that in Lemma 8. The normalisations
to obtain an orthonormal basis are

ξnmi −→
|m|1/4√

2π
√
π2nn!

ξnmi i = 1, 2, m 6= 0, (2)

ξn0i −→
1√

2π
√
π2nn!

ξn0i, i = 1, 2.

The only remaining item to check in order to show that (A,H,D,Γ) is a spectral triple is the
compactness of a(1 +D2)−1/2, for all a ∈ A compactly supported away from zero.

Lemma 9 If a ∈ A has compact support disjoint from the set {(z, θ) ∈ R × [0, 2π) : z = 0},
then the operator a(1 + D2)−1/2 is compact. If a is a function defined on the cone which is
nonzero at z = 0, a(1 +D2)−1/2 is not compact.

Proof Write H = Hc⊕Hp⊕Hk for the decomposition of H into closed subspaces correspond-
ing to the continuous subspace, the nonzero eigenspaces and the kernel of D2, respectively. Let
Pc, Pp, Pk be the corresponding projections. Then from what we already know about the
spectrum of D2, and employing the closure of the compacts under adjoints,

a(1 +D2)−
1
2 =

 ? K ?
K K K
? K ?


 HcHp
Hk

 ,
where K indicates that the entry is a compact operator between the appropriate subspaces.
So, we begin with

Pca(1 +D2)−
1
2Pc = ã

(
1− κ2∂2

z 0
0 1− κ2∂2

z

)− 1
2

,
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where a(z, θ) = ã(z) +
∑
m 6=0 am(z)eimθ. In this case, [3, Proposition 21] shows that

Pca(1 +D2)−
1
2Pc ∈ L(1,∞)(Hc),

and so compact. In fact it is measurable and

−
∫
Pca(1 +D2)−

1
2Pc = κc(2)

∫ ∞
−∞

ã(z)dz.

Note that this piece of the computation did not require that a be nonzero at z = 0. Next we
consider

Pka(1 +D2)−
1
2Pc.

The projection Pk projects on to the subspace spanned by

eimθe−
m
2
z2 , e−imθe−

m
2
z2 , m > 0

while Pc projects on to the space spanned by Hn(z)e−
z2

2 , n ≥ 0. Thus we need to estimate

m1/4

2π
√

2π2kk!

∣∣∣∣∫
C
a(z, θ)Hk(z)e−

m+1
2
z2e−imθdzdθ

∣∣∣∣ .
Let amk is the coefficient of Hk(z) in the expansion of the function am(z) in the basis provided
by the Hermite functions (with respect to the measure e−z

2
dz). These coefficents amk are

o((mk)−1/2) for large k,m. Thus

m1/4

2π
√

2π2kk!

∣∣∣∣∫
C
a(z, θ)Hk(z)e−

m+1
2
z2e−imθdzdθ

∣∣∣∣ ≤ m1/4

√
2
amk −→ 0.

So Pka(1 +D2)−
1
2Pc is compact. In fact we have shown that this term remains compact even

if a is not zero at z = 0.

We now come to the final term. It is now that we need the compact support away from z = 0
for the functions a that we consider. So let supp(a(z, θ)) ⊆ ([−K,−ε] ∪ [ε,K]) × [0, 2π] for
some K >> 1. Then

Pka(1 +D2)−
1
2Pk = PkaPk

is compact, and to show this we need to estimate
√
m

2
√
π

∣∣∣∣∫ ∞
−∞

∫ 2π

0
e−mz

2
a(z, θ)dzdθ

∣∣∣∣ ≤ √m2
√
π
e−mε

2 ‖ ã(z) ‖1,

and we see that this is compact. If a is compactly supported but nonzero at z = 0, the sequence
of integrals ∣∣∣∣∫ ∞

−∞

∫ 2π

0
e−mz

2
a(z, θ)dzdθ

∣∣∣∣
is O(m−1/2), and so the operator Pka(1 +D2)−

1
2Pk is bounded but not compact. 2
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From Theorem 4 we know that the triple we have built over the cone has discrete and simple
dimension spectrum, and is (2,∞)-summable. So for a compactly supported away from zero,

Trace(a(1 +D2)−s)

is meromorphic, where initially we suppose that s >> 1. This trace is the sum of three pieces

Trace(a(1 +D2)−s) = Trace(Pka(1 +D2)−sPk)
+ Trace(Pca(1 +D2)−sPc) + Trace(Ppa(1 +D2)−sPp).

As already noted, Trace(Pca(1 + D2)−sPc) is holomorphic for all s with Re(s) > 1
2 . The pole

at s = 1
2 is simple and the residue is given by

ress= 1
2
Trace(Pca(1 +D2)−sPc) =

κ

2π2

∫ ∞
−∞

ã(z)dz,

with ã the piece of a independent of θ. Seeley’s results, [8, Theorem 4 and section 2], and the
compact support of ã, allow us to conclude that this piece of the trace analytically continues
to C with the exceptions of the half-integers less than or equal to 1

2 , and all poles are simple.

We have already seen that the contribution of

Trace(Pka(1 +D2)−sPk) = Trace(PkaPk)

is independent of s and in fact finite (provided a is supported away from z = 0), from our
earlier estimate. So we are left with the point spectrum.

It is shown in [14, Thm 289, p250] that
∞∑
n=1

d(n)
ns

= ζ(s)2, s > 1,

where ζ denotes the Riemann zeta function.

To put this information to use, we estimate∣∣∣Trace(Ppa(1 +D2)−sPp)
∣∣∣ =

∑
k,m>0

4
√
m(1 + 2κ2mk)−s

2π
√
π2kk!

∣∣∣∣∫
C
a(z, θ)H2

k(
√
mz)e−mz

2
dzdθ

∣∣∣∣
≤ 4 ‖ ã ‖∞

∑
k,m>0

(1 + 2κ2km)−s

∼ 4 ‖ ã ‖∞ 22−sκ−2s
∞∑
n=1

d(n)
ns

.

Here ∼ indicates that

lim
s→1+

(22−sκ−2s
∞∑
n=1

d(n)
ns
−

∑
k,m>0

(1 + 2κ2km)−s) = constant.

Indeed

lim
s→1+

∑
m,k>0

(2mk)−s(1 +
1

2mk
)−s = lim

s→1+
2−s

∞∑
n=1

d(n)
ns

+
∞∑
k=1

(−1)k

2k+1

∞∑
n=1

d(n)
nk+1

.
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So summing over the nonzero eigenvalues of (1 +D2)−s gives asymptotically

∣∣∣Trace(Pp(1 +D2)−sPp)
∣∣∣ ∼ 22−sκ−2s

∞∑
n=1

d(n)n−s

= 22−sκ−2s(
1

(1− s)2
+

γ

s− 1
+ γ2 + holomorphic).

This shows that
∣∣Trace(a(1 +D2)−s)

∣∣ contains at worst a double pole. The precise behaviour
will depend on a. Here γ is Euler’s constant, the value of φ(s) at s = 1 where ζ(s) = 1

s−1 +φ(s)
with φ holomorphic.

In fact we have already shown that if the function a has support disjoint from the set {z = 0},
there can only be a simple pole. This follows from Theorem 4 and Lemma 9. Computing the
actual values of the residue requires a concrete form for the function a, and of course we are
mostly interested in the case where the function a is (a component of) a projection or unitary
representing a K-theory class.

The Local Index Theorem [1, 3] gives us a formula for components of the Chern character of
(A,H,D,Γ). Substituting the various constant terms and using the simplicity of the dimension
spectrum we obtain

φ2(a0, a1, a2) =
1
2
τ0(Γa0da1da2(1 +D2)−1)

φ0(a0) = resz=0
1
z

Trace(Γa0(1 +D2)−z).

The top component involves the coefficient of 1
z in the Laurent expansion at z = 0 of Trace(a(1+

D2)−1−z), while the zero-th component involves the coefficient of the constant term. A routine
calculation shows that

Γa0[D, a1][D, a2] =

(
−a0g(da1, da2)− izκ2a0da1 ∧ da2 0

0 a0g(da1, da2)− izκ2a0da1 ∧ da2

)
,

so the trace Trace(Γa0da1da2(1 +D2)−s) is given by

2iκ2TraceH+(a0((∂za1)(∂θa2)− (∂θa1)(∂za2))z(1 +D2)−s) (3)

where H+ is the +1 eigenspace of Γ. The factor of κ2 is precisely what one would expect for
a critical point at s = 1 since (D2 + 1)−s ∼ κ−2s; κ is a geometric feature, and the residues
we are employing compute purely topological quantities, and so should be insensitive to the
precise value of κ.

To compute the pairing with K-theory using the residue, we require a concrete form for the
generators of the even K-group of the cone. We first compute the K-theory for the cone.

Lemma 10 The K-theory of the cone is given by

K0(C0(cone)) ∼= Z2, K1(C0(cone)) ∼= Z2
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Proof The (C∗-closure of the) algebra of functions we are employing decomposes as

A ∼= C0(R2 \ {0})⊕ C0(R2 \ {0}),

so K∗(A) ∼= K0(C0(R2 \ {0})) ⊕K0(C0(R2 \ {0})). To compute K0(C0(R2 \ {0})), and find
explicit generators, consider the exact sequence, [7, 4],

0 −→ C0(R2 \ {0}) −→ C(D2) −→ C(S1)⊕C −→ 0,

where C0(R2\{0}) is included as the continuous functions on the closed unit disk D2 vanishing
at 0 and on the boundary circle. The corresponding K-theory exact sequence is

0 −→ K1(C(S1)⊕C) Ind−→ K0(C0(R2 \ {0})) −→ Z −→ Z⊕ Z
exp−→ K1(C0(R2 \ {0})) −→ 0,

since K1(C(D2)) = {0}. The Index map on the left is necessarily injective, and it is also onto.
To see this, observe that the map from K0(D2) ∼= Z to K0(C(S1) ⊕ C) ∼= Z ⊕ Z takes the
trival bundle of rank k on the disk to the trivial bundle of rank k on the circle union the point
zero. Hence it is the diagonal map, and is injective, whence the map from K0(C0(R2 \ {0}))
to K0(D2) is zero. Furthermore, the exponential map on the right is onto, taking (n,m) onto
n−m. 2

So to obtain the generator of K0(C0(R2 \ {0})) ∼= Z, it suffices to find a generator for the
odd K-group of the circle union a point, and apply the boundary map. The obvious generator
of K1(C(S1) ⊕ C) is the function which is the identity on the circle, and equal to 1 on the
adjoined point. This is unitary. To apply the boundary map, we first need to ‘double’ this
unitary to an element of the connected component of the identity, (in a larger matrix algebra)
so

IdS1 ⊕ 1 −→ w :=

(
IdS1 ⊕ 1 0

0 Id∗S1 ⊕ 1

)
where Id∗S1 : z → z. Then we need to lift this unitary to a function in C(D2) which is equal to
w modulo C0(R2 \ {0}). So choose any continuous function f on the closed disk such that f is
the identity on the boundary, 1 at the centre and has |f |2 ≤ 1 on the whole disk; for example

f(reiθ) = reiθ + (1− r)

will do. Then the required lift is

w̃ =

(
f

√
1− |f |2

−
√

1− |f |2 f

)
.

Finally, we obtain a generator of K0(C0(R2 \ {0})) defined by

Bott0 := w̃

(
1 0
0 0

)
w̃−1 −

(
1 0
0 0

)

=

(
|f |2 − 1 −f

√
1− |f |2

−f
√

1− |f |2 1− |f |2

)
= pB − 1.
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This is the analogue of the Bott generator on the punctured disk. To convert this into a
projection in M2(C0(R2 \ {0})) (as opposed to M2(punctured disk)), we need to compose f
with a diffeomorphism h : (0,∞) → (0, 1). We leave this choice until later. Finally, to obtain
generators on the cone, we take the Bott generator on each half and extend them by zero to
the other half.

To compute the Chern character pairing, first recall that for a projection p , [4],

Ch0(p) =
∑
i

pii,

Ch2(p) = −2
∑
i,j,k

(p− 1
2

)ij ⊗ pjk ⊗ pki,

which is the trace of (p − 1
2)dpdp ∈ Ω∗(M2(A)), the universal differential algebra, [4, p320].

We actually require Ch∗(pB)− Ch∗(
(

1 0
0 0

)
), but Ch2(1) = 0 and

Ch0(pB)− trace

(
1 0
0 0

)
= trace

(
pB −

(
1 0
0 0

))
,

and this trace is zero. Hence

Ress=0
1
s

TraceH2(Γ2(Ch0(pB)− Ch0(1))(1 +D2
2)−s) = 0,

and we need only worry about the order two pairing. Since this has only a simple pole, we
may compute it using the Wodzicki residue, [9, 1, 10], via Connes’ trace theorem.

Proposition 11 The index pairing between the Bott generator supported on the positive half
of the cone and the spectral triple (A,H,D,Γ) described above is

〈[pB]− 1, [(A,H,D,Γ)]〉 = 1.

Proof To complete the computation of the pairing, we must choose an explicit diffeomorphism
h : (0,∞)→ (0, 1). We take

h(z) = 1− e−z2 ,

as this allows effective computations. Substituting in the components of pB into the formula
for the Chern character yields −4iκ2Kz, where K is a complicated expression in terms of z
and θ. The integral in the θ direction of K yields∫ 2π

0
Kdθ = −4πiz(e−2z2 − e−z2).

Together with the definition of the Wodzicki residue of an operator of order −2 on the cylinder,

Wres(A) =
1

2(2π)2

∫
Cyl

∫
‖ξ‖=1

σA−2(x, ξ)dS(ξ)dvol(x),
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we can compute the pairing. The computation is as follows.

= Wres(
∑
ijk

(p− 1/2)ij [D, pjk][D, pki](1 +D2)−1)

=
−2i

(2π)2

∫ ∞
−∞

∫ 2π

0
K

(∫
ξ2
θ
+ξ2z=1

(z2ξ2θ + ξ2z )−1dS

)
zdzdθ (4)

=
−i
2π2

∫ ∞
−∞

∫ 2π

0
K

(∫ 2π

0
(z2 sin2 t+ cos2 t)−1dt

)
zdzdθ (5)

=
−i
2π2

∫ ∞
−∞

∫ 2π

0
K

2π
|z|
zdzdθ (6)

=
−i
π

∫ ∞
0

(−4πi)z(e−2z2 − e−z2)dz (7)

= −4
(∫ ∞

0
ze−2z2dz −

∫ ∞
0

ze−z
2
dz

)
= −4(

Γ(1)
22
− Γ(1)

2
)

= −1 + 2 = 1.
(8)

Equation (4) is just the definition of the Wodzicki residue, and we have replaced the sum of
products of differentials of components of pB with −4izκ2K, as described above. The integral
in equation (5) is a standard one, and the equality between (6) and (7) follows from integrating
K in the θ direction. Finally we recall, the Bott projector we employ is supported only on a
half-line, so the |z| term becomes simply z. 2

It is clear from the above computation that if we begin with the punctured Bott projector on
the other half of the cone (i.e. z < 0) we obtain the result −1.

A final point to notice is that the trace over the continuous subspace for D and the trace over
the kernel of D do not contribute, since both are finite as s → 1. For the kernel this follows
from our previous estimates and the independence of this trace on s, and for the continuous
subspace it follows from our earlier computation that the trace only becomes singular as s→ 1

2 .
Thus only the point spectrum of D contributes to the above pairing.

The industrious reader will find that the explicit expression for the trace of Ch2(pB)(1+D2)−s

is given by the function

T (s) =
∑
N>1

−4κ2

(1 + 2κ2N)s
∑
m|N

∑
l=1,2

(−1)l
(
N +m

m2
AN/m+1,m,l +

N

m
AN/m−1,m,l

+
N

m2
AN/m,m,l +

N −m
m

AN/m−2,m,l

)
,
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or,

∑
n,m>1

−4κ2

(1 + 2κ2nm)s
∑
l=1,2

(−1)l
(
n+ 1
m

An+1,m,l + nAn−1,m,l +
n

m
An,m,l + (n− 1)An−2,m,l

)
,

the two obviously being equal. Here

An,m,l =
√
m

π

[n/2]∑
k,p=0

(−1)k+pn!2n−2k−2pmn−k−pΓ(n− k − p+ 1
2)

k!p!(n− 2k)!(n− 2p)!(m+ l)n−k−p+
1
2

.

Our computations have shown that T is a meromorphic function whose residue at s = 1 is
precisely 1.

5 Conclusion

Despite obtaining (p,∞)-summable spectral triples from degenerate metrics, our original aim
of obtaining a spectral triple with non-simple dimension spectrum failed. We feel that explicit
examples of non-simple dimension spectrum are an important step towards understanding the
full content of the Local Index theorem of Connes-Moscovici, [1].
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