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Abstract

We provide a proof of Connes’ formula for a representative of the Hochschild class
of the Chern character for (p,∞)-summable spectral triples. Our proof is valid for all
semifinite von Neumann algebras, and all integral p ≥ 1. We employ the minimum possible
hypotheses on the spectral triples. b

bAMS Subject classification: Primary: 19K56, 46L80; secondary: 58B30, 46L87. Keywords and Phrases:

von Neumann algebra, Fredholm module, cyclic cohomology, chern character.
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1 Introduction

A key result in the quantised calculus of Alain Connes ([9, IV.2.γ]) is the formula for the
Hochschild class of the Chern character of a (p,∞)-summable spectral triple (these notions are
explained below).

Our aim is to generalise this formula to encompass the situation in which one uses, instead
of the bounded operators on Hilbert space and its various ideals of compact operators, a gen-
eral semifinite von Neumann algebra and the analogous ideals as described for example in
[18, 26]. Moreover we aim to prove the formula in the greatest possible generality with only
the absolutely essential side conditions. This is a delicate matter as regards the amount of
smoothness or regularity necessary. The result has been stated, [21, Theorem 10.32], with the
hypothesis that the algebra be ‘twice quantum differentiable’ (see below), but the proof ap-
pearing in [21, pp 470-479] does not quite hold with this hypothesis. We employ the hypothesis
of ‘max{2, p − 2} quantum differentiability’, and while this is sufficient, the necessity of this
condition is unknown to us. Indeed, we only require this stronger hypothesis at one (crucial)
point, Proposition 23, but we isolate the particular statement which uses this hypothesis in
Lemma 2.

A rationale for the extension of Connes’ spectral geometry to the case of general semifinite
von Neumann algebras is presented in [1]. Examples where this notion arises naturally are
non-smooth foliations [1, 25], the L2-index theorem (see [24] and references therein) and L2

spectral flow [3, 4].

In order to describe our results some preliminary machinery is needed (all of this is contained
in [9] in the type I case). We deal with this in Section 2. We first describe spectral triples
for semifinite von Neumann algebras, including definitions of smoothness and summability.
We then briefly recall the Hochschild and cyclic cohomology theories, and explain what the
Hochschild class of the Chern character is, and what kind of information it contains.

The last preliminary subsection describes results from [6], where a proof of the connection
between the trace of the heat kernel and the Dixmier trace is presented. The idea has previously
appeared, [9, p 563], but this is the first proof simultaneously valid for the case p = 1 and the
general semifinite case. It is a key tool in our proof.

Section 3 begins with a statement of the main result and its main corollaries. The expert reader
can skip straight to Subsections 3.1 and 3.2 for our result, its corollaries, and how it relates
to the significant body of previous work on this general topic. We then set out the proof as
clearly as possible, and in the greatest possible generality. The proof is considerably simplified
by the assumption of invertibility of the ‘Dirac’ operator D, but a standard construction in
K-homology and computations contained in the Appendix show that the result remains true
even when this is not the case.
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2 Background Material and Preliminary Results

2.1 Spectral Triples

We begin with some semifinite versions of standard definitions and results.

Definition 1 A semifinite spectral triple (A,H,D) is given by a Hilbert space H, a ∗-algebra
A ⊂ N where N is a semifinite von Neumann algebra acting on H, and a densely defined
unbounded self-adjoint operator D affiliated to N such that

1) [D, a] is densely defined and extends to a bounded operator in N for all a ∈ A
2) (λ−D)−1 ∈ K(N ) for all λ 6∈ R

Here K(N ) is the ideal of τ -compact operators in N (this is explained in the next section). We
say that (A,H,D) is even if in addition there is a Z2-grading such that A is even and D is
odd. That is an operator Γ such that Γ = Γ∗, Γ2 = 1, Γa = aΓ for all a ∈ A and DΓ+ΓD = 0.
Otherwise we say that (A,H,D) is odd.

Remark We will write Γ in all our formulae, with the understanding that if (A,H,D) is odd,
Γ = 1 and of course, we drop the assumption that DΓ + ΓD = 0. Alas, we will also employ
the gamma function in this paper, but the meaning of the symbol ‘Γ’ should be clear from
context. Henceforth we omit the term semifinite as it is implied by the use of a faithful normal
semifinite trace τ on N in all of the subsequent text.

Definition 2 A spectral triple (A,H,D) is QCk for k ≥ 1 (Q for quantum) if for all a ∈ A the
operators a and [D, a] are in the domain of δk where δ(T ) = [|D|, T ] is the (partially defined)
derivation on N defined by |D|. We say that (A,H,D) is smooth if it is QCk for all k ≥ 1.

Remark The notation is meant to be analogous to the classical case, but we introduce the
Q so that there is no confusion between quantum differentiability of a ∈ A and classical
differentiability of functions. We may also speak about a QC0 spectral triple, where only a
and [D, a] are assumed bounded. We also note that if T ∈ N , one can show that [|D|, T ] is
bounded if and only if [(1 + D2)1/2, T ] is bounded, by using the functional calculus to show
that |D| − (1 + D2)1/2 is a bounded operator and lies in N .

2.1.1 Summability

Recall from [18] that if S ∈ N the t-th generalized singular value of S for each real t > 0
is given by

µt(S) = inf{‖ SE ‖ | E is a projection in N with τ(1 − E) ≤ t}.

We write T1 ≺≺ T2 to mean that
∫ t
0 µs(T1)ds ≤

∫ t
0 µs(T2)ds for all t > 0.

Definition 3 If I is a ∗-ideal in N which is complete in a norm ‖ · ‖I then we will call I a
symmetric operator ideal if
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(1) ‖ S ‖I≥‖ S ‖ for all S ∈ I,
(2) ‖ S∗ ‖I=‖ S ‖I for all S ∈ I,
(3) ‖ ASB ‖I≤‖ A ‖ ‖ S ‖I‖ B ‖ for all S ∈ I, A,B ∈ N .
Since I is an ideal in a von Neumann algebra, it follows from I.1.6, Proposition 10 of [13] that
if 0 ≤ S ≤ T and T ∈ I, then S ∈ I and ‖ S ‖I≤‖ T ‖I .

Such ideals are special cases of symmetric operator spaces (see [26] and references therein).
The main examples of such ideals that we consider in this paper are the spaces

L(1,∞)(N ) =

{
T ∈ N | ‖T‖

L(1,∞)
:= sup

t>0

1

log(1 + t)

∫ t

0
µs(T )ds <∞

}
.

and with p > 1,

ψp(t) =

{
t for 0 ≤ t ≤ 1

t
1− 1

p for 1 ≤ t

L(p,∞)(N ) =

{
T ∈ N | ‖T‖

L(p,∞)
:= sup

t>0

1

ψp(t)

∫ t

0
µs(T )ds <∞

}
.

For p > 1 there is also the equivalent definition (see for example [26, Section 5])

L(p,∞)(N ) =

{
T ∈ N | sup

t>0

t

ψp(t)
µt(T ) <∞

}
.

It is well-known (see e.g. [26]) that for T1 ∈ N , T2 ∈ L(p,∞)(N ), p ∈ [1,∞), the condition
T1 ≺≺ T2 implies that T1 ∈ L(p,∞)(N ). We denote the norm on L(p,∞) by ‖ · ‖(p,∞).

As we will not change N throughout the paper we will suppress the (N ) to lighten the notation.
The reader should note that L(p,∞) is often taken to mean an ideal in the algebra Ñ of τ -
measurable operators affiliated to N . Our notation is however consistent with that of [9] in
the special case N = B(H). With this convention the ideal of τ -compact operators, K(N ),
consists of those T ∈ N (as opposed to Ñ ) such that

µ∞(T ) := lim
t→∞

µt(T ) = 0.

Definition 4 A spectral triple (A,H,D) is called (p,∞)-summable if (1 + D2)−1/2 ∈ L(p,∞).

We will also require the ideals Lp(N ) and L(p,1)(N ), for p ≥ 1. An operator T ∈ N is in Lp(N )
if

‖ T ‖p:= τ(|T |p)1/p <∞.

In the Type I setting these are the usual Schatten ideals. Again we will simply write Lp for
these ideals in order to simplify the notation, and denote the norm on Lp by ‖ · ‖p. An operator
T ∈ N is in L(p,1)(N ) if, [26],

‖ T ‖(p,1):= (1/p

∫ ∞

0
(t1/pµt(T ))dt/t) <∞.
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For p = 1 the ideal L(p,1) coincides with L1. We denote the norm on L(p,1) by ‖ · ‖(p,1). If

1 < p < ∞ and 1
p + 1

q = 1, then the Köthe dual of L(p,1) is L(q,∞), [16]. For p = 1 the Köthe

dual of L1 is just N .

We use the following results repeatedly. They tell us the summability of various operators
associated to a (p,∞)-summable spectral triple. The results are established in [7, Propositions
1.1 and 1.2], namely that for any τ -measurable operators T1 and T2 we have

µ(T1T2) ≺≺ µ(T1)µ(T2),

where µ(T ) denotes the function s → µs(T ). Moreover, for any self-adjoint τ -measurable
operators T and S with T ≥ 0,

−T ≤ S ≤ T implies S ≺≺ T.

Lemma 1 ([21]) Let (A,H,D) be a (p,∞)-summable QCk spectral triple, k ≥ 0, with p ≥ 1
and D invertible. Then for all a ∈ A

[F, a], [F, δ(a)], · · · , [F, δk(a)] ∈ L(p,∞),

where F = D|D|−1.

Proof We start with the formula

|D|−1 =
1

π

∫ ∞

0
(λ+ D2)−1 dλ√

λ
.

This is used to rewrite [F, a] in the following way.

[F, a] = [D|D|−1, a] = [D, a]|D|−1 + D[|D|−1, a]

=
1

π

∫ ∞

0

(
[D, a](λ + D2)−1 + D[(λ+ D2)−1, a]

) dλ√
λ

=
1

π

∫ ∞

0

(
[D, a](λ + D2)−1 −D2(λ+ D2)−1[D, a](λ+ D2)−1

−D(λ+ D2)−1[D, a]D(λ+ D2)−1
) dλ√

λ

=
1

π

∫ ∞

0

(
λ(λ+ D2)−1[D, a](λ+ D2)−1 −D(λ+ D2)−1[D, a]D(λ+ D2)−1

) dλ√
λ
.

The second last equality comes from [3, Lemma 2.3], whose proof requires only QC0, as
opposed to the usual resolvent calculation which requires QC1. The final equality comes
from D2(λ+D2)−1 = 1− λ(λ+D2)−1. We now suppose that a∗ = −a so that [D, a]∗ = [D, a]
and similarly for [F, a]. Then we may employ the inequality

− ‖ [D, a] ‖ T ∗T ≤ T ∗[D, a]T ≤‖ [D, a] ‖ T ∗T

for all T ∈ N . Applying this inequality under the above integral yields

[F, a] ≤ ‖ [D, a] ‖
π

∫ ∞

0
(λ+ D2)−1 dλ√

λ

= ‖ [D, a] ‖ |D|−1,
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and similarly [F, a] ≥ − ‖ [D, a] ‖ |D|−1. Thus [F, a] ≺≺‖ [D, a] ‖ |D|−1, in particular
[F, a] ∈ L(p,∞), and by linearity this is true for all a ∈ A. However, for not necessarily
self-adjoint a ∈ A, the precise inequality is

[F, a] ≺≺ (‖ [D, Re(a)] ‖ + ‖ [D, Im(a)] ‖)|D|−1. (1)

From the comments in Definition 3, this shows that [F, a] ∈ L(p,∞). The remainder of the
result is proved using the same argument by replacing a by δi(a), for i = 1, ..., k, and using the
boundedness of [D, δi(a)] = δi([D, a]). 2

The following lemma is a consequence of the previous result. This is the point at which more
smoothness than QC2 is required. The analogous statement in [21, Lemma 10.27], is a little
lax about the degree of smoothness necessary to perform the iterated commutators with |D|
in the proof.

Lemma 2 Let p ≥ 1 and k = max{1, p−2}. Suppose that (A,H,D) is a QCk (p,∞)-summable
spectral triple with D invertible. For all a0, ..., ap−1 ∈ A, and T ∈ N ∩ dom(δ), the operators

|D|p−2a0[F, a1] · · · [F, ap−1]FT |D| and |D|Ta0[F, a1] · · · [F, ap−1]F |D|p−2

are densely defined and bounded (or, more accurately, extend to bounded operators).

Proof The proof is essentially the same as that in [21]. First, the triple is at least QC1, so
[F, a]|D| = [D, a]−Fδ(a) is bounded for all a ∈ A. This allows one to check the cases p = 1, 2.
For p > 2 we have

|D|p−2a0[F, a1] · · · [F, ap−1]FT |D|

=
p−2∑

j=0

(
p− 2
j

)
δj(a0)|D|p−2−j [F, a1] · · · [F, ap−1]F (|D|T − δ(T )),

and similarly for the other operator. Now [F, ap−1](|D|T − δ(T )) is bounded and in N , since
the triple is QC1 and T ∈ dom(δ). Similarly j = p − 1, p − 2, |D|p−2−j[F, a1] is bounded and
in N , and of course δj(a0) is bounded for 0 ≤ j ≤ p − 2 since the triple is QCp−2. Hence we
may consider only those terms with 0 ≤ j ≤ p− 3.

One now continues to take commutators, observing that we obtain a sum of bounded operators
in N plus the term

a0|D|[F, a1]|D|[F, a2] · · · |D|[F, ap−2][F, ap−1]|D|FT

which is bounded and in N since the triple is QC1. Similar comments apply to the second
operator. 2

2.2 Hochschild and Cyclic Cohomology

For a locally convex unital algebra A, we denote by Cn(A) the linear space of continuous n+1-
multilinear functionals on An+1. The Hochschild coboundary of φ ∈ Cn(A) is the functional
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bφ ∈ Cn+1(A) defined by

(bφ)(a0, ..., an+1) = φ(a0a1, a2, ..., an+1)

+
n∑

i=1

(−1)iφ(a0, ..., aiai+1, ..., an+1)

+ (−1)n+1φ(an+1a0, a1, ..., an), a0, ..., an+1 ∈ A.

One can easily check that b2 = 0. The Hochschild cohomology, denoted HH∗(A,A∗), is then
the cohomology of the complex (C∗(A), b). The notation is explained in [23]. We denote the
space of Hochschild k-cocycles by Zk(A).

Let Cn
λ (A) be the subspace of Cn(A) consisting of functionals φ such that

φ(a0, ..., an) = (−1)nφ(an, a0, ..., an−1), a0, ..., an ∈ A.

The Hochschild coboundary maps Cn
λ (A) to Cn+1

λ (A), so we can define the cyclic cohomology
of A, denoted HC∗(A), to be the cohomology of the complex (C∗

λ(A), b). The space of cyclic
cocycles is denoted Zλ(A).

Connes shows that there is a long exact sequence, [9, III.1.γ],

· · · B→ HCp(A)
S→ HCp+2(A)

I→ HHp+2(A,A∗)
B→ HCp+1(A)

S→ · · ·

where I is the map induced on cohomology by the inclusion of complexes Cn
λ (A) →֒ Cn(A). The

operator B will not concern us in this paper, see [23] and [9, III.1.γ], however the periodicity
operator S is important for three reasons. The first reason is that cyclic cohomology groups
are filtered by powers of S, so in general HCk(A) consists of (classes of) sums

φk + Sφk−2 + S2φk−4 + ...+ S[k/2]φk−2[k/2]

where φj is cyclic, bφj = 0, j = k − 2[k/2], ..., k. As ImageS = ker I, we have

I(φk + ...+ S[k/2]φk−2[k/2]) = I(φk).

Consequently, pairing a cyclic cocycle φ with a Hochschild cycle yields the same result as
pairing the Hochschild class of the cyclic cocycle φ with a Hochschild cycle. Equivalently, any
cocycle in the image of S has zero Hochschild class.

Secondly, because S : HCn(A) → HCn+2(A) for all n, we may define even periodic cyclic co-
homology as the inductive limit Hev(A) := lim→(HC2n(A), S), and similarly the odd periodic
cyclic cohomology as Hodd(A) := lim→(HC2n+1(A), S).

Thirdly, we use constructions closely related to the periodicity operator in the Appendix to
complete the proof of our main result for the case where our spectral triple (A,H,D) has D
noninvertible.

The (dual) homology theories require more care regarding the completeness of A and the
appropriate tensor product. We only need Hochschild cycles (not their classes), so we may
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ignore these difficulties in this paper. We only require the definition of the Hochschild boundary.
If c =

∑n
i=1 a

i
0 ⊗ ai

1 ⊗ · · · ⊗ ai
k then

bc = b(
n∑

i=1

ai
0 ⊗ ai

1 ⊗ · · · ⊗ ai
k) =

n∑

i=1

ai
0a

i
1 ⊗ ai

2 ⊗ · · · ⊗ ai
k

+
n∑

i=1

k−1∑

j=1

(−1)jai
0 ⊗ · · · ⊗ ai

ja
i
j+1 ⊗ · · · ⊗ ai

k

+ (−1)k
n∑

i=1

ai
ka

i
0 ⊗ · · · ⊗ ai

k−1.

We say that c is a Hochschild cycle if bc = 0. When the Hochschild homology is well-defined
we denote it by HH∗(A).

An important point is that if φ is a k − 1-multilinear functional, and c is a Hochschild k-
cycle, (bφ)(c) = φ(bc) = 0, so the pairing of a Hochschild coboundary with a Hochschild cycle
vanishes. This follows immediately from the definitions.

Our only result in this section consists of a mild generalisation of a standard result for the
behaviour of Hochschild (co)homology with respect to derivations. This result will simplify
many later computations.

Lemma 3 Let N be a semifinite von Neumann algebra acting on a separable Hilbert space H.
Let A ⊂ N be a ∗-subalgebra, and M ⊂ N an A-bimodule. Suppose that δ1, ..., δk : A → N are
derivations such that the products δ1(a1) · · · δk(ak)T ∈ M for all a1, ..., ak ∈ A, where T ∈ N
is fixed. If φ : M → C is a linear functional and we define φ̃ ∈ Ck(A) via:

φ̃(a0, ..., ak) = φ(a0δ1(a1) · · · δk(ak)T ),

then the Hochschild coboundary of φ̃ is

(bφ̃)(a0, ..., ak+1) = (−1)kφ(a0δ1(a1) · · · δk(ak)ak+1T − ak+1a0δ1(a1) · · · δk(ak)T ).

Proof We prove this by induction. For k = 1 we have

(bφ̃)(a0, a1, a2) = φ(a0a1δ(a2)T − a0δ(a1a2)T + a2a0δ(a1)T )

= −φ(a0δ(a1)a2T − a2a0δ(a1)T ).

The derivation property shows that the first of these terms is still in M, so the k = 1 case is
true. So we now suppose the result is true for all n < k. Then

(bφ̃)(a0, ..., ak+1) = φ(a0a1δ1(a2) · · · δk(ak+1)T )

+
k∑

i=1

(−1)iφ(a0δ1(a1) · · · δi(aiai+1) · · · δk(ak+1)T )

+(−1)k+1φ(ak+1a0δ1(a1) · · · δk(ak)T )

= (bφ̂)(a0, ..., ak) − (−1)kφ(aka0δ1(a1) · · · δk−1(ak−1)δk(ak+1)T )

+(−1)kφ(a0δ1(a1) · · · δk−1(ak−1)δk(akak+1)T

+(−1)k+1φ(ak+1a0δ1(a1) · · · δk(ak)T ).
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Here
φ̂(a0, ..., ak−1) = φ(a0δ1(a1) · · · δk−1(ak−1)(δk(ak+1)T )).

Note that by hypothesis, the product of δ1(a1) · · · δk−1(ak−1) and δk(ak+1)T is in M.

By induction we have

(bφ̂)(a0, ..., ak) = (−1)k−1φ(a0δ1(a1) · · · δk−1(ak−1)akδk(ak+1)T )

−(−1)k−1φ(aka0δ1(a1) · · · δk−1(ak−1)δk(ak+1)T ).

Thus we have

(bφ̃)(a0, ..., ak+1) = (−1)kφ(a0δ1(a1) · · · δk(ak)ak+1T − ak+1a0δ1(a1) · · · δk(ak)T ).

2

Thus the derivations need not all be the same to obtain the usual result linking Hochschild
homology and derivations, [23, p 84]. We will mostly be interested in the case where the
bimodule M is the ideal L(1,∞), but we also use M = L1.

Our next aim is to define the Chern character of a finitely summable Fredholm module. First
we need a definition.

Definition 5 A pre-Fredholm module for a unital Banach ∗-algebra A is a pair (H, F )
where A is (continuously) represented in N (a semifinite von Neumann algebra acting on H)
and F is a self-adjoint Breuer-Fredholm operator in N satisfying:

1. 1 − F 2 ∈ KN , and

2. [F, a] ∈ KN for a ∈ A.
If 1 − F 2 = 0 we drop the prefix ”pre-”.

If, in addition, our module satisfies:

1.′ 1 − F 2 ∈ L(p/2,∞)

2.′ [F, a] ∈ L(p,∞) for a dense set of a ∈ A. we say (H, F ) is (p,∞)-summable.

Remark Here and throughout the rest of the paper, if p < 2 we interpret T ∈ L(p/2,∞) as
indicating that T p/2 ∈ L(1,∞) which implies that T ∈ L1.

Let (H, F ) be a p + 1-summable Fredholm module for A with F 2 = 1, [9, IV.1.α], that is,
we have [F, a] ∈ Lp+1(N ) for all a ∈ A. In particular if (H, F ) is (p,∞)-summable then it is
(p+ 1)-summable.

The Chern character of (H, F ) is the class in periodic cyclic cohomology of the cocycles

λnτ
′(Γa0[F, a1] · · · [F, an]), a0, ..., an ∈ A, n ≥ p, n− p even.

Here λn are constants ensuring that this collection of cocycles yields a well-defined periodic
class, and they are given by

λn =

{
(−1)n(n−1)/2Γ(n

2 + 1) n even√
2i(−1)n(n−1)/2Γ(n

2 + 1) n odd
.
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The ‘conditional trace’ (or, super-trace) τ ′ is defined by

τ ′(T ) =
1

2
τ(F (FT + TF )),

provided FT + TF ∈ L1(N ) (as it is in our case, see [9, p293]). Note that if T ∈ L1(N ) we
have (using the trace property and F 2 = 1)

τ ′(T ) = τ(T ). (2)

This class is represented by the cyclic cocycle ChF ∈ Cp
λ(A)

ChF (a0, ..., ap) = λpτ
′(Γa0[F, a1] · · · [F, ap]), a0, ..., ap ∈ A.

If we only have a pre-Fredholm module (H, F ), there is a canonical procedure described in
[9, p 310] (and [1] in the general semifinite context) associating to (H, F ) a Fredholm module
(H′, F ′). The Chern character of (H, F ) is then defined to be the Chern character of (H′, F ′).
The Fredholm module (H′, F ′) has the same summability as (H, F ). We will not require the
explicit form of this procedure, as we will now show that we have a more amenable procedure
at our disposal.

Our next task is to show that if our spectral triple (A,H,D) is such that D is not invertible, we
can replace it by a new spectral triple in the same K-homology class in which the unbounded
operator is invertible. This is not a precise statement in the general semifinite case, as our
spectral triples will not define K-homology classes in the usual sense. When we say that
two spectral triples are in the same K-homology class, we shall take this to mean that the
associated pre-Fredholm modules are operator homotopic up to the addition of degenerate
Fredholm modules (see [22] for these notions, which make sense in our context).

Definition 6 Let (A,H,D) be a spectral triple. For any m ∈ R \ {0}, define the ‘double’ of
(A,H,D) to be the spectral triple (A,H2,Dm) with H2 = H⊕H, and the action of A and Dm

given by

Dm =

(
D m
m −D

)
, a→

(
a 0
0 0

)
, ∀a ∈ A.

Remark Whether D is invertible or not, Dm always is invertible, and Fm = Dm|Dm|−1 has
square 1. This is the chief reason for introducing this construction. We need to ensure that by
doing so we do not alter the (co)homological data.

Lemma 4 The K-homology classes of (A,H,D) and (A,H2,Dm) are the same. A represen-
tative of this class is (H2, Fm) with Fm = Dm|Dm|−1.

Proof TheK-homology class of (A,H,D) is represented by the pre-Fredholm module (H, FD)
with FD = D(1 + D2)−1/2 while [(A,H2,Dm)] is represented by the pre-Fredholm module
(H2, FDm) with FDm = Dm(1 + D2

m)−1/2 (we describe (pre)-Fredholm modules in subsection
2.2). The one parameter family (H, FDm)0≤m≤M is a continuous operator homotopy, [22],[3],
from (H2, FDM

) to the direct sum of two pre-Fredholm modules
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(H, FD) ⊕ (H,−FD),

and in the odd case, the second pre-Fredholm module is operator homotopic to (H, 1) by the
straight line path, since A is represented by zero on this module. In the even case we find the
second pre-Fredholm module is homotopic to

(
H,
(

0 1
1 0

))
,

the matrix decomposition being with respect to the Z2-grading of H. Thus in both the even
and odd cases the second module is degenerate, i.e. F 2 = 1, F = F ∗ and [F, a] = 0 for all
a ∈ A, and so the K-homology class of (H2, FDM

), written [(H2, FDM
)], is the K-homology

class of (H, FD). In addition, the Fredholm module (H2, Fm) with Fm = Dm|Dm|−1 is operator
homotopic to (H2, FDm) via

t→ Dm(t+ D2
m)−1/2 0 ≤ t ≤ 1.

This provides the desired representative. 2

The most basic consequence of Lemma 4, and the reason for proving it, comes from the following
(see [9, IV.1.γ] and [12] for the proof).

Proposition 5 The periodic cyclic cohomology class of the Chern character of a finitely
summable Fredholm module depends only on its K-homology class.

In the general semifinite case this should be interpreted as saying that two pre-Fredholm
modules which are operator homotopic up to the addition of degenerate Fredholm modules
have the same Chern character. In particular, therefore, the Chern characters of (A,H,D)
and (A,H2,Dm) have the same class in periodic cyclic cohomology, and this can be computed
using the Fredholm module (H2, Fm).

Using Connes’ exact sequence, [9, III.1.γ],

· · · B→ HCp(A)
S→ HCp+2(A)

I→ HHp+2(A,A∗)
B→ HCp+1(A)

S→ · · ·

we see that the Hochschild class of ChF is the image of the cyclic cohomology class of ChF

under the map I induced by the inclusion of the cyclic complex in the Hochschild complex.
This class is the noncommutative analogue of the integral representing the fundamental class.
To see this, recall that for the Dirac operator D on a closed spin manifold X we have

Ch(D)(·) = const

∫

X
· ∧ Â = const(

∫

X
· ∧ 1 +

∫

X
· ∧ (− 1

24
p1) + · · ·).

Here Â is the A-roof genus, pi are the Pontryagin classes, and regarding Ch(D) as an element
of de Rham homology, this formula tells us how to evaluate Ch(D) on elements of the exterior
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algebra of the manifold. In particular, restricting to differential forms of top degree (volume
forms) we have

Ch(D)(f0df1 ∧ · · · ∧ dfdimX) = const

∫

X
f0df1 ∧ · · · ∧ dfdimX .

Hence the Hochschild class of the Chern character yields the usual integration of a (dimX)-
form. This gives not only justification for the identification and study of this Hochschild
class, but also a heuristic for understanding the measurability described in Corollary 11 (see
Subsection 3.1).

Before leaving Chern characters, we note that the hypothesis of (p,∞)-summability may be
supplemented by Connes-Moscovici’s discrete and finite dimension spectrum hypothesis, [11].
With this extra hypothesis one obtains a new representative of the Chern character expressed
in terms of the operator D. Using this representative, it is straightforward to identify the
Hochschild class, and this agrees with the result stated in [9, IV.2.γ] and described here.
However, the results concerning measurability (described later), arguably the most important
consequence of Theorem 10, are rendered trivial, as the dimension spectrum hypothesis includes
an assumption of measurability.

2.3 The Dixmier Trace and the Heat Kernel

Normally a Dixmier trace on the τ -compact operators means a positive linear functional which
is constructed in the following way. One composes a positive element ω of the dual of L∞(R∗

+)
with the map which takes compact operators to the Cesaro mean (described below) of their
singular values (where the latter is thought of as an element of L∞(R∗

+). The positive functional
ω is also required to agree with the ordinary limit on functions which have a limit at infinity.

The composition of any such ω from L∞(R∗
+)∗ which is vanishing on C0(R

∗
+) with the Cesaro

mean operator produces a functional which is (almost) dilation invariant and with which it
is possible to define a non-normal trace (see [8]). We shall call such functionals Dixmier
functionals and such non-normal traces Dixmier traces (see below).

A key technical lemma we will exploit uses the asymptotics of the trace of the heat operator
for D to construct the singular or Dixmier trace that appears in Theorem 10 when we have a
particular kind of Dixmier functional ω.

Definition 7 The Cesaro mean on L∞(R∗
+), where R∗

+ is the multiplicative group of the
positive reals, is given by:

M(g)(t) =
1

log t

∫ t

1
g(s)

ds

s
for g ∈ L∞(R∗

+), t > 0.

Definition 8 We define the following maps on L∞(R∗
+). Let Da denote dilation by a ∈ R∗

+

and let P a denote exponentiation by a ∈ R∗
+. That is,

Da(f)(x) = f(ax) for f ∈ L∞(R), and

P a(f)(x) = f(xa) for f ∈ L∞(R∗
+).
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G is the set R∗
+ × R∗

+ with multiplication:

(s, t)(x, y) = (sxt, ty).

One of the main observations of [1] and [6] is that in addition to dilation and Cesaro invariance,
invariance under the operators P a (a ∈ R∗

+) is critical in one key step of the proof of the zeta
function representation of a Dixmier trace. We denote by C0(R

∗
+) the continuous functions

on R∗
+ vanishing at infinity. We will need the existence of a G-invariant, M invariant Dixmier

functional on L∞(R∗
+).

Theorem 6 ([6]) There exists a state Ω on L∞(R∗
+) satisfying the following conditions:

(1) Ω(C0(R
∗
+)) ≡ 0.

(2) If f is real-valued in L∞(R∗
+) then

ess lim-inft→∞f(t) ≤ Ω(f) ≤ ess lim-supt→∞f(t).

(3) If the essential support of f is compact then Ω(f) = 0.
(4) For all c ∈ R∗

+, Ω(Dcf) = Ω(f) for all f ∈ L∞(R∗
+).

(5) For all a ∈ R∗
+ and all f ∈ L∞(R∗

+) Ω(P af) = Ω(f).
(6) For all f ∈ L∞(R∗

+), Ω(Mf) = Ω(f).

The approach of [6] as described in Theorem 6 is to construct what might be more appropriately
be termed a ‘maximally invariant Dixmier functional’. This maximal invariance is what is
required to establish the zeta function representation of a Dixmier trace (and hence the heat
kernel formula for L(1,∞)) in full generality. Weaker conditions suffice for the case of L(p,∞),
p > 1, essentially because the map T → T p taking L(p,∞) to L(1,∞) is not surjective and in fact
the image is a smaller ideal consisting of compact operators T whose singular values satisfy, for
some C > 0, the inequality µs(T ) ≤ C/s for s suficiently large; see [6] for further discussion.

A notation we will often use is to write, for a given function f ∈ L∞(R∗
+) and Dixmier

functional ω, ω(f) = ω-limλ→∞ f(λ). In particular we will be interested in applying such
functionals to the function

1

log(1 + t)

∫ t

0
µs(T )ds

where T ∈ L(1,∞) is positive. This is the Dixmier trace associated to the semifinite normal
trace τ , denoted τω, and we extend it to all of L(1,∞) by linearity. The Dixmier trace τω is
defined on the ideal L(1,∞), and vanishes on the ideal of trace class operators. This latter fact
is used repeatedly throughout the paper without further comment.

Let T ≥ 0 and define e−T−2
as the operator that is zero on ker T and on ker T⊥ is defined in

the usual way by the functional calculus. We remark that if T ≥ 0, T ∈ L(p,∞) for some p ≥ 1
then e−tT−2

is trace class for all t > 0. Then we have

Theorem 7 ([6]) If A ∈ N , T ≥ 0, T ∈ L(p,∞) then,

Ω- lim
λ→∞

λ−1τ(Ae−λ−2/pT−2
) = Γ(p/2 + 1)τΩ(AT p)

for Ω ∈ L∞(R∗
+)∗ satisfying the conditions of Theorem 6.
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Remark. The reason for the citation of [6] for this result is that we require the case p = 1,
and this is the only place where this is established. For p > 1, however, see [9, p563] and [21].

To use this result in this paper we will apply it to the case where T = (1+D2)−1/2 or T = |D|−1

if D has bounded inverse. Then a simple but useful corollary of this theorem is that for p ≥ 1
and |D|−1 ∈ L(p,∞) the function on R∗

+ given by

t→ tpτ(Ae−t2D2
)

is bounded. This follows from setting λ−1 = tp and T = |D|−1. Or in other words

Lemma 8 If p ≥ 1 and (A,H,D) is a (p,∞)-summable spectral triple with D invertible, then
there exists a constant Cp > 0 such that

τ(e−t2D2
) ≤ Cpt

−p for t > 0.

A fact that we will frequently require is the following.

Proposition 9 ([6, 8, 19]) The Dixmier trace τω associated to a Dixmier functional ω
defines a trace on the algebra of a QC1 (p,∞)-summable spectral triple via

a 7→ τω(a(1 + D2)−p/2).

3 The Hochschild Class of the Chern Character

3.1 Statement of the Main Result

Our main result is the general semifinite version of a Type I result in [9, IV.2.γ] which identifies
the Hochschild class of the Chern character of a (p,∞)-summable spectral triple. With the
preliminary definitions out of the way, we can now state our main result:

Theorem 10 Let (A,H,D) be a QCk (p,∞)-summable spectral triple with p ≥ 1 integral and
k = max{2, p − 2}. Then

1) A Hochschild cocycle on A is defined by

φω(a0, ..., ap) = λpτω(Γa0[D, a1] · · · [D, ap](1 + D2)−p/2),

2) For all Hochschild p-cycles c ∈ Cp(A) (i.e., bc = 0),

〈φω, c〉 = 〈ChFD
, c〉,

where ChFD
is the Chern character in cyclic cohomology of the pre-Fredholm module over A

with FD = D(1 + D2)−1/2.

Remark Here τω is the Dixmier trace associated to any Dixmier functional ω. The two most
important corollaries of Theorem 10 are the following.
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Corollary 11 Let (A,H,D) be as in Theorem 10. If c =
∑

i a
i
0 ⊗ ai

1 ⊗ · · ·⊗ ai
p is a Hochschild

p-cycle, then
Γ
∑

i

ai
0[D, ai

1] · · · [D, ai
p](1 + D2)−p/2

is measurable.

Remark An operator T ∈ L(1,∞) is measurable (in the sense of Connes) if the ω-limit

ω-lim
t→∞

1

log(1 + t)

∫ t

0
µs(T )ds

is independent of the choice of ω. We will include a proof of this important result (Corollary
11) as part of the proof of Theorem 10.

Corollary 12 With (A,H,D) as in Theorem 10, and supposing that ChFD
pairs nontrivially

with HHp(A), then

τω((1 + D2)−p/2) 6= 0.

Remark The hypothesis of the Corollary is that there exists some Hochschild p-cycle such
that 〈IChFD

, c〉 6= 0. Computing this pairing using Theorem 10 above, we see that (1+D2)−p/2

can not have zero Dixmier trace for any choice of Dixmier functional ω. For if (1 + D2)−p/2

did have vanishing Dixmier trace, and c =
∑

i a
i
0 ⊗ · · · ⊗ ai

p is any Hochschild cycle

|〈IChFD
, c〉| =

∣∣∣∣∣
∑

i

τω
(
Γai

0[D, ai
1] · · · [D, ai

p](1 + D2)−p/2
)∣∣∣∣∣

≤
∑

i

‖ Γai
0[D, ai

1] · · · [D, ai
p] ‖ τω

(
(1 + D2)−p/2

)
= 0.

Hence if the pairing is nontrivial, the Dixmier trace can not vanish on (1 + D2)−p/2.

During the course of the proof we will always suppose that we have a spectral triple (A,H,D)
with D invertible, by replacing (A,H,D) by (A,H2,Dm) if necessary. Despite knowing that the
cyclic classes of the Chern characters of these two triples coincide, by Lemma 4 and Proposition
5, and so their Hochschild classes also coincide, we do not know that this is true for the specific
representative displayed in Theorem 10, and this is something we will need to determine. A
proof that this is indeed the case can be found in the Appendix.

Before discussing the proof any further, we show that the functional φω is indeed a Hochschild
cocycle.

Lemma 13 Let p ≥ 1 and suppose that (A,H,D) is a QC1 (p,∞)-summable spectral triple.
Then the multilinear functional

φω(a0, ..., ap) = λpτω(Γa0[D, a1] · · · [D, ap](1 + D2)−p/2)

is a Hochschild cocycle.
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Proof By Lemma 3 and the trace property of the Dixmier trace, we have

(bφω)(a0, ..., ap) = (−1)p−1λpτω(Γa0[D, a1] · · · [D, ap−1]ap(1 + D2)−p/2)

−(−1)p−1λpτω(Γa0[D, a1] · · · [D, ap−1](1 + D2)−p/2ap).

As (A,H,D) is QC1,

[(1 + D2)−p/2, ap] = −
p−1∑

k=0

(1 + D2)−(p−k)/2[(1 + D2)1/2, ap](1 + D2)−(1+k)/2,

and this is trace class. So ap(1 + D2)−p/2 = (1 + D2)−p/2ap modulo trace class operators, and
so the two terms above cancel. 2

Thus to show that φω is a Hochschild cocycle is relatively simple, and does not require the
full smoothness assumptions of Theorem 10. Of course the important aspects of Theorem
10 are that φω is a representative of the Hochschild class of the Chern character, and the
measurability of ‘p-forms’.

3.2 What was previously known

This theorem, for N = B(H) and 1 < p < ∞ (p integral) was proved in lectures by Alain
Connes at the Collège de France in 1990. A version of this argument appeared in [21]. The
extension of this argument to general semi-finite von Neumann algebras, with the additional
hypothesis that D have bounded inverse, is presented in the preprint of Benameur-Fack, [1]
and we thank the authors for bringing it to our attention. It provided an impetus to our work.
Some supplementary details in the proof were given to us by Thierry Fack, and we thank
him for his notes, [19]. In addition, a simpler strategy using the pseudodifferential calculus
of Connes-Moscovici, [11], was communicated to us by Nigel Higson. In conjunction with the
results in [6], Higson’s argument appears to generalise to the semifinite case as well as giving
an alternate proof of Theorem 10, however we will not describe the details here.

The extension of these earlier results which our Theorem 10 implies are

1) for the first time we provide a proof for the case p = 1 (the proof in this case overcomes
some serious technical obstacles).

2) We dispense with the hypothesis in the type II∞ case that D has bounded inverse. This
is crucial due to the ‘zero-in-the-spectrum’ phenomenon for D (that is, for type II N , zero is
generically in the point and/or continuous spectrum, [20]) and is not just the simple problem
posed by non-trivial kerD.

3) Importantly, our strategy of proof is the same for all p ≥ 1, is independent of the type of
the von Neumann algebra N and is simpler than previously published arguments.

We now come to the proof of Theorem 10. The general form of the technical estimates,
and so the basic structure of the analytic parts of the proof, are based on a synthesis of our
understanding of the arguments in [1] and [21]. These in turn have their origin in the original
arguments of Connes. The latter parts of the argument where we need to construct various
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cohomologies in the Hochschild theory to arrive at the functional in the statement of the
theorem, closely follow the argument in [21].

Our method of proof is in some ways more direct than these other approaches. In particular
we do not need to prove our technical estimates for general functions of D, only the particular
functions that allow us to employ the heat kernel approach to the Dixmier trace. The chief
novelty (and difficulty) of this direct approach is that we can deal with the case p = 1. For
this approach the assumption of [21] that the functions of D involved are compactly supported
is of no use and various technical estimates in [1, 9, 21] are not available.

3.3 Functional Calculus Preliminaries

In this subsection we establish some trace and commutator estimates for certain functions of
|D|. We will work exclusively with one function, however the definition of this function depends
on the value of p. Moreover there are substantial differences between the even and odd cases,
and for technical reasons we also require estimates involving square roots of functions.

For p ≥ 1 an integer, and x ≥ 0 define

erfp(x) =
p

Γ(p
2 + 1)

∫ x

0
rp−1e−r2

dr. (3)

Using ∫ ∞

0
rp−1e−r2

dr =
Γ(p/2)

2
=

Γ(p
2 + 1)

p
,

we have erfp(∞) = 1 and erfp(0) = 0. Now define

fp(x) =

{
1 − erfp(x) x ≥ 0
1 − (−1)perfp(−x) x ≤ 0

(4)

Then we have fp(0) = 1, fp(∞) = 0 and

f ′p(x) =
−p

Γ(p
2 + 1)

xp−1e−x2
. (5)

For p even and all x ∈ R or p odd and x ≥ 0 we can write

fp(x) = 1 − erfp(|x|)

=
p

Γ(p/2 + 1)

∫ ∞

1
xpsp−1e−s2x2

ds

= c(p)

∫ ∞

1
xpsp−1e−s2x2

ds. (6)

We will see shortly that fp is Schwartz class for p even. However for p odd, while fp(x) → 0
rapidly as x→ +∞, as x→ −∞, fp(x) → 2. The reason we have defined the function in this
way is to obtain smoothness at x = 0, and the important part of the definition is for x ≥ 0
anyway. For instance, we have our first estimate.
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Lemma 14 Let p ≥ 1 and suppose that (A,H,D) is a QC0 (p,∞)-summable spectral triple
with D invertible. If h is either of the functions fp or

√
fp then for t > 0

‖ h(t|D|) ‖1≤ Cht
−p.

Proof Let dφλ = dτ(Eλ) be the scalar spectral measure for |D|, and consider the function√
fp. We have by Lemma 8.2 of [4]

τ(
√
fp(t|D|)) =

(
p

Γ(p
2 + 1)

)1/2

τ

((∫ ∞

1
sp−1tp|D|pe−s2t2D2

ds

)1/2
)

=

(
tpp

Γ(p
2 + 1)

)1/2 ∫ ∞

0

(∫ ∞

1
sp−1λpe−s2t2λ2

ds

)1/2

dφλ

≤
(

tpp

Γ(p
2 + 1)

)1/2 ∫ ∞

0
λp/2e−t2λ2/4

(∫ ∞

1
sp−1e−s2t2λ2/2ds

)1/2

dφλ

≤
(

tpp

Γ(p
2 + 1)

)1/2 ∫ ∞

0
λp/2e−t2λ2/4

(∫ ∞

0
sp−1e−s2t2λ2/2ds

)1/2

dφλ

=

(
tpp

Γ(p
2 + 1)

)1/2 ∫ ∞

0
λp/2e−t2λ2/4(Γ(p/2)λ−pt−p2

p
2
−1)1/2dφλ

= 2
p
4

∫ ∞

0
e−t2λ2/4dφλ

= 2
p
4 τ(e−(t/2)2D2

)

≤ Ct−p,

where the last line follows from the heat kernel estimate Lemma 8. The same method applies
to yield the result for h = fp also. 2

The above Lemma required knowledge of fp for positive arguments, so for p odd, we are free
to alter the definition in any reasonable way for negative values.

So for p ≥ 1 odd, and for some k > 0, define

fp(x) =





1 − erfp(x) x ≥ 0
1 + erfp(−x) −k ≤ x ≤ 0
g(x) x ≤ −k

Here we take g(x) = Q(x)e−x2
, where Q is a polynomial. We may choose to make fp a C l

function at −k, and this will require taking Q to be of order l.

Lemma 15 For p even

fp(x) =

[p−2/2]∑

i=0

c(p− 2i)

2
xp−2−2ie−x2
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When p is odd and p ≥ 3, and x ≥ 0 we have

fp(x) =

[p−2/2]∑

i=0

c(p − 2i)

2
xp−2−2ie−x2

+ f1(x).

Proof Integration by parts using the formulae in Equations (6), and the observation that
for all integers p ≥ 3

c(p)

c(p − 2)

(p− 2)

2
= 1.

2

Observe that the Lemma shows that for p even, the function fp is Schwartz class. Indeed, f
1/2
p

is Schwartz class. This follows because fp(x) = P (x)e−x2
where P is an even polynomial with

a nonzero constant term. Thus

df
1/2
p

dx
=

(P ′(x) − 2xP (x))e−x2/2

P (x)1/2
, (7)

from which it is easy to see that f
1/2
p has derivatives of all orders, and they are all of rapid

decrease.

For p odd we will have a rapidly decaying function also, but only C l at −k, where we may
choose l as large as we like. To see this for large positive x we require the following result, [17].

Lemma 16 There is an asymptotic expansion of

f1(x) =
2√
π

∫ ∞

x
e−s2

ds

as x→ +∞ of the form

f1(x) ∼
e−x2

√
πx

[
1 − 2!

(2x)2
+

4!

2!(2x)4
− 6!

3!(2x)6
+ · · ·

]
.

Proof The function f1 is precisely the complementary error function (for positive x), and
there is a standard asymptotic expansion for x large and positive

erfc(x) = f1(x) ∼
e−x2

√
πx

[
1 − 2!

(2x)2
+

4!

2!(2x)4
− 6!

3!(2x)6
+ · · ·

]
.

2

At this point we know enough to proceed when p is even, but for the estimates we wish to
prove next, we require more information for p odd.

For p odd, our definition of fp ensures that xmf
1/2
p is integrable for all m ≥ 0, so the Fourier

transform of f
1/2
p is smooth, and of course lies in C0(R). If we define fp so that it is C l, then



3 THE HOCHSCHILD CLASS OF THE CHERN CHARACTER 20

the first l derivatives of f
1/2
p will also have smooth Fourier transform, contained in C0(R),

using Lemma 15 and an argument similar to that in Equation 7. So for l ≥ i+ 2, the Fourier

transform of ∂if
1/2
p is in L1(R). This follows because

̂
(∂i+2f

1/2
p )(ξ) → 0 as |ξ| → ∞,

so

|ξ2 ̂
(∂if

1/2
p )(ξ)| → 0 as |ξ| → ∞,

which tells us that

| ̂
(∂if

1/2
p )(ξ)| = o(|ξ|−2) as |ξ| → ∞.

Choosing l ≥ 4 then tells us that in both the even and odd cases

∫

R

|ξif̂
1/2
p (ξ)|dξ <∞, i = 1, 2. (8)

We use this to formulate two commutator estimates.

Lemma 17 If (A,H,D) is a QC1 (p,∞)-summable spectral triple then

‖ [fp(t|D|), a] ‖1≤ Ca,fp,pt
−p+1.

Proof Writing h = f
1/2
p , we have the straightforward calculation

‖ [fp(t|D|), a] ‖1 = ‖ h(t|D|)[h(t|D|), a] + [h(t|D|), a]h(t|D|) ‖1

≤ 2 ‖ [h(t|D|), a] ‖∞‖ h(t|D|) ‖1

≤ 2Cpt ‖ [|D|, a] ‖∞‖ ĥ(ξ)ξ ‖1 t
−p

= Ca,fp,pt
−p+1.

The last inequality comes from Lemma 14 and

[h(t|D|), a] =
1√
2π

∫

R

ĥ(s)[eits|D|, a]ds

=
1√
2π

∫

R

ĥ(s)is

∫ 1

0
eitsr|D|[t|D|, a]ei(1−r)st|D|drds.

The finiteness of (8) for i = 1 completes the proof. 2

Lemma 18 If (A,H,D) is a QC2 (p,∞)-summable spectral triple then

‖ [fp(t|D|), a] − 1

2
{f ′p(t|D|), t[|D|, a]} ‖1≤ Ca,p,fpt

−p+2,

where {T, S} = TS + ST .
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Proof Again we write h = f
1/2
p , and again this is just a computation.

‖ [fp(t|D|), a] − 1

2
{f ′p(t|D|), t[|D|, a]} ‖1

= ‖ h(t|D|)[h(t|D|), a] + [h(t|D|), a]h(t|D|)
−h(t|D|)h′(t|D|)t[|D|, a] − t[|D|, a]h(t|D|)h′(t|D|) ‖1

≤ ‖ [h(t|D|), a] − th′(t|D|)[|D|, a] ‖∞‖ h(t|D|) ‖1

+ ‖ [h(t|D|), a] − t[|D|, a]h′(t|D|) ‖∞‖ h(t|D|) ‖1

≤ t−p+2Cp

∫

R

|ĥ(ξ)ξ2|dξ.

The final inequality follows from Lemma 14 and writing, [1]

A(t) := [h(t|D|), a] − h′(t|D|)[t|D|, a],

we have

A(t) =

∫

R

ĥ(u)

∫ 1

0
(eiuts|D|[iut|D|, a]eiut(1−s)|D| − eiut|D|[iut|D|, a])dsdu

=

∫

R

ĥ(u)

∫ 1

0
eiuts|D|[[iut|D|, a], eiut(1−s)|D|]dsdu

= −
∫

R

ĥ(u)

∫ 1

0
eiuts|D|

∫ 1

0
eiut(1−s)r|D|[iut(1 − s)|D|, [iut|D|, a]]eiut(1−s)(1−r)|D|dsdrdu.

A similar result holds for B(t) = [h(t|D|), a] − [t|D|, a]h′(t|D|). In both cases ‖ A(t) ‖∞ and
‖ B(t) ‖∞ are O(t2) as t→ 0. The finiteness of (8) for i = 2 completes the proof. 2

Estimates like those presented in the last two Lemmas may be regarded as approximate exten-
sions of familiar rules of calculus to the ‘quantum’ setting. Both the previous Lemmas extend
to a large class of functions, but as we only require these very particular results, we do not
pursue these matters here.

3.4 From the Chern Character to a Hochschild Cocycle

Now that we know something about fp, we can begin the proof. The first step is to bring
|D| into the picture, and to do so in a way that will allow us, eventually, to make use of its
summability.

Lemma 19 ([1, 21]) Let p ≥ 1 be integral and suppose that (A,H,D) is a QC0 (p,∞)-
summable spectral triple with D invertible. Let c =

∑
i a

i
0 ⊗ · · · ⊗ ai

p be a Hochschild p-cycle.
Then

〈ICh∗(F ), c〉 = − lim
t→0

λp

∑

i

τ(Γai
0[F, a

i
1] · · · [F, ai

p−1]F [fp(t|D|), ai
p]),

where FD = D|D|−1.
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Proof Ignore i momentarily, and set A = Γa0[F, a1] · · · [F, ap]. As t→ 0 we have fp(t|D|) → 1
(strong operator topology), so

〈ICh∗(FD), c〉 = lim
t→0

τ ′(fp(t|D|)A).

Here we have used Ffp(t|D|) = fp(t|D|)F to see that the right hand side is equal to

τ(fp(t|D|)F (FA +AF )).

As F (FA+AF ) is trace class, [14, I.6.1,p93] shows that the above equality holds.

For t > 0, the operator fp(t|D|) is trace class by Lemma 14, so we may replace τ ′ by τ , using
Equation 2. Making this change and expanding the last factor of A gives

τ ′(fp(t|D|)A) = τ(Γa0[F, a1] · · · [F, ap−1]Fapfp(t|D|)) − τ(Γa0[F, a1] · · · [F, ap−1]apFfp(t|D|)).

Using the fact that a→ [F, a] is a derivation, we can use Lemma 3 and
∑

i

b(ai
0 ⊗ ai

1 ⊗ · · · ⊗ ai
p) = 0,

to see that

τ(Γa0[F, a1] · · · [F, ap−1]apFfp(t|D|)) − τ(Γapa0[F, a1] · · · [F, ap−1]Ffp(t|D|)) = 0,

as this is a Hochschild coboundary paired with a Hochschild cycle. This proves the Lemma. 2

Note this only works when we pair with a Hochschild cycle. For an arbitrary chain we can not
swap ap around to the front. Nevertheless, for any a0, ..., ap ∈ A we can define a one-parameter
family of multilinear functionals

ψt(a0, ..., ap) := −λpτ(Γa0[F, a1] · · · [F, ap−1]F [fp(t|D|), ap]),

and we have already shown that the pairing of the Chern character with Hochschild cycles is
given by pairing the Hochschild cycle with ψt and taking the limit as t → 0. However, we
have not yet defined a multilinear functional which represents IChF . If we knew that for all
a0, ..., ap ∈ A

φ(a0, ..., ap) := lim
t→0

ψt(a0, ..., ap)

existed, and we could show that bφ = 0, then we would have

[φ] = [IChF ] ∈ HH∗(A,A∗).

In general we can not assert the existence of the above limit, and this is why we do not yet
have a representative of the Hochschild class of the Chern character.

The strategy is to show that |ψt(a0, ..., ap)| is bounded as t→ 0 for any a0, ..., ap ∈ A, so that we
may define a functional by taking the ω-limit. We will then rewrite this result in terms of the
associated Dixmier trace. Once achieved, we will have a well-defined multilinear functional on
A which depends on the choice of ω. However, the pairing of this functional with Hochschild
cycles will return the true limit, no matter what choice of ω is employed. This is the origin of
Corollary 11, but the precise form must wait until we have identified φω as a representative of
the Hochschild class.

So to begin, let us obtain the estimate which will allow us to show that ψt is bounded.
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Lemma 20 Let p ≥ 1 and suppose that (A,H,D) is a QC1 (p,∞)-summable spectral triple
with D invertible. Then

‖ [fp(t|D|), a] ‖(p,1) is bounded as t→ 0.

Proof We have the estimate, Lemma 17, for all p ≥ 1

‖ [fp(t|D|), a] ‖1≤ C̃f t
−p+1 ‖ [|D|, a] ‖∞ .

So for p = 1 we are done. For p > 1 we have the interpolation inequality

‖ T ‖(p,1)≤ Cp ‖ T ‖1/p
1 ‖ T ‖1−1/p

∞ , T ∈ L1.

In Lemma 17 we also estimated the norm, obtaining

‖ [fp(t|D|), a] ‖∞= O(t)

which allows us to finish the proof since

‖ [fp(t|D|), a] ‖(p,1)≤ Cfp,p(t
−p+1)1/pt1−1/p = Cfp,p.

2

Remark The use of the interpolation inequality in the previous proof is standard in the type
I setting, [9, IV, Appendix B]. For the type II case we note that it is sufficient to obtain the
result for the commutative von Neumann algebra L∞(0,∞) and apply the results of [15].

Lemma 21 Let p ≥ 1 and suppose that (A,H,D) is a QC1 (p,∞)-summable spectral triple
with D invertible. Then for all a0, ..., ap ∈ A the function

t→ ψt(a0, ..., ap)

is bounded as t→ 0.

Proof By Lemma 1, [F, ai] ∈ L(p,∞), i = 1, ..., p. So

Γa0[F, a1] · · · [F, ap−1]F ∈ L(q,∞),

where q = p/(p − 1) (for p = 1 replace the (q,∞) norm with the operator norm). The Köthe
dual of L(p,1) is L(q,∞), so as t→ 0

|ψt(a0, ..., ap)| ≤ ‖ Γa0[F, a1] · · · [F, ap−1]F ‖(q,∞)‖ [fp(t|D|), ap] ‖(p,1)

≤ Cfp,p ‖ Γa0[F, a1] · · · [F, ap−1]F ‖(q,∞),

by Lemma 20. 2

As ψt is bounded as t → 0, we are justified in taking the ω-limit of the function 1/t →
ψt(a0, ..., ap), for t sufficiently small.
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Definition 9 For p ≥ 1 and (A,H,D) a QC1 (p,∞)-summable spectral triple, set

ζp(a0, ..., ap) = Ω- lim
1/t→∞

ψt(a0, ..., ap),

for any (fixed) functional Ω satisfying the conditions of Theorem 6.

Remark From what we have shown already, ζp is a representative of the Hochschild class of
the Chern character of (A,H,D), and when ζp is evaluated on a Hochschild cycle, the Ω limit is
a true limit. Thus the value of ζp on Hochschild cycles is independent of the choice of Dixmier
functional ω, whether ω satisfies the extra invariance conditions of Theorem 6 or not.

We need a preliminary result before we can obtain our first formula for ζp in terms of the
Dixmier trace associated to the functional Ω.

Lemma 22 Let (A,H,D) be a QC2 (p,∞)-summable spectral triple, with p ≥ 1 and D in-
vertible. Then

‖ [fp(t|D|), a] − 1

2
{f ′p(t|D|), [t|D|, a]} ‖(p,1)→ 0 as t→ 0,

where {T, S} = TS + ST .

Proof By Lemma 18, we can estimate the trace norm by

‖ [fp(t|D|), a] − 1

2
{f ′p(t|D|), [t|D|, a]} ‖1≤ Ct−p+2.

This completes the proof for p = 1, and for p > 1 we will employ interpolation as in Lemma
20. In Lemma 18 we also estimated the operator norm of this difference, obtaining

‖ [fp(t|D|), a] − 1

2
{f ′p(t|D|), [t|D|, a]} ‖∞= O(t2).

Applying the interpolation inequality

‖ T ‖(p,1)≤ C ‖ T ‖1/p
1 ‖ T ‖1−1/p

∞ ,

yields

‖ [fp(t|D|), a] − 1

2
{f ′p(t|D|), [t|D|, a]} ‖(p,1)≤ Cf,p(t

−p+2)1/pt2−2/p = Cf,pt→ 0.

2

With these tools in hand, we can now obtain our first Dixmier trace formula for ζp. This result
is where we use the invariance properties of the Dixmier functional Ω, as this is a necessary
condition for Theorem 7 to hold, at least when p = 1.
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Proposition 23 If p ≥ 1, k = max{2, p−2} and (A,H,D) is a QCk (p,∞)-summable spectral
triple with D invertible, then for all a0, ..., ap ∈ A

ζp(a0, ..., ap) = pλpτΩ(Γa0[F, a1] · · · [F, ap−1]D−1[|D|, ap]).

Proof We begin by noting that we can write ψt(a0, ..., ap) as

−λpτ

(
Γa0[F, a1] · · · [F, ap−1]F

(
1

2
{f ′p(t|D|), tδ(ap)} + [fp(t|D|), ap] −

1

2
{f ′p(t|D|), tδ(ap)}

))
.

This addition of zero inside the trace is justified as f ′p(t|D|) is trace class and δ(ap) is bounded.
Thus the Ω-limit Ω - lim1/t→∞ ψt(a0, ..., ap), is given by the sum of two terms,

−λpΩ-lim
1/t→∞

τ

(
Γa0[F, a1] · · · [F, ap−1]F

1

2
{f ′p(t|D|), tδ(ap)}

)
(9)

−λpΩ-lim
1/t→∞

τ

(
Γa0[F, a1] · · · [F, ap−1]F

(
[fp(t|D|), ap] −

1

2
{f ′p(t|D|), tδ(ap)}

))
. (10)

The second term, (10), is zero. To see this, we use the same estimates as in Lemma 21,

τ

(
Γa0[F, a1] · · · [F, ap−1]F

(
[fp(t|D|), ap] −

1

2
{f ′p(t|D|), tδ(ap)}

))

≤ ‖ Γa0[F, a1] · · · [F, ap−1]F ‖(q,∞)‖ [fp(t|D|), ap] −
1

2
{f ′p(t|D|), tδ(ap)} ‖(p,1)

≤ Cfp,pt ‖ Γa0[F, a1] · · · [F, ap−1]F ‖(q,∞)→ 0 as t→ 0,

the last inequality following from Lemma 22. Here we again replace the (q,∞) norm by the
operator norm when p = 1. Hence the (ordinary) limit of the second term exists and is zero.
This means that the first term, (9), is bounded as t→ 0, by Lemma 21, so we have

ζp(a0, ..., ap) = −λpΩ-lim
1/t→∞

τ(Γa0[F, a1] · · · [F, ap−1]F [fp(t|D|), ap])

= −λpΩ-lim
1/t→∞

τ(Γa0[F, a1] · · · [F, ap−1]F
1

2
{f ′p(t|D|), [t|D|, ap]}),

the second line following from Lemma 22 and the above argument. Using

f ′p(t|D|) = − p

Γ(p
2 + 1)

tp−1|D|p−1e−t2D2
,

we have

ζp(a0, ..., ap) =
pλp

2Γ(p
2 + 1)

Ω-lim
1/t→∞

τ(Γa0[F, a1] · · · [F, ap−1]F |D|p−1tpe−t2D2
[|D|, ap])

+
pλp

2Γ(p
2 + 1)

Ω-lim
1/t→∞

τ(Γa0[F, a1] · · · [F, ap−1]F [|D|, ap]|D|p−1tpe−t2D2
).
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For p = 1, 2, we use Lemma 2 and Theorem 7 to obtain

ζp(a0, ..., ap) =
pλp

2
τΩ(Γa0[F, a1] · · · [F, ap−1]F |D|−1[|D|, ap])

+
pλp

2
τΩ(Γa0[F, a1] · · · [F, ap−1]F [|D|, ap]|D|−1).

As
δ(ap)|D|−1 = −|D|−1δ2(ap)|D|−1 + |D|−1δ(ap),

we may commute the |D|−1 past δ(ap) in the second term, only picking up a term which
vanishes under the Dixmier trace. Hence

ζp(a0, ..., ap) = pλpτΩ(Γa0[F, a1] · · · [F, ap−1]D−1[|D|, ap]).

For p > 2, we use the fact that |D|p−2e−t2D2
and |D|e−t2D2

are trace class, to rewrite
ζp(a0, ..., ap) as

pλp

2Γ(p
2 + 1)

Ω-lim
1/t→∞

τ(tpe−t2D2|D|[|D|, ap]Γa0[F, a1] · · · [F, ap−1]|D|p−2F )

+
pλp

2Γ(p
2 + 1)

Ω-lim
1/t→∞

τ(Γtpe−t2D2|D|p−2a0[F, a1] · · · [F, ap−1]F [|D|, ap]|D|).

Now Lemma 2 (and the fact that |D| commutes with Γ) tells us that both of these terms are
the trace of a bounded operator times tpe−t2D2

. So, by Theorem 7, see also [6], we have

ζp(a0, ..., ap) =
1

2
pλpτΩ(|D|[|D|, ap]Γa0[F, a1] · · · [F, ap−1]F |D|−2)

+
1

2
pλpτΩ(|D|−2Γa0[F, a1] · · · [F, ap−1]F [|D|, ap]|D|).

Since [F, ai], [F, δ(ai)] and |D|−1 are in L(p,∞), commuting |D| through these expressions gives,
modulo terms of trace class which are killed by the Dixmier trace,

ζp(a0, ..., ap) =
1

2
pλpτΩ([|D|, ap]Γa0[F, a1] · · · [F, ap−1]F |D|−1)

+
1

2
pλpτΩ(|D|−1Γa0[F, a1] · · · [F, ap−1]F [|D|, ap]).

In the first term we may cycle δ(ap) around to the end using the trace property of the Dixmier
trace (since δ(ap) is bounded while the product of the remaining terms is in L(1,∞)), while in
the second we may commute the |D|−1 through the product, picking up trace class terms from
each commutator and these vanish. So

ζp(a0, ..., ap) =
1

2
pλpτΩ(Γa0[F, a1] · · · [F, ap−1]D−1[|D|, ap])

+
1

2
pλpτΩ(Γa0[F, a1] · · · [F, ap−1]D−1[|D|, ap])

= pλpτΩ(Γa0[F, a1] · · · [F, ap−1]D−1[|D|, ap]). (11)

2



3 THE HOCHSCHILD CLASS OF THE CHERN CHARACTER 27

Lemma 24 Let p ≥ 1, k = max{2, p − 2} and let (A,H,D) be a QCk (p,∞)-summable
spectral triple with D invertible. If ω is any Dixmier functional then the multilinear functional
ζ̃p defined by

ζ̃p(a0, ..., ap) = pλpτω(Γa0[F, a1] · · · [F, ap−1]D−1[|D|, ap])

represents the Hochschild class of the Chern character.

Proof Let Ω be a Dixmier functional satisfying the additional requirements of Theorem 6.
Then by Proposition 23, the Hochschild class of the Chern character is represented by

ζp(a0, ..., ap) := pλpτΩ(Γa0[F, a1] · · · [F, ap−1]D−1[|D|, ap]).

Let
∑

i a
i
0 ⊗ ai

1 ⊗ · · · ⊗ ai
p be a Hochschild cycle, and write the operator

pλp

∑

i

Γa0[F, a1] · · · [F, ap−1]D−1[|D|, ap]

as a sum T1 − T2 + iT3 − iT4 where Ti ≥ 0, i = 1, ..., 4 and Ti ∈ L(1,∞). Then

∑

i

ζp(a
i
0, ..., a

i
p) = τΩ(T1) − τΩ(T2) + iτΩ(T3) − iτΩ(T4)

= Ω-lim
t→∞

1

log(1 + t)

∫ t

0
µt(T1)dt− · · · − iΩ-lim

t→∞

1

log(1 + t)

∫ t

0
µt(T4)dt

= lim
t→∞

1

log(1 + t)

∫ t

0
µt(T1)dt − · · · − i lim

t→∞

1

log(1 + t)

∫ t

0
µt(T4)dt

= ω-lim
t→∞

1

log(1 + t)

∫ t

0
µt(T1)dt− · · · − iω-lim

t→∞

1

log(1 + t)

∫ t

0
µt(T4)dt

=
∑

i

ζ̃p(a
i
0, ..., a

i
p).

The equality between the Ω-limit and the true limit follows from Lemma 19 and Proposition
23, since

∑

i

ζp(a
i
0, ..., a

i
p) = Ω-lim

1/t→∞

∑

i

ψt(a
i
0, ..., a

i
p)

= lim
t→0

∑

i

ψt(a
i
0, ..., a

i
p).

Since this is a true limit, any Dixmier functional will also return the same value. Note that we
are not asserting that Proposition 23 is true for an arbitrary Dixmier functional ω, nor are we
asserting that ζp and ζ̃p are equal as multilinear functionals. What we are asserting is that it
makes sense to apply either of τω or τΩ to any finite sum of operators of the form

pλp

∑

i

Γai
0[F, a

i
1] · · · [F, ai

p−1]D−1[|D|, ai
p], ai

j ∈ A,

and moreover, that if c =
∑

i a
i
0 ⊗ ai

1 ⊗ · · · ⊗ ai
p is a Hochschild cycle, then τω and τΩ yield the

same result. The end result of this is that τω − τΩ vanishes on all Hochschild cycles. Hence τω
is cohomologous to τΩ, and so τω ∈ [IChF ]. 2
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Corollary 25 Let p ≥ 1, k = max{2, p − 2} and let (A,H,D) be a QCk (p,∞)-summable
spectral triple with D invertible. For any Hochschild cycle

∑
i a

i
0 ⊗ ai

1 ⊗ · · · ⊗ ai
p, the operator

pλp

∑

i

Γai
0[F, a

i
1] · · · [F, ai

p−1]D−1[|D|, ai
p]

is measurable.

3.5 Identification of [φω] as the Hochschild Class

We now come to the cohomological part of the argument where we relate ζp to the functional
φω appearing in the statement of Theorem 10. As mentioned, this part of the proof closely
follows [21, pp477-478].

For any choice of Dixmier functional ω, define cochains ζk, 1 ≤ k ≤ p, by

ζk(a0, ..., ap) = pλpτω(Γa0[F, a1] · · · D−1[|D|, ak] · · · [F, ap]).

These are well-defined as the argument of the Dixmier trace in each case is an element of
L(1,∞) as is readily checked using Lemma 1. Note that here we are replacing the definition of
ζp given in Definition 9, where we required a Dixmier functional satisfying the conditions of
Theorem 6, by the above definition using a general Dixmier functional. The two definitions
yield cohomologous Hochschild cocycles by Lemma 24.

Lemma 26 Let p ≥ 1 be integral and suppose that (A,H,D) is a QC2 (p,∞)-summable
spectral triple with D invertible. The cochains ζ1, ..., ζp are Hochschild cocycles which are
mutually cohomologous.

Proof We first show that the ζk are Hochschild cocycles. First we need to rewrite ζk. We
wish to rewrite D−1δ(ak) as δ(ak)D−1+something in L(p/2,∞). First,

[|D|−1, T ] = −|D|−1[|D|, T ]|D|−1, (12)

where T = [|D|, a], a, [D, a] or [F, a]. So

D−1δ(ak) = Fδ(ak)|D|−1 − F |D|−1δ2(ak)|D|−1,

and the latter term is in L(p/2,∞). Using Lemma 1, we see that

Fδ(ak)|D|−1 = δ(ak)D−1 + [F, δ(ak)]|D|−1

is equal to δ(ak)D−1 modulo L(p/2,∞). Since each [F, aj ] ∈ L(p,∞), if T ∈ L(p/2,∞) then we have

[F, a1] · · · [F, ak−1]T [F, ak+1] · · · [F, ap] ∈ L1. (13)

Hence
ζk(a0, ..., ap) = pλpτω(Γa0[F, a1] · · · [|D|, ak]D−1[F, ak+1] · · · [F, ap]).



3 THE HOCHSCHILD CLASS OF THE CHERN CHARACTER 29

To move D−1 all the way to the right, we note that because F 2 = 1, F [F, T ] = −[F, T ]F for
all T ∈ N , we have

ζk(a0, ..., ap) = (−1)p−kpλpτω(Γa0[F, a1] · · · [|D|, ak]|D|−1[F, ak+1] · · · [F, ap]F ).

Now
|D|−1[F, a] = [F, a]|D|−1 + [|D|−1, [F, a]] = [F, a]|D|−1 − |D|−1[F, δ(a)]|D|−1

and so the operators |D|−1[F, a] and [F, a]|D|−1 differ by an element of L(p/3,∞) (where for
p < 3 we mean the trace class).

Thus we can move D−1 to the right to obtain

ζk(a0, ..., ap) = (−1)p−kpλpτω(Γa0[F, a1] · · · [|D|, ak] · · · [F, ap]D−1).

Applying Lemma 3 and using the trace property of τω, we find that the Hochschild coboundary
of ζk is given by

(bζk)(a0, ..., ap+1) = (−1)k−1pλpτω(Γa0[F, a1] · · · [|D|, ak] · · · [F, ap][D−1, ap+1]).

Repeating the argument of Equations 12 and 13 shows that this is zero.

The second statement requires that we produce p Hochschild (p − 1)-cocycles ηk, k = 1, ..., p,
such that

bηk(a0, ..., ap) = ζk − ζk−1.

The difference on the right hand side is given by

(−1)p−kpλpτω(Γa0[F, a1] · · · [F, ak−2]([F, ak−1]δ(ak) + δ(ak−1)[F, ak])[F, ak+1] · · · [F, ap]D−1).

Set Rk,k−1 = [F, ak−1]δ(ak) + δ(ak−1)[F, ak]. Then we have

[F, δ(ak−1ak)] = Rk,k−1 + ak−1[F, δ(ak)] + [F, δ(ak−1)]ak. (14)

So the linear map a→ [F, δ(a)] is ‘almost’ a derivation. Defining

ηk(a0, ..., ap−1) := (−1)ppλpτω(Γa0[F, a1] · · · [F, δ(ak)] · · · [F, ap−1]D−1),

it is straightforward to show that bηk = ζk − ζk−1 using Equation 14 and Lemma 3. 2

Proposition 27 Let p ≥ 1 be integral and suppose that (A,H,D) is a QC2 (p,∞)-summable
spectral triple with D invertible. The cochain φω − 1

p(ζ1 + · · ·+ ζp) is a Hochschild coboundary.

Proof We first show that

φω(a0, ..., ap) = pλpτω(Γa0[D, a1] · · · [D, ap]|D|−p)

is equal to the cochain φ̃ω given by

φ̃ω(a0, ..., ap) = pλpτω(Γa0[D, a1]|D|−1[D, a2]|D|−1 · · · [D, ap]|D|−1).
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To do this, we use the argument of Equation (12) in the last Lemma to write

φω(a0, ..., ap) = pλpτω(Γa0[D, a1] · · · [D, ap−1](|D|−1[D, ap]|D|−p+1 + |D|−1δ([D, ap])|D|−p)).

The second term is trace class, and so

φω(a0, ..., ap) = pλpτω(Γa0[D, a1] · · · [D, ap−1]|D|−1[D, ap]|D|−p+1).

Repeating this process of moving one factor of |D|−1 to the left at a time (which only requires
the triple to be QC1) we see that φω = φ̃ω.

Next write
[D, aj ]|D|−1 = [F, aj ] + δ(aj)D−1 + [F, δ(aj)]|D|−1,

and observe that by Lemma 1 [F, δ(aj)]|D|−1 ∈ L(p/2,∞). This allows us to replace

[D, aj ]|D|−1 by [F, aj ] + δ(aj)D−1

in the formula for φ̃ω = φω, using an observation similar to that in Equation (13) in the
previous Lemma. Making this substitution will produce 2p functionals, and we will deal with
them in order of how many terms of the form δ(aj)D−1 they contain. First, we deal with the
single functional containing no δ(aj)D−1 terms, which is given by λpτω(Γa0[F, a1] · · · [F, ap]).
Now a0 = F [F, a0] + Fa0F , and F [F, a0][F, a1] · · · [F, ap] is trace class. So

λpτω(Γa0[F, a1] · · · [F, ap]) = (−1)pλpτω(ΓFa0[F, a1] · · · [F, ap]F )

= (−1)p−1(−1)pτω(FΓa0[F, a1] · · · [F, ap]F )

= −λpτω(Γa0[F, a1] · · · [F, ap]).

Hence this functional is zero. The functionals containing precisely one δ(aj)D−1 term add up
to p−1(ζ1 + · · · + ζp).

So now we come to the functionals containing two or more terms δ(aj)D−1. So in the following
suppose that ∆(a) = [F, a] or δ(a), and consider a functional with a total of l terms of the
form δ(a)D−1, 2 ≤ l ≤ p. We begin by considering functionals with two consecutive δ(a)D−1

terms. So, modulo an overall sign arising from moving all powers of D−1 to the right, we need
to show that

ψj(a0, ..., ap) = λpτω(Γa0∆(a1) · · ·∆(aj−1)δ(aj)δ(aj+1)∆(aj+2) · · ·∆(ap)D−l)

is a coboundary. Now

δ2(ajaj+1) = 2δ(aj)δ(aj+1) + ajδ
2(aj+1) + δ2(aj)aj+1,

so δ2 is almost a derivation, and is well-defined on A since we suppose that (A,H,D) is QC2.
Setting

χj(a0, ..., ap−1) =
1

2
(−1)jλpτω(Γa0∆(a1) · · · δ2(aj) · · ·∆(ap−1)D−l),

we have, by Lemma 3,
(bχj)(a0, ..., ap) = ψj(a0, ..., ap).
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So now we are left with functionals in which we do not have two consecutive δ(aj)D−1 terms.
We will show that such functionals are cohomologous to functionals with consecutive δ(aj)D−1

terms, and so are coboundaries by the previous argument. Again suppose that we have a total
of l, 2 ≤ l ≤ p, δ(aj)D−1 terms. Consider first

ξj,j+2(a0, ..., ap) = −λpτω(Γa0∆(a1) · · ·∆(aj−1)δ(aj)∆(aj+1)δ(aj+2) · · ·∆(ap)D−l),

where again ∆(a) = [F, a] or δ(a). Let

ξj(a0, ..., ap) = λpτω(Γa0∆(a1) · · ·∆(aj−1)δ(aj)δ(aj+1)∆(aj+2) · · ·∆(ap)D−l),

which is the same as ξj,j+2 except we have swapped the derivations on the j + 1 and j + 2
terms, and introduced an overall minus sign. The difference (ξj,j+2 − ξj)(a0, ..., ap) is given by

λpτω(Γa0∆(a1) · · ·∆(aj+1)δ(aj)(∆(aj+1)δ(aj+2) + δ(aj+1)∆(aj+2)) · · ·∆(ap)D−l),

and this is a coboundary. This is because ∆ and δ are commuting derivations so that

∆(δ(aj+1aj+2)) = aj+1∆(δ(aj+2)) + ∆(δ(aj+1))aj+2 + ∆(aj+1)δ(aj+2) + δ(aj+1)∆(aj+2).

Consequently setting

χ(a0, ..., ap−1) = (−1)jλpτω(Γa0∆(a1) · · ·∆(δ(aj+1)) · · ·∆(ap−1)D−l),

Lemma 3 along with the argument following Equation 14 shows that

(bχ)(a0, ..., ap) = ξj,j+2 − ξj.

Thus any of the functionals containing two or more δ(aj)D−1 terms are cohomologous to zero.
This completes the proof. 2

This proves Theorem 10 for the case where D has bounded inverse. That this is the case is
due to the fact that we can now express the pairing of the Chern character with Hochschild
homology in terms of any of the functionals ζk, which is the same as employing p−1(ζ1+· · ·+ζp),
and the last Proposition says this is the same as employing φω. Theorem 10 is also true for
the case where D does not have bounded inverse; the remaining details are in Appendix 1.

We can also complete the proof of Corollary 11. Let ω and Ω be any two Dixmier functionals,
and

∑
i a

i
0 ⊗ ai

1 ⊗ · · · ⊗ ai
p a Hochschild cycle. Then

∑

i

φω(ai
0, ..., a

i
p) =

∑

i

τω(Γai
0[D, ai

1] · · · [D, ai
p]|D|−p)

=
∑

i

τω(Γai
0[F, a

i
1] · · · [F, ai

p−1]D−1[|D|, ap])

=
∑

i

τΩ(Γai
0[F, a

i
1] · · · [F, ai

p−1]D−1[|D|, ap])

=
∑

i

τΩ(Γai
0[D, ai

1] · · · [D, ai
p]|D|−p)

=
∑

i

φΩ(ai
0, ..., a

i
p).
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The first equality is the definition of φω, the second follows from Propositions 26 and 27, the
third follows from the measurability obtained in Lemma 24 and Corollary 25, and the final
two equalities follow from Propositions 26 and 27 and the definition. Hence the operator

∑

i

Γai
0[D, ai

1] · · · [D, ai
p]|D|−p

is measurable, and Corollary 11 is proved.

4 Appendix

Our chief remaining task is to determine the effects on our representative φω of the Hochschild
class of the Chern character of replacing (A,H,D) by (A,H2,Dm).

In [9, III.1.β,Proposition 15], Connes shows that if φ ∈ Zn
λ (A) is a cyclic cocycle, then Sφ :=

φ#σ is a Hochschild coboundary. Here # is the cup product, [9, pp 191-193], and σ defined
by σ(1, 1, 1) = 1 is the cyclic cocycle generating the cyclic cohomology of C. It is important
to realise that σ is a Hochschild coboundary.

To define the periodicity operator on arbitrary cyclic cochains, one must introduce antisym-
metrisation and some normalisation constants. This is not an appropriate procedure for
Hochschild cochains, and it is in fact simply the cup product by the cyclic cocycle (Hochschild
coboundary) σ which is important for us. Consequently, for any Hochschild cycle φ, we shall
denote by Sφ the Hochschild cocycle φ#σ. Note that this is not the usual definition of the
periodicity operator S, but our definition coincides with the usual definition on cyclic cocycles.
The important point is that if φ is a Hochschild cocycle, then φ#σ is a Hochschild coboundary,
[9, p 194].

Our strategy is to show that the representative of the Hochschild class of the Chern character
we obtain in Theorem 10 when we use the operator

(
D m
m −D

)

differs from our stated result by Hochschild coboundaries.

Definition 10 Let p ≥ 1 be integral and suppose that (A,H,D) is a QC2 (p,∞)-summable
spectral triple. Let (A,H2,Dm) be the ‘double’ of (A,H,D), and define

φω(a0, ..., ap) = λpτω(Γa0[D, a1] · · · [D, ap](m
2 + D2)−p/2)

= λpτω(Γa0[D, a1] · · · [D, ap](1 + D2)−p/2)

φωm(a0, ..., ap) = λpτω(Γa0[Dm, a1] · · · [Dm, ap]|Dm|−p)

φ̃k
ω(a0, ..., ak) = λpτω(Γa0[D, a1] · · · [D, ak](m

2 + D2)−p/2)

= λpτω(Γa0[D, a1] · · · [D, ak](1 + D2)−p/2).
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The equalities in the definition follow from

(m2 + D2)−1 − (n2 + D2)−1 = (n2 −m2)(m2 + D2)−1(n2 + D2)−1,

which, by the BKS inequality [2], implies that

(m2 + D2)−p/2 − (n2 + D2)−p/2 ∈ L1.

Hence τω(A(m2 + D2)−p/2) = τω(A(n2 + D2)−p/2) for all bounded A ∈ N and n,m > 0.

It is straightforward to show using Lemma 3 and/or Lemma 13 that all of the functionals in
Definition 10 are Hochschild cocycles. The explicit formula for φ#σ where φ is any of the
above (n-)cocycles, is [9, p 193],

(φ#σ)(a0, ..., an+2) = φ(a0a1a2da3 · · · dan+2T )

+φ(a0da1(a2a3)da4 · · · dan+2T ) + · · ·
+φ(a0da1 · · · dai−1(aiai+1)dai+2 · · · dan+2T ) + · · ·
+φ(a0da1 · · · dan(an+1an+2)T ),

where da denotes [D, a] and we have written T generically for (1 + D2)−p/2 or |Dm|−p etc.

We can now state the main result of the Appendix.

Proposition 28 Let p ≥ 1 be integral and suppose that (A,H,D) is a QC2 (p,∞)-summable
spectral triple. Let (A,H2,Dm) be the ‘double’ of (A,H,D). Then for all a0, ..., ap ∈ A

φωm(a0, ..., ap) = φω(a0, ..., ap)

+

[p/2]∑

i=1

(−1)im2i 1

i!
(Siφ̃p−2i

ω )(a0, ..., ap).

Proof We begin by defining a collection of operators Ŝi, i ≥ 1, which we will use to work
with elements of Ω∗

D(A), the graded algebra generated by A and [D,A], rather than with the
cocycles. We define Ŝ : A⊗n+1 → Ωn−2

D (A), for any n by

Ŝ(a0) = Ŝ(a0, a1) = 0,

Ŝ(a0, ..., an) =
n−1∑

i=1

a0d(a1) · · · d(ai−1)aiai+1d(ai+2) · · · d(an).

Here and below we write d(a) = [D, a]. To define ‘powers’ of Ŝ, we employ the inductive
definition

Ŝk(a0, ..., an) = Ŝk−1(
n−1∑

i=1

a0d(a1) · · · d(ai−1)aiai+1d(ai+2) · · · d(an))

= Ŝk−2(
n−1∑

i=1

Ŝ(a0, ..., ai−1)aiai+1d(ai+2) · · · d(an))
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+ Ŝk−2(
n−1∑

i=1

a0d(a1) · · · d(ai−1)Ŝ(aiai+1, ak+2, ..., an))

=
k−1∑

j=0

(
k − 1
j

)
n−1∑

i=1

Ŝj(a0, ..., ai−1)Ŝ
k−j−1(aiai+1, ..., an).

It is tedious but not difficult to check that

(Siφ)(a0, ..., an) = φ(Ŝi(a0, ..., an)), (15)

for any of the Hochschild cocycles defined in Definition 10 (regarded as functionals on Ω∗
D(A)).

We claim that for any n ≥ 0 the product a0[Dm, a1] · · · [Dm, an] is given by




a0d(a1) · · · d(an)

+
∑[n/2]

i=1
1
i!(−1)im2iŜi(a0, ..., an)

ma0d(a1) · · · d(an−1)an

+
∑[(n−1)/2]

i=1 m2i+1(−1)i 1
i! Ŝ

i(a0, ..., an−1)an

0 0


 .

(16)
Indeed, this is easy to verify for n = 1, 2. So if we suppose it to be true for all k < n then using

[Dm, an] =

(
d(an) man

−man 0

)
,

we find that a0[Dm, a1] · · · [Dm, an] is given by (writing ci = 1
i!(−1)im2i)




a0d(a1) · · · d(an−1)

+
∑[(n−1)/2]

i=1 ciŜ
i(a0, ..., an−1)

ma0d(a1) · · · d(an−2)an−1

+m
∑[(n−2)/2]

i=1 ciŜ
i(a0, ..., an−2)an−1

0 0


 [Dm, an]

=




a0d(a1) · · · d(an)

+
∑[(n−1)/2]

i=1 ciŜ
i(a0, ..., an−1)d(an)

−m2∑[(n−2)/2]
i=0 ciŜ

i(a0, ..., an−2)an−1an

ma0d(a1) · · · d(an−1)an

+
∑[(n−1)/2]

i=1 ciŜ
i(a0, ..., an−1)an

0 0


 .

In order to simplify this expression we note that

Ŝ(a0, ..., an−1)d(an) = Ŝ(a0, ..., an) − a0d(a1) · · · d(an−2)an−1an, (17)

and for i > 1

Ŝi(a0, ..., an−1)d(an) = Ŝi(a0, ..., an) − iŜi−1(a0, ..., an−2)an−1an.

To see this, one first verifies the statement for i = 2 (which is straightforward using Equation
17 and a calculation similar to that below), and then we use induction. The computation is as
follows.
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Ŝk+1(a0, ..., an) =
k∑

j=0

(
k
j

)
n−1∑

i=1

Ŝj(a0, ..., ai−1)Ŝ
k−j(aiai+1, ..., an)

=
k−1∑

j=0

(
k
j

)
n−1∑

i=1

Ŝj(a0, ..., ai−1)Ŝ
k−j(aiai+1, ..., an−1)d(an)

+
k−1∑

j=0

(
k
j

)
(k − j)

n−1∑

i=1

Ŝj(a0, ..., ai−1)Ŝ
k−j−1(aiai+1, ..., an−2)an−1an

+
n−2∑

i=1

Ŝk(a0, ..., ai−1)aiai+1d(ai+2) · · · d(an) + Ŝk(a0, ..., an−2)an−1an(18)

=
k∑

j=0

(
k
j

)
n−2∑

i=1

Ŝj(a0, ..., ai−1)Ŝ
k−j(aiai+1, ..., an−1)d(an)

+ k
k−1∑

j=0

(
k − 1
j

)
n−1∑

i=1

Ŝj(a0, ..., ai−1)Ŝ
k−j−1(aiai+1, ..., an−2)an−1an

+ Ŝk(a0, ..., an−2)an−1an (19)

= Ŝk+1(a0, ..., an−1)d(an) + (k + 1)Ŝk(a0, ..., an−2)an−1an. (20)

The first line here follows from the definition. In 18 we apply the inductive hypothesis to the
second term in each product, for j 6= k, and for j = k we split the sum into the first n − 2
terms, and the (n−1)-st. For j 6= k we notice that the (n−1)-st term of the sum is zero, by the
definition of Ŝ, so in 19 we collect all these sums of n−2 terms. We also use the combinatorial
identity

(k − j)

(
k
j

)
= k

(
k − 1
j

)
.

Finally, applying the definition of Ŝ we obtain the result 20.

Thus we have

[(n−1)/2]∑

i=1

ciŜ
i(a0, ..., an−1)d(an) −m2

[(n−2)/2]∑

i=0

ciŜ
i(a0, ..., an−2)an−1an

=





∑[n/2]
i=1 (ciŜ

i(a0, ..., an−1)d(an) + iciŜ
i−1(a0, ..., an−2)an−1an) n odd

∑[(n−1)/2]
i=1 (ciŜ

i(a0, ..., an−1)d(an) + iciŜ
i−1(a0, ..., an−2)an−1an

+mn(−1)n/2 1
([n/2]−1)! Ŝ

[n/2]−1(a0, ..., an−2)an−1an
n even

=





∑[n/2]
i=1 ciŜ

i(a0, ..., an) n odd

∑[(n−1)/2]
i=1 ciŜ

i(a0, ..., an)

+mn(−1)n/2 1
([n/2]−1)! Ŝ

[n/2]−1(a0, ..., an−2)an−1an
n even

.
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In the odd case we have used [(n − 1)/2] = [n/2], and we are left with the even case. For this
we note that

kŜk−1(a0, ..., a2k−2)a2k−1a2k = Ŝk(a0, ..., a2k),

since Ŝk(a0, ..., a2k−1) = 0, so

mn(−1)n/2 1

([n/2] − 1)!
Ŝ[n/2]−1(a0, ..., an−2)an−1an = m2[n/2](−1)[n/2] 1

[n/2]!
Ŝ[n/2](a0, ..., an).

This completes the inductive step and proves the claim 16. Putting 16 together with 15 now
completes the proof. 2

Thus the Hochschild class of the Chern character can be represented by the cocycle

φω(a0, ..., ap) = λpτω(Γa0[D, a1] · · · [D, ap](1 + D2)−p/2),

the other contributions appearing in Proposition 28 all being coboundaries with no effect on
the Hochschild class.
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