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Abstract
In [1], Connes presented axioms governing noncommutative geometry. He went on to claim

that when specialised to the commutative case, these axioms recover spin or spinc geometry
depending on whether the geometry is “real” or not. We attempt to flesh out the details
of Connes’ ideas. As an illustration we present a proof of his claim, partly extending the
validity of the result to pseudo-Riemannian spin manifolds. Throughout we are as explicit and
elementary as possible.

1 Introduction

The usual description of noncommutative geometry takes as its basic data unbounded Fred-
holm modules, known as K-cycles or spectral triples. These are triples (A,H,D) where A is an
involutive algebra represented on the Hilbert space H. The operator D is a closed, unbounded
operator on H with compact resolvent such that the commutator [D, π(a)] is a bounded opera-
tor for every a ∈ A. Here π is the representation of A in H. We also suppose that we are given
an integer p called the degree of summability which governs the dimension of the geometry. If
p is even, the Hilbert space is Z2-graded in such a way that the operator D is odd.
In [1], axioms were set down for noncommutative geometry. It is in this framework that Connes
states his theorem recovering spin manifolds from commutative geometries. Perhaps the most
important aspect of this theorem is that it provides sufficient conditions for the spectrum of
a commutative C∗-algebra to be a (spinc) manifold. It also gives credence to the idea that
spectral triples obeying the axioms should be regarded as noncommutative manifolds.
Let us briefly describe the central portion of the proof. Showing that the spectrum of A is actu-
ally a manifold relies on the interplay of several abstract structures and the axioms controlling
their representation. At the abstract level we can define the universal differential algebra of
A, denoted Ω∗(A). The underlying linear space of Ω∗(A) is isomorphic to the chain complex
from which we construct the Hochschild homology of A. In the commutative case, there is also
another definition of the differential forms over A. This algebra, Ω̂∗(A), is skew-commutative
and when the algebra A is ‘smooth’, [2], it coincides with the Hochschild homology of A. For
a commutative algebra it is always the case that Hochschild homology contains Ω̂∗(A) as a
direct summand.
The axioms, among other things, ensure that we end up with a faithful representation of
Ω̂∗(A). The process begins by constructing a representation of Ω∗(A) from a representation π
of A, which we may assume is faithful. This is done using the operator D introduced above
by setting

π(δa) = [D, π(a)] ∀a ∈ A, (1)
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where Ω∗(A) is generated by the symbols δa, a ∈ A. There are three axioms/assumptions
controlling this representation. The first is Connes’ first order condition. This demands that
[[D, π(a)], π(b)] = 0 for all a, b ∈ A, at least in the commutative case. It turns out that
the kernel of a representation of Ω∗(A) obeying this condition is precisely the image of the
Hochschild boundary. Thus our representation descends to a representation of Hochschild
homology HH∗(A) ⊆ Ω∗(A), and is moreover faithful.
The algebra Ω∗D(A) := π(Ω∗(A)) is no longer a differential algebra. To remedy this, one
quotients out the ‘junk’ forms, and these turn out to be the submodule generated over A by
graded commutators and the image of the Hochschild boundary. Thus the algebra, Λ∗D(A),
that we arrive at after removing the junk is skew-commutative, and we will show that it is
isomorphic to Ω̂∗(A). We will then prove that the representation of Hochschild homology with
values in Λ∗D(A) is still faithful, showing that Λ∗D(A) ∼= Ω̂∗(A) ∼= HH∗(A). This is a necessary,
though not sufficient, condition for the algebra A to be smooth. Note that by virtue of the
first order condition, both Ω∗D(A) and Λ∗D(A) are symmetric A bimodules, and so may be
considered to be (left or right) modules over A⊗A.
Returning to the axioms, the critical assumption to show that the spectrum is indeed a manifold
is the existence of a Hochschild p-cycle which is represented by 1 or the Z2-grading depending
on whether p is odd or even respectively. The main consequence is that this cycle is nowhere
vanishing as a section of π(Ωp(A)). As it is a cycle, we know that it lies in the skew-commutative
part of the algebra, and this will allow us to find generators of the differential algebra over A
and construct coordinate charts on the spectrum. Indeed, the non-vanishing of this cycle is
the most stringent axiom, as it enforces the underlying p-dimensionality of the spectrum.
Thus we have a two step reduction process

Ω∗(A)→ Ω∗D(A)→ Λ∗D(A), (2)

and the third axiom referred to above is needed to control the behaviour of the intermediate
algebra Ω∗D(A), as well as to ensure that our algebra is indeed smooth. Recalling that D is
required to be closed and self-adjoint, we demand that for all a ∈ A

δn(π(a)), δn([D, π(a)]) are bounded for all n, δ(x) = [|D|, x]. (3)

It is easy to imagine that this could be used to formulate smoothness conditions, but it also
forces Ω∗D(A) to be a (possibly twisted) representation of the complexified Clifford algebra of
the cotangent bundle of the spectrum. As the representation is assumed to be irreducible, we
will have shown that the spectrum is a spinc manifold. Inclusion of the reality axiom will then
show that the spectrum is actually spin. The detailed description of these matters requires a
great deal of work.
We begin in Section 2 with some more or less standard background results. These will be
required in Section 3, where we present our basic definitions and the axioms, as well as in
Section 4 where we state and prove Connes’ result. Section 5 addresses the issue of abstract
characterisation of algebras having “geometric representations.”

2 Background

Although there are now several good introductory accounts of noncommutative geometry, eg
[3], to make this paper as self-contained as possible, we will quote a number of results necessary
for the proof of Connes’ result and the analysis of the axioms.
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2.1 Pointset Topology

The point set topology of a compact Hausdorff spaceX is completely encoded by the C∗-algebra
of continuous functions on X, C(X). This is captured in the Gel’fand-Naimark Theorem.

Theorem 1 For every commutative C∗-algebra A, there exists a Hausdorff space X such that
A ∼= C0(X). If A is unital, then X is compact.

In the above, C0(X) means the continuous functions on X which tend to zero at infinity. In the
compact case this reduces to C(X). We can describe X explicitly as X = Spec(A) = {maximal
ideals of A} = {pure states of A}={unitary equivalence classes of irreducible representations}.
The weak∗ topology on the pure state space is what gives us compactness, and translates into
the topology of pointwise convergence for the states. While this theorem provides much of the
motivation for the use of C∗-algebras in the context of “noncommutative topology,” much of
their utility comes from the other Gel’fand-Naimark theorem.

Theorem 2 Every C∗-algebra admits a faithful and isometric representation as a norm closed
self-adjoint ∗-subalgebra of B(H) for some Hilbert space H.

In the classical (commutative) case there are a number of results showing that we really can
recover all information about the space X from the algebra of continuous functions C(X).
For instance, closed sets correspond to norm closed ideals, and so single points to maximal
ideals. The latter statement is proved using the correspondence pure state↔kernel of pure
state; this is the way that the Gel’fand-Naimark theorem is proved, and is not valid in the
noncommutative case, [3]. There are many other such correspondences, see [4], not all of which
still make sense in the noncommutative case, for the simple reason that the three descriptions
of the spectrum no longer coincide for a general C∗-algebra, [3]. On this cautionary note, let
us turn to the most important correspondence; the Serre-Swan theorem, [5].

Theorem 3 Let X be a compact Hausdorff space. Then a C(X)-module V is isomorphic (as
a module) to a module Γ(X,E) of continuous sections of a complex vector bundle E → X if
and only if V is finitely generated and projective.

We abbreviate finitely generated and projective to the now common phrase finite projective.
This is equivalent to the following. If V is a finite projective A-module, then there is an
idempotent e2 = e ∈ MN (A), the N × N matrix algebra over A, for some N such that
V ∼= eAN . Thus V is a direct summand of a free module. We would like then to treat finite
projective C∗-modules as noncommutative generalisations of vector bundles. Ideally we would
like the idempotent e to be a projection, i.e. self-adjoint. Since every complex vector bundle
admits an Hermitian structure, this is easy to formulate in the commutative case. In the
general case we define an Hermitian structure on a right A-module V to be a sesquilinear map
〈·, ·〉 : V × V → A such that ∀a, b ∈ A, v, w ∈ V

1) 〈av, bw〉 = a∗〈v, w〉b,
2) 〈v, w〉 = 〈w, v〉∗,
3) 〈v, v〉 ≥ 0, 〈v, v〉 = 0⇒ v = 0.

A finite projective module always admits Hermitian structures (and connections, for those
looking ahead). Such an Hermitian structure is said to be nondegenerate if it gives an isomor-
phism onto the dual module. This corresponds to the usual notion of nondegeneracy in the
classical case, [3]. We also have the following.
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Theorem 4 Let A be a C∗-algebra. If V is a finite projective A-module with a nondegenerate
Hermitian structure, then V ∼= eAN for some idempotent e ∈MN (A) and furthermore e = e∗,
where ∗ is the composition of matrix transposition and the ∗ in A.

We shall regard finite projective modules over a C∗-algebra as the noncommutative version of
(the sections of) vector bundles over a noncommutative space. As a last point before moving
on, we note that for every bundle on a smooth manifold, there is an essentially unique smooth
bundle. For more information on all these results, see [3, 6].

2.2 Algebraic Topology

Bundle theory leads us quite naturally to K-theory in the commutative case, and to further
demonstrate the utility of defining noncommutative bundles to be finite projective modules,
we find that this definition allows us to extend K-theory to the noncommutative domain as
well. Moreover, in the commutative case (at least for finite simplicial complexes), K-theory
recovers the torsion-free part of the ordinary cohomology via the Chern character, and the
usual cohomology theories make no sense whatsoever for a noncommutative space. Thus K-
theory becomes the cohomological tool of choice in the noncommutative setting.
This is not the whole story, however, for we know that in the smooth case we can formulate
ordinary cohomology in geometric terms via differential forms. Noncommutatively speaking,
differential forms correspond to the Hochschild homology of the algebra of smooth functions
on the space, whereas the de Rham cohomology is obtained by considering the closely related
theory, cyclic homology, [6]. The latter, or more properly the periodic version of the theory,
see [2, 6], is the proper receptacle for the Chern character (in both homology and cohomology).

We can define K-theory for any (pre-) C∗-algebra and K-homology for a class of (pre-) C∗-
algebras. For any of these algebras A, elements of K∗(A) may be regarded as equivalence
classes of Fredholm modules [(H, F,Γ)]. These consist of a representation π : A → B(H), an
operator F : H → H such that F = F ∗, F 2 = 1, and [F, π(a)] is compact for all a ∈ A. If
Γ = 1, the class defined by the module is said to be odd, and it resides in K1(A). If Γ = Γ∗,
Γ2 = 1, [Γ, π(a)] = 0 for all a ∈ A and ΓF + FΓ = 0, then we call the class even, and it
resides in K0(A). For complex algebras, Bott periodicity says that these are essentially the
only K-homology groups of A. For the case of a commutative separable C∗-algebra, C0(X),
this coincides with the (analytic) K-homology of X. A relative group can be defined as well,
along with a reduced group for dealing with locally compact spaces (non-unital algebras),
[7, 8, 9, 10].
The K-theory of the algebra A may be described as equivalence classes of idempotents, K0(A),
and unitaries, K1(A), in M∞(A) and GL∞(A) respectively. Again, relative and reduced groups
can be defined. We will find it useful when discussing the cap product to denote elements
corresponding to actual idempotents or unitaries by [(e,N)], or [(u,N)] respectively, with
e, u ∈MN (A). Much of what follows could be translated into KK-theory or E-theory, but we
shall be content with the simple presentation below.
The duality pairing between K-theory and K-homology can be broken into two steps. First
one uses the cap product, described below, and then acts on the resulting K-homology class
with the natural index map. This map, Index : K0(A)→ K0(C) = Z is given by

Index([(H, F,Γ)]) = Index(
1− Γ

2
F

1 + Γ
2

). (4)
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On the right we mean the usual index of Fredholm operators, and the beauty of the Fredholm
module formulation is that the Index map is well-defined. The Index map can also be defined
on K1(A), but as the operators in here are all self-adjoint, it always gives zero. For this reason
we will avoid mention of the “odd” product rules for the cap product.
The cap product, ∩, in K-theory will allow us to formulate Poincaré duality in due course. It
is a map

∩ : K∗(A)×K∗(A)→ K∗(A) (5)

with the even valued terms given on simple elements by the following rules:

K0(A)×K0(A)→ K0(A)

[(e,N)] ∩ [(H, F,Γ)] = [(eHN+ ⊕ eHN− ,
(

0 eF̃ ∗ ⊗ 1Ne
eF̃ ⊗ 1Ne 0

)(
e 0
0 −e

)
)], (6)

where H± = 1±Γ
2 H, and F =

(
0 F̃ ∗

F̃ 0

)
. As every idempotent determines a finite projective

module, this is easily seen to be just twisting the Fredholm module by the module given by
[(e,N)]. The product of a unitary and an odd Fredholm module will lead to the odd index,

K1(A)×K1(A)→ K0(A)

[(u,N)] ∩ [(H, F )] = [((1+F
2 H)2N ,

(
0 u
u∗ 0

)
,

(
1+F

2 ⊗ 1N 0
0 −1+F

2 ⊗ 1N

)
)]. (7)

The cap product turns K∗(A) into a module over K∗(A). Usually, one is given a Fredholm
module, µ = [(H, F,Γ)], where Γ = 1 if the module is odd, and then considers the Index as a
map on K∗(A) via Index(k) := Index(k ∩ µ), for any k ∈ K∗(A).
Let us for a minute suppose that A is commutative. If X = Spec(A) is a compact finite
simplicial complex, there are isomorphisms

K∗(X)⊗Q ∼= K∗(A)⊗Q ch∗→ H∗(X,Q) (8)

and
K∗(X)⊗Q ∼= K∗(A)⊗Q ch∗→ H∗(X,Q) (9)

given by the Chern characters. Here H∗ and H∗ are the ordinary (co)homology of X. Note
that a (co)homology theory for spaces is a homology(co) theory for algebras.
Important for us is that these isomorphisms also preserve the cap product, both in K-theory
and ordinary (co)homology, so that the following diagram

K∗(X)⊗Q
∩µ→ K∗(X)⊗Q

ch∗ ↓ ch∗ ↓
H∗(X,Q)

∩ch∗(µ)→ H∗(X,Q)

commutes for any µ ∈ K∗(X). So if X is a finite simplicial complex satisfying Poincaré Duality
in K-theory, that is there exists µ ∈ K∗(C(X)) such that ∩µ : K∗(C(X)) → K∗(C(X)) is an
isomorphism, then there exists [X] = ch∗(µ) ∈ H∗(X,Q) such that

∩[X] : H∗(X,Q)→ H∗(X,Q) (10)
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is an isomorphism. If ch∗(µ) ∈ Hp(X,Q) for some p, then we would know that X satisfied
Poincaré duality in ordinary (co)homology, which is certainly a necessary condition for X to
be a manifold.
We note in passing that K-theory has only even and odd components, whereas the usual
(co)homology is graded by Z. This is not such a problem if we replace (co)homology with
periodic cyclic homology(co). In the case of a classical manifold it gives the same results as
the usual theory, but it is naturally Z2-graded. Though we do not want to discuss cyclic
(co)homology in this paper, we note that the appropriate replacement for the commuting
square above in the noncommutative case is the following.

K∗(A)⊗Q
∩µ→ K∗(A)⊗Q

ch∗ ↓ ch∗ ↓
Hper
∗ (A)⊗Q

∩ch∗(µ)→ H∗per(A)⊗Q

Moreover, the periodic theory is the natural receptacle for the Chern character in the not
necessarily commutative case, provided that A is an algebra over a field containing Q. For
more information on Poincaré duality in noncommutative geometry, including details of the
induced maps on the various homology groups, see [6, 11].

2.3 Measure

On the analytical front we have to relate the noncommutative integral given by the Dixmier
trace to the usual measure theoretic tools. This is achieved using two results of Connes; one
building on the work of Wodzicki, [12], and the other on the work of Voiculescu, [13]. For more
detailed information on these results, see [6] and [12, 13].
To define the Dixmier trace and relate it to Lebesgue measure, we require the definitions of
several normed ideals of compact operators on Hilbert space. The first of these is

L(1,∞)(H) = {T ∈ K(H) :
N∑
n=0

µn(T ) = O(logN)} (11)

with norm

‖ T ‖1,∞= sup
N≥2

1
logN

N∑
n=0

µn(T ). (12)

In the above the µn(T ) are the eigenvalues of |T | =
√
TT ∗ arranged in decreasing order and

repeated according to multiplicity so that µ0(T ) ≥ µ1(T ) ≥ . . .. This ideal will be the domain
of definition of the Dixmier trace. Related to this ideal are the ideals L(p,∞)(H) for 1 < p <∞
defined as follows;

L(p,∞)(H) = {T ∈ K(H) :
N∑
n=0

µn(T ) = O(N1− 1
p )} (13)

with norm

‖ T ‖p,∞= sup
N≥1

1

N
1− 1

p

N∑
n=0

µn(T ). (14)

We introduce these ideals because if Ti ∈ L(pi,∞)(H) for i = 1, . . . , n and
∑ 1

pi
= 1, then the

product T1 · · ·Tn ∈ L(1,∞)(H). In particular, if T ∈ L(p,∞)(H) then T p ∈ L(1,∞)(H).
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We want to define the Dixmier trace so that it returns the coefficient of the logarithmically
divergent part of the trace of an operator. Unfortunately, since (1/ logN)

∑N µn(T ) is in
general only a bounded sequence, we can not take the limit in a well-defined way. The Dixmier
trace is usually defined in terms of linear functionals on bounded sequences satisfying certain
properties. One of these properties is that if the above sequence is convergent, the linear
functional returns the limit. In this case, the result is independent of which linear functional
is used. So, for T ∈ L(1,∞)(H) with T ≥ 0, we say that T is measurable if

−
∫
T := lim

N→∞

1
logN

N∑
n=0

µn(T ) (15)

exists. Moreover, −
∫

is linear on measurable operators, and we extend it by linearity to not
necessarily positive operators. Then −

∫
satisfies the following properties, [6]:

1)The space of measurable operators is a closed (in the (1,∞) norm) linear space invariant
under conjugation by invertible bounded operators and contains L(1,∞)

0 (H), the closure of the
finite rank operators in the (1,∞) norm;

2) If T ≥ 0 then −
∫
T ≥ 0;

3) For all S ∈ B(H) and T ∈ L(1,∞)(H) with T measurable, we have −
∫
TS = −

∫
ST ;

4) −
∫

depends only on H as a topological vector space;
5) −
∫

vanishes on L(1,∞)
0 (H).

Next we relate this operator theoretic definition to geometry.
If P is a pseudodifferential operator acting on sections of a vector bundle E → M over a
manifold M of dimension p, it has a symbol σ(P ). The Wodzicki residue of P is defined by

WRes(P ) =
1

p(2π)p

∫
S∗M

traceEσ−p(P )(x, ξ)
√
gdxdξ. (16)

In the above S∗M is the cosphere bundle with respect to some metric g, and σ−p(P ) is the part
of the symbol of P homogenous of order −p. In particular, if P is of order strictly less than
−p, WRes(P ) = 0. The interesting thing about the Wodzicki residue is that although symbols
other than principal symbols are coordinate dependent, the Wodzicki residue depends only on
the conformal class of the metric [6]. It is also a trace on the algebra of pseudodifferential
operators, and we have the following result from Connes, [14, 6].

Theorem 5 Let T be a pseudodifferential operator of order −p acting on sections of a smooth
bundle E → M on a p dimensional manifold M . Then as an operator on H = L2(M,E),
T ∈ L(1,∞)(H), T is measurable and −

∫
T = WRes(T ).

It can also be shown that the Wodzicki residue is the unique trace on pseudodifferential op-
erators extending the Dixmier trace, [14]. Hence we can make sense of −

∫
T for any pseu-

dodifferential operator on a manifold by using the Wodzicki residue. This is done by setting
−
∫
T = WRes(T ). In particular, if T is of order strictly less than −p = −dimM , then −

∫
T = 0.

This will be important for us later in relation to gravity actions. Before moving on, we note
that when we are dealing with the noncommutative case there is an extended notion of pseu-
dodifferential operators, symbols and Wodzicki residue which reduces to the usual notion in
the commutative case; see [15].
The other connection of the Dixmier trace to our work is its relation to the Lebesgue measure.
Since the Dixmier trace acts on operators on Hilbert space we might expect it to be related to
measure theory via the spectral theorem. Indeed this is true, but we must backtrack a little
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into perturbation theory.
The Kato-Rosenblum theorem, [16], states that for a self-adjoint operator T on Hilbert space,
the absolutely continuous part of T is (up to unitary equivalence) invariant under trace class
perturbation. This result does not extend to the joint absolutely continuous spectrum of more
than one operator. Voiculescu shows that for a p-tuple of commuting self-adjoint operators
(T1, . . . , Tp), the absolutely continuous part of their joint spectrum is (up to unitary equiva-
lence) invariant under perturbation by a p-tuple of operators (A1, . . . , Ap) with Ai ∈ L(p,1)(H).
This ideal is given by

L(p,1)(H) = {T ∈ K(H) :
∞∑
n=0

n
1
p
−1
µn(T ) <∞}, (17)

with norm given by the above sum.
Voiculescu, [13], was lead to investigate, for X a finite subset of B(H) and J a normed ideal
of compact operators, the obstruction to finding an approximate unit quasi-central relative to
X. That is, an approximate unit whose commutators with elements of X all lie in J . To do
this, he introduced the following measure of this obstruction

kJ(X) = lim inf
A∈R+

1 ,A→1
‖ [A,X] ‖J . (18)

Here R+
1 is the unit interval 0 ≤ A ≤ 1 in the finite rank operators, and in terms of the norm

‖ · ‖J on J , ‖ [A,X] ‖J= supT∈X ‖ [A, T ] ‖J . With this tool in hand Voiculescu proves the
following result.

Theorem 6 Let T1, . . . , Tp be commuting self-adjoint operators on the Hilbert space H and
Eac ⊂ Rp be the absolutely continuous part of their joint spectrum. Then if the multiplicity
function m(x) is integrable, we have

γp

∫
Eac

m(x)dpx = (kL(p,1)({T1, . . . , Tp}))p (19)

where γp ∈ (0,∞) is a constant.

This result seems a little out of place, as we are using L(1,∞) as our measurable operators.
However, Connes proves the following, [6, pp 311-313].

Theorem 7 Let D be a self-adjoint, invertible, unbounded operator on the Hilbert space H,
and let p ∈ (1,∞). Then for any set X ⊂ B(H) we have

kL(p,1)(X) ≤ Cp( sup
T∈X

‖ [D,T ] ‖)(−
∫
|D|−p)1/p, (20)

where Cp is a constant.

The case p = 1 must be handled separately. In this paper we will be dealing only with compact
manifolds, and so in dimension 1, we have only the circle. We will check this case explicitly in
the body of the proof. So ignoring dimension 1 for now, we have the following, [6].
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Theorem 8 Let p and D be as above, with D−1 ∈ L(p,∞)(H) and suppose that A is an invo-
lutive subalgebra of B(H) such that [D, a] is bounded for all a ∈ A. Then

1) Setting τ(a) = −
∫
a|D|−p defines a trace on A. This trace is nonzero if kL(p,1)(A) 6= 0.

2) Let p be an integer and a1, . . . , ap ∈ A commuting self-adjoint elements. Then the
absolutely continuous part of their spectral measure

µac(f) =
∫
Eac

f(x)m(x)dpx (21)

is absolutely continuous with respect to the measure

τ(f) = τ(f(a1, . . . , ap)) = −
∫
f |D|−p, ∀f ∈ C∞c (Rp). (22)

Combining the results on the Wodzicki residue and these last results of Voiculescu and Connes,
we will be able to show that the measure on a commutative geometry is a constant multiple
of the measure defined in the usual way.
The hypothesis of invertibility used in the above theorems for the operator D can be removed
provided kerD is finite dimensional. Then we can add to D a finite rank operator in order
to obtain an invertible operator, and the Dixmier trace will be unchanged. For these purely
measure theoretic purposes, simply taking D−1 = 0 on kerD is fine. More care must be taken
with kerD in the definition of the associated Fredholm module; see [6].

2.4 Geometry

Next we look at the universal differential algebra construction, and its relation to Hochschild
homology.
The (reduced) Hochschild homology of an algebraA with coefficients in a bimoduleM is defined
in terms of the chain complex Cn(M) = M ⊗Ã⊗n with boundary map b : Cn(M)→ Cn−1(M)

b(m⊗ a1 ⊗ · · · ⊗ an) = ma1 ⊗ a2 ⊗ · · · ⊗ an

+
n−1∑
i=1

(−1)im⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+(−1)nanm⊗ a1 ⊗ · · · ⊗ an−1 (23)

Here Ã = A/C. In the event that M = A, we denote Cn(M) := Cn(A) and the resulting
homology by HH∗(A), otherwise by HH∗(A,M). Though we will be concerned with the
commutative case, the general setting uses M = A⊗Aop with bimodule structure a(b⊗cop)d =
abd⊗ cop, with Aop the opposite algebra of A. With this structure it is clear that

HH∗(A,A⊗Aop) ∼= A⊗Aop ⊗HH∗(A) ∼= A⊗HH∗(A)⊗Aop. (24)

We will also require topological Hochschild homology. Suppose we have an algebra A which
is endowed with a locally convex and Hausdorff topology such that A is complete. This
is equivalent to requiring that for any continuous semi-norm p on A there are continuous
semi-norms p′, q′ such that p(ab) ≤ p′(a)q′(b) for all a, b ∈ A. In particular, the product is
(separately) continuous. Any algebra with a topology given by an infinite family of semi-norms
in such a way that the underlying linear space is a Frechet space satisfies this property, and



2 BACKGROUND 10

moreover we may take p′ = q′ so that multiplication is jointly continuous. In constructing the
topological Hochschild homology, we use the projective tensor product ⊗̂ instead of the usual
tensor product, in order to take account of the topology of A. This is defined by placing on
the algebraic tensor product the strongest locally convex topology such that the bilinear map
(a, b)→ a⊗̂b, A×A → A⊗̂A is continuous, [6, 18]. If A is complete with respect to its Frechet
topology, then the topological tensor product is also Frechet and complete for this topology.
The resulting Hochschild homology groups are still denoted by HH∗(A). Provided that these
groups are Hausdorff, all the important properties of Hochschild homology, including the long
exact sequence, carry over to the topological setting.

The universal differential algebra over an algebra A is defined as follows. As an A bimodule,
Ω1(A) is generated by the symbols {δa}a∈A subject only to the relations δ(ab) = aδ(b)+δ(a)b.
Note that this implies that δ(C) = {0}. This serves to define both left and right module
structures and relates them so that, for instance,

aδ(b) = δ(ab)− δ(a)b. (25)

We then define

Ωn(A) =
n⊗
i=1

Ω1(A) (26)

and
Ω∗(A) =

⊕
n=0

Ωn(A), (27)

with Ω0(A) = A. Thus Ω∗(A) is a graded algebra, which we make it a differential algebra by
setting

δ(aδ(b1) · · · δ(bk)) = δ(a)δ(b1) · · · δ(bk), (28)

and
δ(ωρ) = δ(ω)ρ+ (−1)|ω|ωδ(ρ) (29)

where ω is homogenous of degree |ω|. If A is an involutive algebra, we make Ω∗(A) an involutive
algebra by setting

(δ(a))∗ = −δ(a∗), (ωρ)∗ = (ρ)∗(ω)∗ a ∈ A, ρ, ω ∈ Ω∗(A). (30)

With these conventions, Ω∗(A) is a graded differential algebra, with graded differential δ.
It turns out, [2], that the chain complex used to define Hochschild homology HH∗(A) is the
same linear space as Ω∗(A). So

Cn(A) ∼= Ωn(A) (31)

(a0, a1, ..., an)→ a0δa1 · · · δan. (32)

Using this isomorphism we have δa = 1 ⊗ a − a ⊗ 1. The relation between b and δ is known,
and is given by

b(ωδa) = (−1)|ω|[ω, a] (33)

for ω ∈ Ω|ω|(A) and a ∈ A. We will make much use of this relation in our proof.
For a commutative algebra, there is another definition of differential forms. We retain the
definition of Ω1(A), now regarded as a symmetric bimodule, but define Ω̂n(A) to be ΛnAΩ1(A),
the antisymmetric tensor product over A. This has the familiar product

(a0δa1 ∧ · · · ∧ δak) ∧ (b0δb1 · · · ∧ δbm) = a0b0δa1 ∧ · · · ∧ δak ∧ δb1 ∧ · · · ∧ δbm (34)
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and is a differential graded algebra for δ as above. For smooth (smooth algebras are automat-
ically unital and commutative) algebras, see [2] for this technical definition, Ω̂∗(A) ∼= HH∗(A)
as graded algebras, [2], though they have different differential structures. It can also be shown
that the Hochschild homology of any commutative and unital algebra A contains Ω̂∗(A) as a
direct summand, [2]. For the smooth functions on a manifold, Connes’ exploited the locally
convex topology of the algebra C∞(M) and the topological tensor product to prove the analo-
gous theorem for continuous Hochschild cohomology and de Rham currents on the manifold,[6].

We also use the universal differential algebra to define connections in the algebraic setting. So
suppose that E is a finite projective A module. Then it can be shown, [6], that connections,
in the sense of the following definition, always exist.

Definition 1 A (universal) connection on the finite projective A module E is a linear map
∇ : E → Ω1(A)⊗ E such that

∇(aξ) = δ(a)⊗ ξ + a∇(ξ), ∀a ∈ A, ξ ∈ E. (35)

Note that this definition corresponds to what is usually called a universal connection, a con-
nection being given by the same definition, but with Ω1(A) replaced with a representation of
Ω1(A) obeying the first order condition. The distinction will not bother us, but see [3, 6].
A connection can be extended to a map Ω∗(A) ⊗ E → Ω∗+1(A) ⊗ E by demanding that
∇(φ⊗ ξ) = δ(φ)⊗ ξ + (−1)|φ|(φ⊗ 1)∇(ξ) where φ is homogenous of degree |φ|, and extending
by linearity to nonhomogenous terms.
If there is an Hermitian structure on E, and we can always suppose that there is, then we may
ask what it means for a connection to be compatible with this structure. It turns out that the
appropriate condition is

δ(ξ, η)E = (ξ,∇η)E − (∇ξ, η)E . (36)

We must explain what we mean here. If we write ∇ξ as
∑
ωi⊗ξi, then the expression (∇ξ, η)E

means
∑

(ωi)∗(ξi, η)E , and similarly for the other term. As real forms, that is differentials of
self-adjoint elements of the algebra, are anti-self adjoint, we see the need for the extra minus
sign in the definition. Note that some authors have the minus sign on the other term, and this
corresponds to their choice of the Hermitian structure being conjugate linear in the second
variable.
As a last point while on this subject, if ∇ is a connection on a finite projective Ω∗(A) module
E, then [∇, ·] is a connection on Ω∗(A) “with values in E”. Here the commutator is the graded
commutator, and our meaning above is made clear by

[∇, ω]⊗ ξ = δω ⊗ ξ + (−1)|ω|ω∇ξ − (−1)|ω|ω∇ξ
= δω ⊗ ξ. (37)

This will be important later on when discussing the nature of D.

3 Definitions and Axioms

We shall only deal with normed, involutive, unital algebras over C satisfying the C∗-condition:
‖ aa∗ ‖=‖ a ‖2. To denote the algebra or ideal generated by a1, . . . , an, possibly subject
to some relations, we shall write 〈a1, . . . , an〉. We write, for H a Hilbert space, B(H), K(H)
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respectively for the bounded and compact operators onH. We write Cliffr+s, Cliffr,s, for the

Clifford algebra over Rr+s with Euclidean signature, respectively signature (
r

+ · · ·+
s

− · · · −).
The complex version is denoted Cliffr+s. It is important to note that while our algebras A
are imbued with a C∗-norm, we do not suppose that it is complete with respect to the topology
determined by this norm, nor that this norm determines the topology of A.
Typically in noncommutative geometry, we consider a representation of an involutive algebra

π : A → B(H) (38)

together with a closed unbounded self-adjoint operator D on H, chosen so that the represen-
tation of A extends to (bounded) representations of Ω∗(A). This is done by requiring

π(δa) = [D, π(a)]. (39)

So in particular, commutators of D with A must be bounded. We then set

π(δ(aδ(b1) · · · δ(bk))) = [D, π(a)][D, π(b1)] · · · [D, π(bk)]. (40)

We say that the representation of Ω∗(A) is induced from the representation of A by D. With
the ∗-structure on Ω∗(A) described in the last section, π will be a ∗-morphism of Ω∗(A). We
shall frequently write [D, ·] : Ω∗(A) → Ω∗+1(A), where we mean that the commutator acts
only on elements of A, not δA, as defined above.
As π is only a ∗-morphism of Ω∗(A) induced by a ∗-morphism of A, and not a map of differential
algebras, we should not expect from the outset that it would encode the differential structure
of Ω∗(A). In fact, it is well known that we may have the situation

π(
∑
i

aiδbi1 · · · δbik) = 0 (41)

while
π(
∑
i

δaiδbi1 · · · δbik) 6= 0. (42)

These nonzero forms are known as junk, [6]. To obtain a differential algebra, we must look at

π(Ω∗(A))/π(δ kerπ). (43)

The pejorative term junk is unfortunate, as the example of the canonical spectral triple on
a spinc manifold shows (and as we shall show later with one extra assumption on |D| and
the representation). This is given by the algebra of smooth functions A = C∞(M) acting as
multiplication operators on H = L2(M,S), where S is the bundle of spinors and D is taken to
be the Dirac operator. In this case, [6], the induced representation of the universal differential
algebra is (up to a possible twisting by a complex line bundle)

π(Ω∗(A)) ∼= Cliff(T ∗M)⊗C = Cliff(T ∗M) (44)

and
π(Ω∗(A))/π(δ kerπ) ∼= Λ∗(T ∗M)⊗C. (45)

Clearly it is the irreducible representation of the former algebra which encodes the hypothesis
‘spinc’. We will come back to this throughout the paper, and examine it more closely in Section
5. With the above discussion as some kind of motivation, let us now make some definitions.
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Definition 2 A smooth spectral triple (A,H,D) is given by a representation

π : Ω∗(A)⊗Aop → B(H) (46)

induced from a representation of A by D : H → H such that
1) [π(φ), π(bop)] = 0, ∀φ ∈ Ω∗(A), bop ∈ Aop
2) [D, π(a)] ∈ B(H), ∀a ∈ A
3) π(a), [D, π(a)] ∈ ∩∞m=1Domδ

m where δ(x) = [|D|, x].
Further, we require that D be a closed self-adjoint operator, such that the resolvent (D−λ)−1

is compact for all λ ∈ C \R.

Remarks: The first condition here is Connes’ first order condition, and it plays an important
rôle in all that follows. It is usually stated as [[D, a], bop] = 0, for all a, b ∈ A. A unitary change
of representation on H given by U : H → H sends D to UDU∗ = D + U [D, U∗]. When it is
important to distinguish between the various operators so obtained, we will write Dπ. Note
that the smoothness condition can be encoded by demanding that the map t → eit|D|be−it|D|

is C∞ for all b ∈ π(Ω∗(A)). This condition also restricts the possible form of |D| and so D.
This will in turn limit the possibilities for the product struture in Ω∗D(A), eventually showing
us that it must be the Clifford algebra (up to a possible twisting).
It is of some importance that, as mentioned, the Hochschild boundary on differential forms is
given by

b(ωδa) = (−1)|ω|[ω, a]. (47)

A representation of Ω∗(A) induced by D and the first order condition satisfies

π ◦ b = 0. (48)

That is, Hochschild boundaries are sent to zero by π. First this makes sense, as HH∗(A)
is a quotient of C∗(A), which has the same linear structure as Ω∗(A). Second, it gives us a
representation of Hochschild homology

π : HH∗(A)→ π(Ω∗(A)). (49)

If π : A → π(A) is faithful, then the resulting map on Hochschild homology will also be
injective. The reason for this is that the kernel of π will be generated solely by elements
satisfying the first order condition; i.e. Hochschild boundaries. We will discuss this matter
and its ramifications further in the body of the proof.
To control the dimension we have two more assumptions.

Definition 3 For p = 0, 1, 2, . . ., a (p,∞)-summable spectral triple is a smooth spectral triple
with

1) |D|−1 ∈ L(p,∞)(H)
2) a Hochschild cycle c ∈ Zp(A,A⊗Aop) with

π(c) = Γ (50)

where if p is odd Γ = 1 and if p is even, Γ = Γ∗, Γ2 = 1, Γπ(a)− π(a)Γ = 0 for all a ∈ A and
ΓD +DΓ = 0.

Note that condition 1) is invariant under unitary change of representation. Condition 2) is a
very strict restraint on potential geometries. We will write Γ or π(c) in all dimensions unless
we need to distinguish them. As a last definition for now, we define a real spectral triple.
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Definition 4 A real (p,∞)-summable spectral triple is a (p,∞)-summable spectral triple to-
gether with an anti-linear involution J : H → H such that

1)Jπ(a)∗J∗ = π(a)op

2)J2 = ε, JD = ε′DJ, JΓ = ε′′ΓJ ,
where ε, ε′, ε′′ ∈ {−1, 1} depend only on p mod 8 as follows:

p 0 1 2 3 4 5 6 7
ε 1 1 −1 −1 −1 −1 1 1
ε′ 1 −1 1 1 1 −1 1 1
ε′′ 1 × −1 × 1 × −1 ×

(51)

We will learn much about the involution from the proof, but let us say a few words. First,
the map π(a) → π(a)op in part 1), Definition 4, is C linear. Though we won’t deal with the
noncommutative case in any great detail in this paper, let us just point out an interesting
feature. The requirement Jb∗J∗ = bop and the first order condition allow us to say that

[D, π(a⊗ bop)] = π(bop)[D, π(a)] + π(a)[D, bop]
= π(bop)[D, π(a)] + ε′π(a)J [D, π(b)]J∗. (52)

This allows us to define a representation π(Ω∗(Aop)) = ε′π(Ω∗(A))op. Then, just as Aop

commutes with π(Ω∗(A)), A commutes with π(Ω∗(A))op. In the body of the paper we introduce
a slight generalisation of the operator J which allows us to introduce an indefinite metric on
our manifold. We leave the details until the body of the proof. As noted in the introduction,
in the commutative case we find that π(Ω∗(A)) is automatically a symmetric A-bimodule, so
when A is commutative, we may replace A⊗Aop by A.

With this formulation (i.e. hiding all the technicalities in the definitions) the axioms for
noncommutative geometry are easy to state. A real noncommutative geometry is a real (p,∞)-
summable spectral triple satisfying the following two axioms:

i) Axiom of Finiteness and Absolute Continuity
As an A ⊗ Aop module, or equivalently as an A-bimodule, H∞ = ∩∞m=1DomDm is finitely
generated and projective. Writing 〈·, ·〉 for the inner product on H∞, we require that there be
given an Hermitian structure, (·, ·), on H∞ such that

〈aξ, η〉 = −
∫
a(ξ, η)|D|−p, ∀a ∈ π(A), ξ, η ∈ H∞. (53)

ii) Axiom of Poincaré Duality
Setting µ = [(H,D, π(c))] ∈ KRp(A ⊗ Aop), we require that the cap product by µ is an
isomorphism;

K∗(A)
∩µ→ K∗(A). (54)

Note that µ depends only on the homotopy class of π, and in particular is invariant under
unitary change of representation. If we want to discuss submanifolds (i.e. unfaithful represen-
tations of A that satisfy the definitions/axioms) we would have to consider µ ∈ K∗(π(A)), and
the isomorphism would be between the K-theory and the K-homology of π(A). Equivalently,
we could consider µ ∈ K∗(A, kerπ), the relative homology group, [9]. We will not require this
degree of generality. To see that µ defines a KR class, note that J · J∗ provides us with an
involution on π(Ω∗(A ⊗ Aop)). It may or may not be trivial, but always allows us to regard
the K-cycle obtained from µ as Real, in the sense of [11].
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Axiom i) controls a great deal of the topological and measure theoretic structure of our ge-
ometry. Suppose A is a commutative algebra. Since π(A) is a C∗-subalgebra of B(H), any
finite projective module over π(A) is isomorphic to a bundle of continuous sections Γ(X,E)
for some complex bundle E → X. Here X = Spec(π(A)). However, here we have a π(A)
module, and this distinction is tied up with the smoothness of the coordinates. In particular,
this axiom tells us that the algebra A is complete with respect to the topology determined
by the semi-norms a →‖ δn(a) ‖. To see this, consider the action of the completion, which
we temporarily denote by A∞, on H∞. If A were not complete, then A∞H∞ 6⊆ H∞, because
being finite and projective over A, H∞ = eAN , for some idempotent e ∈MN (A) and some N .
However, H∞ is defined as the intersection of the domains of Dm for all m. In particular, D2

preserves H∞, so that |D| must also. If we write D = F |D| = |D|F , where F is the phase of
D, then F too must preserve H∞. So let a ∈ A∞ and ξ ∈ H∞. Then

Dmaξ = Fm mod 2|D|maξ (55)

and by the boundedness of δm(a) for all m, we see that Dmaξ ∈ H∞ for all m. Hence A∞ = A,
and A is complete. We shall continue to use the symbol A, and note that the completeness of A
in the topology determined by δ makes A a Frechet space and allows us to use the topological
version of Hochschild homology.

Axiom ii), perhaps surprisingly, is related to the Dixmier trace. Connes has shown, [6],
that the Hochschild cohomology class (but importantly, not the cyclic class, see [15, 17]) of
ch∗([(H,D, π(c))]) is given by φω, where

φω(a0, a1, . . . , ap) = λp −
∫
π(c)a0[D, a1] · · · [D, ap]|D|−p (56)

for any ai ∈ π(A). Here π(c) is the representation of the Hochschild cycle and λp is a constant.
Since the K-theory pairing is non-degenerate by Poincaré Duality, φω 6= 0. Thus, in particular,
−
∫
π(c)2|D|−p = −

∫
|D|−p 6= 0, and operators of the form

π(c)a0[D, a1] · · · [D, ap]|D|−p (57)

are measurable; i.e. their Dixmier trace is well-defined. This also shows us , for example, that
elements of the form π(c)2a|D|−p = a|D|−p are measurable for all a ∈ π(A) and so we obtain
a trace on π(A). It also tells us that |D|−1 /∈ L(p,∞)

0 (H), and furthermore, that the cyclic
cohomology class is not in the image of the periodicity operator; i.e. p is a lower bound on the
dimension of the cyclic cocycle determined by the Chern character of the Fredholm module
associated to µ, [6]. For more details on K-theory and Poincaré duality, see [6, 7, 8, 9, 10].
Though the representation of D may vary a great deal within the K-homology class µ, the trace
defined on A by −

∫
·|D|−p is invariant under unitary change of representation. Let U ∈ B(H)

be unitary with [D, U ] bounded. Then

|UDU∗| =
√

(UDU∗)∗(UDU∗) =
√
UD2U∗. (58)

However, (U |D|U∗)2 = U |D|2U∗ = UD2U∗ so

|UDU∗| = U |D|U∗. (59)

From this (U |D|U∗)−1 = U |D|−1U∗, and

|UDU∗|−p = U |D|−pU∗. (60)
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It is a general property of the Dixmier trace, [6], that conjugation by bounded invertible
operators does not alter the integral (this is just the trace property). So

−
∫
|UDU∗|−p = −

∫
U |D|−pU∗ =

∫
|D|−p. (61)

Furthermore, for any a ∈ A,

−
∫
Uπ(a)U∗|UDU∗|−p = −

∫
π(a)|D|−p, (62)

showing that integration is well-defined given
1) the unitary equivalence class [π] of π
2) the choice of c ∈ Zp(A,A⊗Aop).

For this reason we do not need to distinguish between −
∫
|Dπ|−p and −

∫
|DUπU∗ |−p and we will

simply write D in this context. Anticipating our later interest, we note that −
∫
|D|2−p is not

invariant. Sending D to UDU∗ sends −
∫
|D|2−p to

−
∫

(UDU∗)2|UDU∗|−p = −
∫

(D +A)2U |D|−pU∗

= −
∫

(D2 + {D, A}+A2)U |D|−pU∗

= −
∫

(D2U |D|−pU∗) + −
∫

({D, A}+A2)|D|−p

= −
∫

(D2 + {D, A}+A2)|D|−p − −
∫
U [D2, U∗]|D|−p, (63)

where A = U [D, U∗] and {D, A} = DA + AD. For this to make sense we must have [D, U∗]
bounded of course. It is important for us that we can evaluate this using the Wodzicki residue
when D is an operator of order 1 on a manifold. Note that when this is the case, U [D2, U∗] is
a first order operator, and the contribution from this term will be from the zero-th order part
of a first order operator.
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4 Statement and Proof of the Theorem

4.1 Statement

Theorem 9 (Connes, 1996) Let (A,H,D, c) be a real, (p,∞)-summable noncommutative
geometry with p ≥ 1 such that

i) A is commutative and unital;
ii) π is irreducible (i.e. only scalars commute with π(A) and D).
Then
1) The space X = Spec(π(A)) is a compact, connected, metrisable Hausdorff space for the

weak∗ topology. So A is separable and in fact finitely generated.
2) Any such π defines a metric dπ on X by

dπ(φ, ψ) = sup
a∈A
{|φ(a)− ψ(a)| : ‖[D, π(a)]‖ ≤ 1} (64)

and the topology defined by the metric agrees with the weak∗ topology. Furthermore this metric
depends only on the unitary equivalence class of π.

3) The space X is a smooth spin manifold, and the metric above agrees with that defined
using geodesics. For any such π there is a smooth embedding X ↪→ RN .

4) The fibres of the map [π] → dπ are a finite collection of affine spaces Aσ parametrised
by the spin structures σ on X.

5) For p > 2, −
∫
|Dπ|2−p := WRes(|Dπ|2−p) is a positive quadratic form on each Aσ, with

unique minimum πσ.
6) The representation πσ is given by A acting as multiplication operators on the Hilbert

space L2(X,Sσ) and Dπσ as the Dirac operator of the lift of the Levi-Civita connection to the
spin bundle Sσ.

7) For p > 2 −
∫
|Dπσ |2−p = − (p−2)c(p)

12

∫
X R
√
gdpx where R is the scalar curvature and

c(p) =
2[p/2]

(4π)p/2Γ(p/2 + 1)
. (65)

Remark: Since, as is well known, every spin manifold gives rise to such data, the above theo-
rem demonstrates a one-to-one correspondence (up to unitary equivalence and spin structure
preserving diffeomorphisms) between spin structures on spin manifolds and real commutative
geometries.

4.2 Proof of 1) and 2)

Without loss of generality, we will make the simplifying assumption that π is faithful on A.
This allows us to identify A with π(A) ⊂ B(H), and we will simply write A. As π is a ∗-
homomorphism, the norm closure, A, is a C∗-subalgebra of B(H). Then the Gelfand-Naimark
theorem tells us that X = Spec(A) is a compact, Hausdorff space. Since A is dense in its
norm closure, each state on A (defined with respect to the C∗ norm of A) extends to a state
on the closure, by continuity. Recall that we are assuming that A is imbued with a norm such
that the C∗-condition is satisfied for elements of A; thus here we mean continuity in the norm.
Hence Spec(A) = Spec(A). The connectivity of such a space is equivalent to the non-existence
of nontrivial projections in A ∼= C(X). So let p ∈ A be such that p2 = p. Then

[D, p] = [D, p2] = p[D, p] + [D, p]p = 2p[D, p]. (66)
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So (1− 2p)[D, p] = 0 implying that [D, p] = 0. By the irreducibility of π, we must have p = 1
or p = 0. Hence A contains no non-trivial projections and X is connected. Note that the
irreducibility also implies that [D, a] 6= 0 unless a is a scalar. Also, as there are no projections,
any self-adjoint element of A has only continuous spectrum.
The reader will easily show that equation (64) does define a metric on X, [20]. The topology
defined by this metric is finer than the weak∗ topology, so functions continuous for the weak∗

topology are automatically continuous for the metric. Furthermore, elements of A are also
Lipschitz, since for any a ∈ A, ‖ [D, a] ‖≤ 1, we have |a(x) − a(y)| ≤ d(x, y). Thus for any
a ∈ A we have |a(x)− a(y)| ≤‖ [D, a] ‖ d(x, y). Later we will show that the metric and weak∗

topologies actually agree. This will follow from the fact that A, and so A, is finitely generated.
This also implies the separability of C(X) ∼= A, which is equivalent to the metrizability of X.
This will complete the proof of 1) and 2), but it will have to wait until we have learned some
more aboutA. The last point of 2) is that the metric is invariant under unitary transformations.
That is if U : H → H is unitary

[UDU∗, UaU∗] = U [D, a]U∗ ⇒‖ [UDU∗, UaU∗] ‖=‖ [D, a] ‖ . (67)

So while D will be changed by a unitary change of representation

D := Dπ → UDU∗ := DUπU∗ = Dπ + U [Dπ, U∗], (68)

commutators with D change simply. For this reason, when we only need the unitary equivalence
class of π, we drop the π, and write Ω∗D(A) for π(Ω∗(A)), where the D is there to remind us
that this is the representation of Ω∗(A) induced by D and the first order condition.

4.3 Proof of 3) and remainder of 1) and 2)

Before beginning the proof of 3), which will also complete the proof of 1) and 2), let us outline
our approach, as this is the longest, and most important, portion of the proof.

4.3.1 Generalities. This section deals with the various bundles involved, their Hermi-
tian structures and their relationships. We also analyse the structure of Ω∗D(A) and Λ∗D(A),
particularly in relation to Hochschild homology.

4.3.2 X is a p-dimensional topological manifold. We show that the elements of A
involved in the Hochschild cycle

π(c) = Γ =
∑
i

ai0[D, ai1] · · · [D, aip] (69)

provided by the axioms generate A. This is done in two steps. Results from 4.3.1 show that
Γ is antisymmetric in the [D, aij ], and this is used to show that Ω1

D(A) is finitely generated by
the [D, aij ] appearing in Γ. The second step then uses the long exact sequence in Hochschild
homology to show that A is finitely generated by the aij and 1 ∈ A. In the process we will also
show that X is a topological manifold.

4.3.3 X is a smooth manifold. We show here that A is C∞(X), and in particular that
X is a smooth manifold. After proving that the weak∗ and metric topologies on X agree, we
show that A is closed under the holomorphic functional calculus, so that the K-theories of A
and C(X) agree. At this point we will have completed the proof of 1) and 2).

4.3.4 X is a spinc manifold. The form of the operators D, |D| and D2 is investigated.
The main result is that D2 is a generalised Laplacian while D is a generalised Dirac operator, in
the sense of [27]. This allows us to show that Ω∗D(A) is (at least locally) the Clifford algebra of



4 STATEMENT AND PROOF OF THE THEOREM 19

the complexified cotangent bundle. This is sufficient to show that the metric given by equation
(64) agrees with the geodesic distance on X. As the representation of Ω∗D(A) is irreducible,
we will have completed the proof that X is a spinc manifold.

4.3.5 X is spin. It is at this point that we utilise the real structure. Furthermore, we
reformulate Connes’ result to allow a representation of the Clifford algebra of an indefinite
metric. This will necessarily involve a change in the underlying topology, which we do not
investigate here.

4.3.1 Generalities.

The axiom of finiteness and absolute continuity tells us that H∞ = ∩m≥1DomDm is a finite
projective A module. This tells us that H∞ ∼= eAN , as an A module, for some N and some e =
e2 ∈MN (A). Furthermore, from what we know about A and Spec(A), H∞ is also isomorphic
to a bundle of sections of a vector bundle over X, say H∞ ∼= Γ(X,S). These sections will be of
some degree of regularity which is at least continuous as A ⊂ C(X). This bundle is also imbued
with an Hermitian structure (·, ·)E : H∞×H∞ → A such that (aψ, bη)S = a∗(ψ, η)Sb etc, which
provides us with an interpretation of the Hilbert space as H = L2(X,S,−

∫
(·, ·)|D|−p). We will

return to the important consequences of the Hermitian structure and the measure theoretic
niceties of the above interpretation later.
As mentioned earlier, A is a Frechet space for the locally convex topology coming from the
family of seminorms

‖ a ‖, ‖ δ(a) ‖, ‖ δ2(a) ‖, ... ∀a ∈ A, δ(a) = [|D|, a]. (70)

Note that the first semi-norm in this family is the C∗-norm of A, and that δn(a) makes sense
for all a ∈ A by hypothesis. As the first semi-norm is in fact a norm, this topology is Hausdorff.
In fact our hypotheses allow us to extend these seminorms to all of Ω∗D(A), and it too will be
complete for this topology.
Now let us turn to the differential structure. The first things to note are that DH∞ ⊂ H∞,
AH∞ ⊂ H∞ and ‖ [D, a] ‖<∞ ∀a ∈ A. The associative algebra Ω∗D(A) is generated by A and
[D,A], so Ω∗D(A)H∞ ⊂ H∞. In other words

Ω∗D(A) ⊂ End(Γ(X,S)) ∼= End(eAN ) ∼= {B ∈MN (A) : Be = eB}. (71)

The most important conclusion of these observations is that Ω∗D(A) and so Ω1
D(A) are finite

projective over A, and so are both (sections of) vector bundles over X, the former being (the
sections of) a bundle of algebras as well. To see that Γ(X,S) is an irreducible module (of
sections) for the algebra (of sections) Ω∗D(A), we employ Poincaré Duality.
Suppose that the representation of Ω∗D(A) is reducible. Then by the finite projectiveness of
both H∞ and Ω∗D(A), it decomposes as a finite sum of irreducible representations. To begin,
let us assume that all the irreducible components are equivalent. Then Ω∗D(A) breaks up as a
direct sum of equivalent blocks and there are projections pi, i = 1, ..., n say, such that

D =
n∑

i,j=1

piDpj ,
n∑
i=1

pi = 1. (72)

Elements of A evidently commute with these projections, and by the block diagonality of
Ω∗D(A),

[D, a] =
n∑
i=1

pi[D, a]pi ∀a ∈ A. (73)
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Thus
∑
i 6=j pi[D, a]pj = 0 and writing

D =
n∑
i=1

piDpi +B (74)

with B = B∗, we have [B, a] = 0 for all a ∈ A. Hence B is an A-linear operator, and
considering its action on any generating set for H∞ shows that it is bounded. The point of
this is that regarding (H,D,Γ) as a K-cycle, the operator D, and so the cycle, is operator
homotopic to

D′ =
n∑
i=1

piDpi. (75)

As all the irreducible components of the representation are equivalent, the projections pi are
all equivalent. Writing D̃ = piDpi for any of the pi we have

[H,D,Γ] = [H,D′,Γ] = [H⊗Cn, D̃ ⊗Cn,Γ⊗ Idn] = n[H, D̃,Γ] ∈ K∗(X). (76)

Hence the map
∩µ : K∗(X)→ K∗(X) (77)

given by the cap product with [H,D,Γ] sends [1] ∈ K∗(X) to n[H, D̃,Γ]. In particular,
(n− 1)[H, D̃,Γ] is not in the image of µ, contradicting Poincaré Duality. A similar argument
applies for a finite number of inequivalent irreducible representations appearing in the above
decomposition.
So what is Ω∗D(A)? The central idea for studying this algebra is the first order condition. When
we construct this representation of Ω∗(A) from π and A using D, the first order condition
forces us to identify the left and right actions of A on Ω∗D(A), at least in the commutative
case. Assuming as we are that the representation is faithful on A, we see that the ideal kerπ
is generated by the first order condition,

kerπ = 〈ωa− aω〉a∈A,ω∈Ω∗(A) = 〈first order condition〉. (78)

So for ω = δf of degree 1 and a ∈ A, aδf − δfa ∈ kerπ and

(δf)(δa) + (δa)(δf) ∈ δ kerπ. (79)

Equation (78) ensures that π ◦ b = 0, as Image(b) = kerπ, so that we have a well-defined
faithful representation of Hochschild homology

π : HH∗(A)→ Ω∗D(A). (80)

If we write d = [D, ·], we see that the existence of junk is due to the fact that π ◦ δ 6= d ◦ π,
and that this may be traced directly to the first order condition. Let us continue to write
Ω∗D(A) := π(Ω∗(A)) and also write Λ∗D(A) := π(Ω∗(A))/π(δ kerπ), and note that the second
algebra is skew-commutative, and a graded differential algebra for the differential d = [D, ·].
Note that this notation differs somewhat from the usual, [6]. Note that Ω1

D(A) and Λ1
D(A) are

the same finite projective A module, and we denote them both by Γ(X,E) for some bundle
E → X, where as before we do not specify the regularity of the sections, only that they are at
least continuous for the weak∗ topology and Lipschitz for the metric topology.
The next point to examine is δ kerπ = Image(δ ◦ b). This is easily seen to be generated by
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kerπ = Image(b) and graded commutators (δa)ω − (−1)|ω|ωδa, for ω ∈ Ω∗(A) and a ∈ A.
Thus the image of π ◦ δ ◦ b in Ω∗D(A) is junk, and this is graded commutators. As elements of
the form appearing in equation (79) generate π(δ kerπ), it is useful to think of equation (79)
as a kind of ‘pre-Clifford’ relation. In particular, controlling the representation of elements of
δ kerπ will give rise to a representation of the Clifford algebra as well as the components of
the metric tensor. More on that later.
To help our analysis, define σ : Ω∗(A) → Ω∗(A) by σ(a) = a for all a ∈ A and σ(ωδa) =
(−1)|ω|(δa)ω, for |ω| ≥ 0. Then, [2], we have b ◦ δ + δ ◦ b = 1− σ, on Ω∗(A). As π ◦ b = 0, and
Image(π ◦ δ ◦ b) =Junk, we have Image(π ◦ (1− σ)) =Junk.
Thus while

π(Ω∗(A)) = Ω∗D(A) ∼= Ω∗(A)/〈Image(b)〉, (81)

passing to the junk-free situation gives

Ω∗(A)/〈Image(b), Image(1− σ)〉 ∼= Λ∗D(A) ∼= Ω̂∗(A). (82)

It is easy to see that b(1 − σ) = (1 − σ)b, so that ker b is preserved by 1 − σ. In fact, 1 − σ
sends Hochschild cycles to Hochschild boundaries. For if bc = 0 for some element c ∈ Cn(A),
then

(1− σ)c = (bδ + δb)c = bδc (83)

which is a boundary. So ker b is mapped into Image(b) under 1 − σ and so when we quotient
by Image(1− σ) we do not lose any Hochschild cycles.
So, π descends to a faithful representation of Hochschild homology with values in Λ∗D(A). In
general, the Hochschild homology groups of a commutative and unital algebra contain Ω̂∗(A)
as a direct summand, [2], but we have shown that in fact

HH∗(A) ∼= Λ∗D(A) ∼= Ω̂∗(A). (84)

This is certainly a necessary condition for the algebra A to be smooth, but more important
for us at this point is that all Hochschild cycles are antisymmetric in elements of Ω1

D(A). In
particular, π(c) = Γ 6= 0 in ΛpD(A) and is totally antisymmetric.

4.3.2 X is a p-dimensional topological manifold.

We claim that the elements aij , i = 1, ..., n j = 1, ..., p appearing in the Hochschild cycle Γ,
along with 1 ∈ A, generate A as an algebra over C. Without loss of generality we take aij to
be self-adjoint for i, j ≥ 1. Furthermore, we may also assume that ‖ [D, aij ] ‖= 1. To show
that the aij generate, we first show that the [D, aij ] generate Ω1

D(A). Let Γ be the (totally
antisymmetric) representative of the Hochschild p-cycle provided by the axioms. We write
da := [D, a] for brevity, and similarly we write d for the action of [D, ·] on forms.
Recall that Γ = π(c), and note that for any a ∈ A

π(1− σ)(cδa) = Γda− (−1)pdaΓ
= (1− (−1)p(−1)p−1)Γda
= 2Γda. (85)

Thus Γda is junk and so contains a symmetric factor, and da∧Γ = 0 for all a ∈ A. In order to
show that the daij generate Ω1

D(A) as an A bimodule, we need to show that da∧Γ = 0 implies
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that da is a linear combination of the daij . To do this, first write

Γ =
n∑
i=1

ai0da
i
1 · · · daip =

n∑
i=1

Γi. (86)

Now suppose that n = 1, so that Γ = a0da1 · · · dap. Then if

(da ∧ Γ)(x) = (a0da ∧ da1 · · · dap)(x) = 0 (87)

for all x ∈ X, elementary exterior algebra tells us that da(x) is a linear combination of
da1(x), ..., dap(x) in each fibre.
So if n > 1, the only thing we need to worry about is cancellation in the sum∑

da ∧ Γi. (88)

Without loss of generality, we can assume that at each x ∈ X there is no cancellation in the
sum ∑

Γi(x). (89)

So for all I, J ⊂ {1, ..., n} with I ∩ J = ∅,∑
i∈I

Γi(x) 6= −
∑
j∈J

Γj(x). (90)

If there were such terms we could simply remove them anyway, and we know in doing so we
do not remove all the terms Γi as Γ(x) 6= 0 for all x ∈ X.
Now suppose that for some x ∈ X and some I, J ⊂ {1, ..., n} with I ∩ J = ∅ we have

(
∑
i∈I

da ∧ Γi)(x) = −(
∑
j∈J

da ∧ Γj)(x). (91)

If da(x) is a linear combination of any of the terms appearing in these Γi’s, we are done. So
supposing that da is linearly independent of the terms appearing in

∑
I∪J Γi, we have∑

i∈I
Γi(x) = −

∑
j∈J

Γj(x) (92)

contradicting our assumption on Γ. Thus we may assume that no terms cancel, which shows
that

(da ∧ Γi)(x) = 0 (93)

for each i = 1, ..., n. Hence if Γi(x) 6= 0, da(x) is linearly dependent on dai1(x), ..., daip(x). This
also shows that if Γi,Γj are both nonzero at x ∈ X, then they are linearly dependent at x.
These considerations show that the daij generate Ω1

D(A) as an A bimodule.

As a consequence, the daij also generate Λ∗D(A) as a graded differential algebra. ¿From what
we have already shown, this algebra is precisely

Λ∗AΩ1
D(A) = Λ∗AΓ(E) = Γ(Λ∗E). (94)

Now the daij generate and any p+ 1 form in them is zero from the above argument, while we
know that ΛpD(A) 6= {0} because Γ ∈ ΛpD(A). Also, for all x ∈ X, we know that Γ(x) 6= 0,
so each fibre ΛpEx is nontrivial. Lastly, using the antisymmetry and non-vanishing of Γ, it
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is easy to see that for all x ∈ X there is an i such that the daij(x), j = 1, ..., p, are linearly
independent in Ex. For if , say,

dai1(x) =
p∑
j=2

cjda
i
j(x) (95)

then inserting this expression into the formula for Γ and using the antisymmetry shows that

dai1da
i
2 · · · daip(x) = 0. (96)

If this happenned for all i at some x ∈ X we would have a contradiction of the non-vanishing
of Γ(x). Hence we can always find such an i.
Putting all these facts together, and recalling that X is connected, we see that E has rank p
as a vector bundle, and moreover, for all x ∈ X there is an index i such that the daij(x) form
a basis of Ex. Later we will see that E is essentially the (complexified) cotangent bundle.
We now have the pieces necessary to show that A is in fact finitely generated by the aij .
Suppose that the functions aij do not separate the points of X. Define an equivalence relation
on X by

x ∼ y ⇔ aij(x) = aij(y) ∀i, j. (97)

Then by adding constants to the aij if necessary, there is an equivalence class B such that

aij(B) = {0} ∀i, j. (98)

So the aij generate an ideal 〈aij〉 whose norm closure is C0(X \ B). The fact that Λ∗D(A) is
complete in the topology determined by the family of seminorms provided by δ, and is a locally
convex Hausdorff space for this topology, shows that the topological Hochschild homology is
Hausdorff, and allows us to use the long exact sequence in topological Hochschild homology.
We have the exact sequence

0→ 〈aij〉
I→ A P→ A/〈aij〉 → 0 (99)

as well as a norm closed version

0→ C0(X \B)→ C(X)→ C(B)→ 0 (100)

The former sequence, being a sequence of locally convex algebras, induces a long exact sequence
in topological Hochschild homology. The bottom end of this looks like

· · · → Λ2(A/〈aij〉)→ Λ1
D(〈aij〉)→ Λ1

D(A)→ Λ1
D(A/〈aij〉)→ 〈aij〉

I→ A P→ A/〈aij〉 → 0. (101)

¿From what we have shown, every element of ΛnD(A) is of the form

ω =
∑

(a⊗̂a1⊗̂a2⊗̂ · · · ⊗̂an) (102)

where a ∈ A and ak ∈ 〈aij〉 for each 1 ≤ k ≤ n. The map induced on homology by P : A →
A/〈aij〉 is easy to compute:

P∗
∑

(a⊗̂a1⊗̂ · · · ⊗̂an) =
∑

(P (a)⊗̂P (a1)⊗̂ · · · ⊗̂P (an)) =
∑

(P (a)⊗̂0 · · · ⊗̂0) = 0. (103)
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So ΛnD(A/〈aij〉) = 0 for all n ≥ 1. The case n = 1 says that

δP (a) = 1⊗ P (a)− P (a)⊗ 1 = 0⇒ P (a) ∈ C · 1. (104)

Hence C(B) = C and B = {pt}. As an immediate corollary we see that all the equivalence
classes of ∼ are singletons, so A is generated in its Frechet topology by the elements aij .
Now take the natural open cover of X given by the open sets

U i = {x ∈ X : [D, ai1], ..., [D, aip] 6= 0}. (105)

¿From what we have already shown, over this open set we obtain a local trivialisation

E|U i ∼= U i ×Cp. (106)

As
|aij(x)− aij(y)| ≤‖ [D, aij ]|F ‖ d(x, y) (107)

where F is any closed set containing x and y, we see that the aij are constant off U i. By altering
these functions by adding scalars, we see that we can take their value off U i to be zero. Thus
〈aij〉j ⊆ C0(U i). Noting that the daij provide a generating set for Ω1

D(AU i) over AU i (the
closure of the functions in A vanishing off U i for the Frechet topology), the previous argument
shows that the aij generate AU i in the Frechet topology and C0(U i) in norm. The inessential
detail that AU i is not unital may be repaired by taking the one point compactification of U i

or simply noting that the above argument runs as before, but now the only scalars are zero,
whence the equivalence class B is empty.
We are now free to take as coordinate charts (U i, ai) where ai = (ai1, ..., a

i
p) : U i → Rp. As

both the aij and the akj generate the functions on U i ∩ Uk, we may deduce the existence of
continuous transition functions f ijk : Rp → Rp with compact support such that

aij = f ijk(a
k
1, ..., a

k
p) on the set U i ∩ Uk. (108)

As these functions are necessarily continuous, we have shown that X is a topological manifold,
and moreover the map a = (a1, ..., an) : X → Rnp is a continuous embedding.

4.3.3 X is a smooth manifold

We can now show that X is a smooth manifold. On the intersection U i ∩ Uk, the functions
can be taken to be generated by either ai1, ..., a

i
p or ak1, ..., a

k
p. Thus we may write the transition

functions as

aij = f ijk =
∞∑
N=0

pN (akj ) (109)

where the pN are homogenous polynomials of total degree N in the akj . As the aij generate
A in its Frechet topology, we may assume that this sum is convergent for all the seminorms
‖ δn(·) ‖. Also, Ω∗D(A) ⊂ ∩n≥1Domδ

n and [D, ·] : Ω∗D(A)→ Ω∗D(A), showing that the sequence

∞∑
N=0

[D, pN ] (110)
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converges. Since D is a closed operator, the derivation [D, ·] can be seen to be closed as well.
Thus, over the open set U i ∩ Uk, we see that the above sequence converges to [D, aij ], so

[D, aij ] =
p∑
l=1

∞∑
N=0

∂pN

∂akl
[D, akl ], (111)

where we have also used the first order condition. Consequently, the functions

∞∑
N=0

∂pN

∂akl
∈ A ⊂ C(X) (112)

are necessarily continuous. This allows us to identify

∂f ijk
∂akl

=
∞∑
N=0

∂pN

∂akl
. (113)

Applying the above argument repeatedly to the functions
∂f ijk
∂ak
l

, shows that f ijk is a C∞ function.

Hence X is a smooth manifold for the metric topology and A ⊆ C∞(X). In particular, the
functions aij are smooth.

Conversely, let f ∈ C∞(X). Over any open set V ⊂ U i we may write

f =
∞∑
n=0

pN (a1, .., ap) (114)

where we have temporarily written aj := aij . As f is smooth, all the sequences

∑
|α|=n

∂|α|f

∂α1a1 · · · ∂αpap
=
∑
|α|=n

∞∑
N=0

∂|α|pN
∂α1a1 · · · ∂αpap

(115)

converge, where α ∈ Nn is a multi-index. Let pN =
∑
|α|=N Cαa

α1
1 · · · a

αp
p and let sM =∑M

N=0 pN be the partial sum. Then

[|D|, sM ] =
M∑
N=0

∑
|α|=N

p∑
j=1

nj∑
k=1

CNa
n1
1 · · · a

nj−k
j [|D|, aj ]ak−1

j · · · anpp

=
M∑
n=0

∑
|α|=N

p∑
j=1

nj∑
k=1

Cαa
α1
1 · · · a

αj−1
j · · · aαpp [|D|, aj ]

+
M∑
n=0

∑
|α|=N

p∑
j=1

nj∑
k=1

Cαa
α1
1 · · · a

αj−k
j [[|D|, aj ], ak−1

j · · · aαpp ]

= G1
M +

p∑
j=1

∂sM
∂aj

[|D|, aj ]. (116)

To show that f ∈ Domδ, we must show that G1
M can be bounded independent of M , the other

term being convergent by the smoothness of f and the boundedness of [|D|, aj ] for each j. We
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have the following bound

‖ G1
M ‖≤

M∑
N=0

∑
|α|=N

p∑
j=1

nj∑
k=1

‖ Cαaα1
1 · · · a

αj−k
j [[|D|, aj ], ak−1

j · · · aαpp ] ‖

≤
M∑
N=0

∑
|α|=N

p∑
j=1

nj∑
k=1

2|CN | ‖ a1 ‖n1 · · · ‖ aj ‖nj−1 · · · ‖ ap ‖np‖ [|D|, aj ] ‖

= 2
M∑
N=0

p∑
j=1

∂p̃N
∂aj

(‖ a1 ‖, ..., ‖ ap ‖) ‖ [|D|, aj ] ‖, (117)

where p̃N (x1, ..., xp) =
∑
|α|=N |Cα|x

α1
1 · · ·x

αp
p . The absolute convergence of the sequence of

real numbers ∞∑
N=0

∂pN
∂aj

(‖ a1 ‖, ..., ‖ ap ‖) (118)

now shows that ‖ G1
M ‖ can be bounded independtly of M . Thus the sequence [|D|, sM ]

converges, and as [|D|, ·] is a closed derivation, it converges to [|D|, f ]. Hence ‖ [|D|, f ] ‖<∞,
and f ∈ Domδ.
Applying δ twice gives

[|D|, [|D|, sM ]] = G2
M +

∑
|α|=2

∂2sM
∂αjaj∂αkak

[|D|, aj ]αj [|D|, ak]αk +
∑
|α|=1

∂sM
∂aj

δ2(aj). (119)

The second two terms can be bounded independently of M by the smoothness of f . The term
G2
M is a sum of commutators and double commutators which can be bounded independently

of M in exactly the same manner as G1
M . This shows that

‖ [|D|, [|D|, f ]] ‖<∞ (120)

and f ∈ Domδ2. Continuing this line of argument shows that f ∈ Domδn for all n, and so
f ∈ A. Consequently, A = C∞(X), and the seminorms ‖ δn(·) ‖ determine the C∞ topology
on A.

To show that the weak∗ and metric topologies agree, it is sufficient to show that convergence
in the weak∗ topology implies convergence in the metric topology, as the metric topology is
automatically finer.
So let {φk}∞k=1 be a weak∗ convergent sequence of pure states of A (or A). Thus there is a
pure state φ such that for all f ∈ A,

|φk(f)− φ(f)| → 0. (121)

As A is commutative, we know that every pure state is a ∗-homomorphism, and writing the
generating set of A as a1, ..., anp we have for f =

∑
pN ,

φk(f) =
∞∑
N=0

pN (φk(ai)) (122)

and this makes sense since the sum is convergent in norm.
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The next aspect to address is the norm of [D, f ]. Recalling that ‖ [D, ai] ‖= 1, we have

‖ [D, f ] ‖2=‖
np∑
i,j=1

∂f

∂ai
[D, ai](

∂f

∂aj
)∗[D, aj ]∗ ‖

≤ sup
x∈X
|
np∑
i,j=1

∂f

∂ai
(x)(

∂f

∂aj
)∗(x)|

= sup
a(x)∈a(X)

|
np∑
i,j=1

∂f

∂xi
(a(x))(

∂f

∂xj
)∗(a(x))|

=‖ df ‖2, regarding f : Rnp → C, (123)

where a : X → Rnp is our (smooth) embedding and xi are coordinates on Rnp. Thus ‖ df ‖≤
1 ⇒‖ [D, f ] ‖≤ 1. Any function f : Rnp → C satisfying ‖ df ‖≤ 1 is automatically Lipschitz
(as a function on Rnp). So

|φk(f)− φ(f)| = |f(φk(ai))− f(φ(ai))|
≤ |φk(ai)− φ(ai)| → 0 as k →∞. (124)

Hence

sup{|φk(f)− φ(f)| :‖ [D, f ] ‖≤ 1} = sup{|f(φk(ai))− f(φ(ai))| :‖ df ‖≤ 1}
≤ {|φk(ai)− φ(ai)|} → 0 (125)

so φk → φ in the metric. So the two topologies agree.

As a last note on these issues, it is important to point out thatA is stable under the holomorphic
functional calculus. If f : X → C is in A, then we may (locally) regard it as a smooth function
f : Rp → C of ai1, ..., a

i
p for some i. So let g : C→ C be holomorphic. Then

g ◦ f ◦ ai (126)

is patently a smooth function on X. Thus the K-theory and K-homology of A and A coincide,
[6].

4.3.4 X is a spinc manifold

We have been given an Hermitian structure on H∞, (·, ·)S , and as Ω1
D(A) is finite projec-

tive, we are free to choose one for it also. Regarding Ω∗D(A) as a subalgebra of End(H∞),
any non-degenerate Hermitian form we choose is unitarily equivalent to ([D, a], [D, b])Ω1 :=
1
pTr([D, a]∗[D, b]), where p is the fibre dimension of Ω1

D(A). We have shown this is a non-
degenerate positive definite quadratic form. Over each U i, we have a local trivialisation (re-
calling that we have set Ω1

D(A) = Γ(X,E))

E|U i ∼= U i ×Cp. (127)

As X is a smooth manifold, we can also define the cotangent bundle, and as the ai are local
coordinates on each U i, we have

T ∗CX|U i ∼= U i ×Cp. (128)
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It is now easy to see that these bundles are locally isomorphic. Globally they may not be
isomorphic, though. The reason is that while we may choose T ∗CX to be T ∗X ⊗C globally, we
do not know that this is true for Ω1

D(A). Nonetheless, up to a possible U(1) twisting, they are
globally isomorphic. It is easy to show using our change of coordinate functions f ijk that up
to this possible phase factor the two bundles have the same transition functions. For the next
step of the proof we require only local information, so this will not affect us. Later we will use
the real structure to show that Ω∗D(A) is actually untwisted.
¿From the above comments, we may easily deduce that

Λ∗D(A)|U i ∼= Γ(Λ∗C(T ∗X))|U i . (129)

The action of d = [D, ·] on this bundle may be locally determined, since we know that Λ∗D(A)
is a skew-symmetric graded differential algebra for d. First d2 = 0, and d satisfies a graded
Liebnitz rule on Λ∗D(A). Furthermore, from the above local isomorphisms, given f ∈ A,

df |U i =
p∑
j=1

∂f

∂aij
[D, aij ] =

p∑
j=1

∂f

∂aij
daij . (130)

By the uniqueness of the exterior derivative, characterised by these three properties, [D, ·] is
the exterior derivative on forms. We shall continue to write d or [D, ·] as convenient.
Let us choose a connection compatible with the form (·, ·)S

∇ : H∞ → Λ1
D(A)⊗H∞ (131)

∇(aξ) = [D, a]⊗ ξ + a∇ξ. (132)

Note that from the above discussion, this notion of connection agrees with our usual idea of
covariant derivative. Denote by c the obvious map

c : End(H∞)⊗H∞ → H∞ (133)

and consider the composite map c ◦ ∇ : H∞ → H∞. We have

(c ◦ ∇)(aξ) = [D, a]ξ + c(a∇ξ), ∀a ∈ A, ξ ∈ H∞
= [D, a]ξ + ac(∇ξ) (134)

whereas
D(aξ) = [D, a]ξ + aDξ ∀a ∈ A, ξ ∈ H∞. (135)

Hence, on H∞,
(c ◦ ∇ −D)(aξ) = a(c ◦ ∇ −D)ξ (136)

so that c◦∇−D is A-linear, or better, in the commutatant of A. Thus if c◦∇−D is bounded,
it is in the weak closure of Ω∗D(A). However, as (c ◦ ∇ − D)H∞ ⊆ H∞, it must in fact be
in Ω∗D(A). The point of these observations is that if c ◦ ∇ − D is bounded, then as ∇ is a
first order differential operator (in particular having terms of integral order only) so is D (as
elements of Ω∗D(A) act as endomorphisms of H∞, and so are order zero operators.) So let us
show that c ◦ ∇ − D is bounded. We know H∞ ∼= eAN for some N and e ∈ MN (A). As
both D and ∇ have commutators with e in Ω∗D(A) (because D, c ◦ ∇ : H∞ → H∞) there is
no loss of generality in setting e to 1 for our immediate purposes. So, simply consider the
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canonical generating set of H∞ over A given by ξj = (0, ..., 1, ..., 0), j = 1, ..., N . Then, there
are bji , c

j
i ∈ A such that

c ◦ ∇ξi =
∑
j

bji ξj , Dξi =
∑
j

cji ξj . (137)

As c ◦ ∇ − D is A-linear, this shows that c ◦ ∇ − D is bounded. Hence D is a first order
differential operator. As the difference c ◦∇−D is in Ω∗D(A), c ◦∇−D = A, for some element
of Ω∗D(A). However, as c ◦ ∇ = D +A is a connection (ignoring c), A ∈ Ω1

D(A).
Thus over U i, we may write the matrix form of D as

Dkm =
p∑
j=1

α k
j m

∂

∂aj
+ βkm (138)

where βkm, α k
j m are bounded for each k,m. Similarly we write the square of D as

(D2)nm =
∑
j,k

A n
jk m

∂2

∂aj∂ak
+
∑
k

B n
k m

∂

∂ak
+ Cnm (139)

with all the terms A,B,C bounded, so that (as a pseudodifferential operator)

|D|nm =
∑
k

E n
k m

∂

∂ak
+ Fnm (140)

where E,F are bounded and ∑
m

E n
k mE

m
j p = A n

kj p (141)

et cetera. We will now show that the boundedness of [|D|, [D, a]], required by the axioms, tells
us that the first order part of |D| has a coefficient of the form fIdN , for some f ∈ A. With
the above notation,

[|D|, [D, a]]np =
∑
k,m

E n
k m(

∂[D, a]mp
∂ak

)+
∑
k,m

(E n
k m[D, a]mp− [D, a]nmE

m
k p)

∂

∂ak
+[F, [D, a]]np. (142)

For this to be bounded, it is necessary and sufficient that [Ek, [D, aj ]] = 0, for all j, k = 1, ..., p.
As

[|D|, [D, aj ][D, ak]] = [D, aj ][|D|, [D, ak]] + [|D|, [D, aj ]][D, ak], (143)

and the commutant of Ω∗D(A) restricted to U i is the weak closure of A restricted to U i, the
matrix Ek must be scalar over A for each k (not A′′ since |D|H∞ ⊆ H∞). Thus E n

k m = fkδ
n
m,

for some fk ∈ A. Since
A n
kj p = fkfjδ

n
p (144)

the leading order terms of D2 also have scalar coefficients.
Using the first order condition we see that

[D, aj ][D, ak] + [D, ak][D, aj ] = [[D2, aj ], ak] = [[D2, ak], aj ], (145)

and denoting by gijk := ([D, aij ], [D, aik])Ω1 , we have

1
p
Tr([D, aj ][D, ak] + [D, ak][D, aj ]) = −2Re(gijk), (146)
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since [D, aj ]∗ = −[D, aj ]. Now (145) is junk (since it is a graded commutator), and we are
interested in the exact form of the right hand side. This is easily computed in terms of our
established notation, and is given by

Ajk +Akj = 2fkfjIdN . (147)

Taken together, we have shown that

[D, aj ][D, ak] + [D, ak][D, aj ] = [[D2, ak], aj ]
= Akj +Ajk

= 2fkfjIdN
= −2Re(gijk)IdN . (148)

This proves that
1) The [D, aij ] locally generate Cliff(Ω1

D(ai1, ..., a
i
p), Re(g

i
jk)), by the universality of the

Clifford relations. Also, from the form of the Hermitian structure on Ω1
D(A), Re(gijk) is a

nondegenerate quadratic form.
2) The operator D2 is a generalised Laplacian, as fkfj = −Re(gijk).
3) From 2), we have the principal symbols σD

2

2 (x, ξ) =‖ ξ ‖2 Id, σ|D|1 (x, ξ) =‖ ξ ‖ Id, for
(x, ξ) ∈ T ∗X|U i , the total space of the cotangent bundle over U i. This tells us that |D|, D2

and D are elliptic differential operators, at least when restricted to the sets U i. With a very
little more work one can also see that σD1 (x, ξ) = ξ·, Clifford multiplication by ξ.

4) As Ω∗D(A)|U i ∼= Cliff(T ∗X)|U i , and H∞ is an irreducible module for Ω∗D(A), we see
that S is the (unique) fundamental spinor bundle for X; see [21, appendix].

5) D = c ◦ ∇ + A, where ∇ is a compatible connection on the spinor bundle, and A is
a self-adjoint element of Ω1

D(A). (Using the above results one can now show that c ◦ ∇ is
essentially self-adjoint, whence A must be self-adjoint.)

6) It is possible to check that the connection on Λ∗D(A) ⊗ Γ(X,S) given by the graded
commutator [∇, ·] is compatible with (·, ·)Ω1

D
. Hence ∇ is the lift of a compatible connection

on the cotangent bundle.
The existence of an irreducible representation of Cliff(T ∗X ⊗ L) for some line bundle L
shows that X is a spinc manifold. Before completing the proof that X is in fact spin, we
briefly examine the metric.

It is now some time since Connes proved that his ‘sup’ definition of the metric coincided with
the geodesic distance for the canonical triple on a spin manifold, [22]. We will reproduce the
proof here for completeness. All one needs to know in order to show that these metrics agree
is that for a ∈ A the operator [D, a] =

∑
j(∂a/∂aj)[D, aj ] is (locally, so over U i for each i)

Clifford multiplication by the gradient. Then Connes’ proof holds with no modification:

‖ [D, a] ‖= sup
x∈X
|
∑
j,k

(
∂a

∂aj
[D, aj ])∗

∂a

∂ak
[D, ak]|1/2

= sup
x∈X
|
∑
j,k

gijk(
∂a

∂aj
)∗
∂a

∂ak
|1/2

=‖ a ‖Lip:= sup
x 6=y

|a(x)− a(y)|
dγ(x, y)

. (149)
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In the last line we have defined the Lipschitz norm, with dγ(·, ·) the geodesic distance on X.
The constraint ‖ [D, a] ‖≤ 1 forces |a(x)− a(y)| ≤ dγ(x, y). To reverse the inequality, we fix x
and observe that dγ(x, ·) : X → R satisfies ‖ [D, dγ(x, ·)] ‖≤ 1. Then

sup{|a(x)− a(y)| : ‖ [D, a] ‖≤ 1} = d(x, y) ≥ |dγ(x, y)− dγ(x, x)| = dγ(x, y). (150)

Thus the two metrics d(·, ·) and dγ(·, ·) agree.

4.3.5 X is Spin

In discussing the reality condition, we will need to recall that Cliffr,s module multiplication
is, [21],

1) R-linear for r − s ≡ 0, 6, 7 mod 8
2) C-linear for r − s ≡ 1, 5 mod 8
3) H-linear for r − s ≡ 2, 3, 4 mod 8.

To show that X is spin, we need to show that there exists an irreducible representation of
Ω∗D(AR), where AR = {a ∈ A : a = a∗}. This is a real algebra with trivial involution. We will
employ the properties of the real structure to do this, also extending the treatment to cover
representations of Cliffr,s, with r + s = p. This requires some background on Real Clifford
algebras, [21, 23].
Let Cliff(Rr,s) be the Real Clifford algebra on Rr⊕Rs with positive definite quadratic form
and involution generated by c : (x1, ..., xr, y1, ..., ys) → (x1, ..., xr,−y1, ...,−ys) for (x, y) ∈
Rr ⊕Rs. The map c has a unique antilinear extension to the complexification Cliff(Rr,s) =
Cliff(Rr,s)⊗C given by c⊗ cc, where cc is complex conjugation. Note that all the algebras
Cliffr,s with r + s the same will become isomorphic when complexified, however this is not
the case for the algebras Cliff(Rr,s) with the involution. If we forget the involution, or if it
is trivial, then Cliff(Rr,s) ∼= Cliffr+s and Cliff(Rr,s) ∼= Cliffr+s.
A Real module for Cliff(Rr,s) is a complex representation space for Cliffr,s, W , along with
an antilinear map (also called c) c : W →W such that

c(φw) = c(φ)c(w) ∀φ ∈ Cliff(Rr,s), ∀w ∈W. (151)

It can be shown, [21], that the Grothendieck group of Real representations of Cliff(Rr,s)
is isomorphic to the Grothendieck group of real representations of Cliffr,s, and as every
Real representation of Cliff(Rr,s) automatically extends to Cliff(Rr,s), the latter is the
appropriate complexification of the algebras Cliffr,s. It also shows that KR-theory is the
correct cohomological tool.
Pursuing theKR theme a little longer, we note that (1, 1)-periodicity in this theory corresponds
to the (1, 1)-periodicity in the Clifford algebras

Cliffr,s ∼= Cliffr−s,0 ⊗ Cliff1,1 ⊗ · · · ⊗ Cliff1,1 (152)

where there are s copies of Cliff1,1 on the right hand side. As Cliff1,1
∼= M2(R) is a real

algebra (as well as Real), this shows why the R, C, H-linearity of the module multiplication
depends only on r − s mod 8. We take Cliff1,1 to be generated by 12 and v = (v1, v2) ∈ R2

by setting

v =

(
v2 v1

−v1 −v2

)
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and the multiplication is just matrix multiplication

v · w = (v2w1 − v1w2)

(
0 1
1 0

)
− (v1w1 − v2w2)12

= v ∧ w
(

0 −1
−1 0

)
− (v, w)1,112. (153)

We take Cliff(R1,1) to be generated by (v1, iv2) and we see that the involution is then given
by complex conjugation. The multiplication is matrix multiplication with

v · w = −(v, w)212 + v ∧ w
(

0 −i
−i 0

)
. (154)

Thus we may always regard the involution on

Cliff(Rr,s) ∼= Cliffr−s,0 ⊗ Cliff(R1,1)⊗ · · · ⊗ Cliff(R1,1)⊗C (155)

as 1⊗ cc⊗ cc · · · ⊗cc⊗ cc. This is enough of generalities for the moment. In our case we have
a complex representation space Γ(X,S), and an involution J such that

J(φξ) = (JφJ∗)(Jξ), ∀φ ∈ Ω∗D(A), ∀ξ ∈ Γ(X,S). (156)

So we actually have a representation of Cliff(Rr,s) with the involution on the algebra realised
by J · J∗. It is clear that J · J∗ has square 1, and so is an involution, and we set s = number
of eigenvalues equal to −1. Then from the preceeding discussion it is clear that

J · J∗ = 1Cliffp−2s,0 ⊗ cc⊗ · · · ⊗ cc⊗ cc (157)

with s copies of cc acting on s copies of Cliff(R1,1) and with the behaviour of J |Cliffp−2s,0

determined by p− 2s mod 8 according to table (51). It is clear that J · J∗ reduces to 1 on the
positive definite part of the algebra, as it is an involution with all eigenvalues 1 there. This
implies that J · J∗ preserves elements of the form φ⊗ 1⊗ · · · ⊗ 1⊗ 1C where φ ∈ Cliffp−2s,0.
However, we still need to fix the behaviour of J , and this is what is determined by p−2s mod 8.

So we claim that we have a representation of Cliffp−s,s(T ∗X, (J · J∗, ·)Ω1) provided the be-
haviour of J is determined by p − 2s mod 8 and table 51. Two points: First, this reduces to
Connes’ formulation for s = 0; second, the metric (J · J∗, ·)Ω1 has signature (p − s, s) and
making this adjustment corresponds to swapping between the multiplication on Cliff(R1,1)
and Cliff1,1. Similarly we replace (·, ·)S with (J ·, ·)S .
In all the above we have assumed that 2s ≤ p. If this is not the case, we may start with the
negative definite Clifford algebra, Cliff0,2s−p, and then tensor on copies of Cliff1,1.
Note that it is sufficient to prove the reduction for 0 < p ≤ 8 and s = 0. This is because the
extension to s 6= 0 involves tensoring on copies of Cliff(R1,1) for which the involution is deter-
mined, whilst raising the dimension simply involves tensoring on a copy of Cliff8 = M16(R),
and this will not affect the following argument. These simplifications reduce us to the case
J · J∗ = 1⊗ cc on Ω∗D(A). To complete the proof, we proceed by cases.
The first case is p = 6, 7, 8. As J2 = 1 and JD = DJ , J = cc. We set ΓR(X,S) to be the fixed
point set of J . Then restricting to the action of Ω∗D(AR) on ΓR(X,S), J is trivial. Hence we
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may regard the representation π as arising as the complexification of this real representation.
As φ = Jφ = φJ = JφJ∗ on ΓR(X,S), the action can only be R-linear. From the fact that
[D, J ] = 0, we easily deduce that ∇J = 0, so that J is globally parallel. Thus there is no global
twisting involved in obtaining Ω∗D(A) from Cliff(T ∗X). Hence X is spin.
In dimensions 2, 3, 4, not only does J commute with Ω∗D(AR), but i does also (we are looking
at the action on Γ(X,S), not ΓR(X,S)). So set

e = J, f = i, g = Ji, (158)

note that e2 = f2 = g2 = −1, and observe that the following commutation relations hold:

ef = −fe = g, fg = −gf = e, ge = −eg = f. (159)

Thus regarding e, f, g and Ω∗D(AR) as elements of homR(Γ(X,S),Γ(X,S)), we see that Γ(X,S)
has the structure of a quaternion vector bundle on X, and the action of Cliff(T ∗X) is quater-
nion linear. As in the last case, ∇J = 0, so that the Clifford bundle is untwisted and so X is
spin.
The last case is p = 1, 5. For p = 1, the fibres of Ω∗D(AR) are isomorphic to C, and we
naturally have that the Clifford multiplication is C-linear. For p = 5, the fibres are M4(C),
and as J2 = −1, we have a commuting subalgebra spanR{1, J} ∼= C. Note that the reason
for the anticommutation of J and D is that D maps real functions to imaginary functions, for
p = 1, and so has a factor of i. Analogous statements hold for p = 5. In particular, removing
the complex coefficients, so passing from D to ∇, we see that ∇J = 0, and so X is spin.
Note that in the even dimensional cases when π(c)J = Jπ(c), π(c) ∈ Ω∗D(AR). When they
anticommute, π(c) is i times a real form. This corresponds to the behaviour of the complex
volume form of a spin manifold on the spinor bundle. Compare the above discussion with [21].

It is interesting to consider whether we can recover the indefinite distance from (J · J∗, ·)Ω1 .
We will not address the issue here, but simply point out that in the topology determined by
(J ·J∗, ·), our previously compact space is no longer necessarily compact, and so can not agree
with the weak∗ topology. It is worth noting that if J · J∗ has one or more negative eigenvalues
and ∇ is compatible with the Hermitian form (J ·, ·)S , then D = c ◦ ∇ is hyperbolic rather
than elliptic. So many remaining points of the proof, relying on the ellipticity of D, will not go
through for the pseudo-Riemannian case. We will however point out the occasional interesting
detail for this case.
So for all dimensions we have shown that X is a spin manifold with A the smooth functions
on X acting as multiplication operators on an irreducible spinor bundle. Thus 3) is proved
completely.

4.4 Completion of the Proof.

4.4.1 Generalities and Proof of 4).

To prove 4), note that if we make a unitary change of representation, the metric, the integration
defined via the Dixmier trace, and the absolutely continuous spectrum of the aij (i.e. X), are
all unchanged. The only object in sight that varies in any important way with unitary change
of representation is the operator D. The change of representation induces an affine change on
D:

D → UDU∗ = D + U [D, U∗]. (160)
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This in itself shows that the connected components of the fibre over [π] → dπ(·, ·) are affine.
To show that there are a finite number of components, it suffices to note that a representation
in any component satisfies the axioms, (recall that a spin structure for one metric canonically
determines one for any other metric, [21]), and so gives rise to an action of the Clifford bundle,
and so to a spin structure. As there are only a finite number of these, we have proved 4).
The only items remaining to be proved are, for p > 2,

1. −
∫
|D|2−p is a positive definite quadratic form on each Aσ with unique minimum πσ

2. This minimum is achieved for D = 6D, the Dirac operator on Sσ
3. −
∫
|6D|2−p = − (p−2)c(p)

12

∫
X Rdv.

These last few items will all be proved by direct computation once we have narrowed down
the nature of D a bit more. As an extra bonus, we will also be able to determine the measure
once we have this extra information.
Recall the condition for compatibility of a connection ∇S on S with the Hermitian structure
(·, ·)S as

[D, (ξ, η)S ] = (ξ,∇Sη)S − (∇Sξ, η)S , ∀ξ, η ∈ Γ(X,S). (161)

Given such a connection, the graded commutator [∇S , ·] : Λ∗D(AR)→ Λ∗+1
D (AR) is a connection

compatible with the metric on Λ∗D(AR). If instead we have a connection compatible with
(J ·, ·)S , then [∇S , ·] is compatible with (J · J∗, ·)Ω1

D
. Note that we are really considering

differential forms with values in Γ(X,S), so actually have a connection [∇S , ·] : Λ∗D(A) ⊗
Γ(X,S) → Λ∗+1

D (A) ⊗ Γ(X,S). Beware of confusing the notation here, for [∇S , ·] uses the
graded commutator, while [D, ·](a[D, b]) = [D, a][D, b].
The torsion of the connection [∇S , ·] on T ∗X is defined to be T ([∇S , ·]) = d− ε ◦ [∇S , ·], where
d = [D, ·] and ε is just antisymmetrisation. Then from what has been proved thus far, we have

D = c ◦ ∇S + T, [D, ·] = c ◦ [∇S , ·] + c ◦ T ([∇S , ·]), (162)

on Γ(X,S) and Ω∗D(AR)⊗Γ(X,S) respectively. Here c is the composition of Clifford multipli-
cation with the derivation in question. On the bundle Λ∗D(A)⊗ Γ(X,S) we have already seen
that [D, ·] is the exterior derivative. The T in the expression for D is the lift of the torsion
term to the spinor bundle.
Any two compatible connections on S differ by a 1−form, A say, and by virtue of the first
order condition, adding A to ∇S does not affect [∇S , ·], and so in particular ∇S would still be
the lift of a compatible connection on the cotangent bundle. As U [D, U∗] is self-adjoint, for
any representation π, the operator Dπ is the Dirac operator of a compatible connection on the
spinor bundle. Note that as D is self-adjoint, the Clifford action of any such 1-form A must
be self-adjoint on the spinor bundle.
It is important to note that for every unitary element of the algebra, u say, gives rise to
a unitary transformation U = uJuJ∗. If we start with D, and conjugate by U , we obtain
D + u[D, u∗] + ε′Ju[D, u∗]J∗. If the metric is positive definite, then JAJ∗ = −A∗ for all
A ∈ Ω1

D(A). Thus all of these gauge terms (or internal fluctuations, [1]) vanish in the posi-
tive definite, commutative case. This corresponds to the Clifford algebra being built on the
untwisted cotangent bundle, so that we do not have any U(1) gauge terms. Moreover it is
clear that the most general form of D in the real case is D + A + ε′JAJ∗ for A a self-adjoint
1-form. The above discussion shows these vanish in the positive definite commutative case. In
the indefinite case we find non-trivial gauge terms associated with timelike directions. To see
this, note that every element of Ω1

D(A) is of the form A+ iB, where each of A and B are real,
so anti-self-adjoint. Possible gauge terms are of the form iB, as they must be self-adjoint. If
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we assume that B is timelike (i.e. JBJ∗ = −B), and set (u[D, u∗])t to be the timelike part of
u[D, u∗], then

U(D + iB)U∗ = D + iB + JiBJ∗ + u[D, u∗] + Ju[D, u∗]J∗

= D + iB − iJBJ∗ + u[D, u∗] + Ju[D, u∗]J∗

= D + 2iB + 2(u[D, u∗])t. (163)

Thus we can find non-trivial gauge terms in timelike directions.

Since we are unequivocably in the manifold setting now, and as we shall require the symbol
calculus to compute the Wodzicki residue, we shall now change notation. In traditional fashion,
let us write

γµγν + γνγµ = −2gµν1S (164)

γaγb + γbγa = −2δab1S (165)

for the curved (coordinate) and flat (orthonormal) gamma matrices respectively. Let σk,
k = 1, ..., [p/2], be a local orthonormal basis of Γ(X,S), and a ∈ π(A). Then the most general
form that Dπ can take is

Dπ(aσk) =
∑
µ

γµ(∂µa)σk +
1
2

∑
µ,a<b

aγµωµabγ
aγbσk +

1
2

∑
µ,a<b

aγµtµabγ
aγbσk + a

∑
µ

γµfµσ
k

(166)
where ω is the lift of the Levi-Civita connection to the bundle of spinors, t is the lift of the
torsion term, and fµ is a gauge term associated to timelike directions. We assume without
loss of generality that our coordinates allow us to split the cotangent space so that timelike
and spacelike terms are orthogonal. Then we may take fµ = 0 for µ the index of a spacelike
direction. We will now drop the π and consider D as being determined by t and fµ. It is worth
noting that tcab is totally antisymmetric, where tµab = ecµtcab, and ecµ is the vielbein. Note that
from our previous discussion, the appropriate choice of Dirac operator is no longer elliptic, and
so in the following arguments we will assume that J ·J∗ has no negative eigenvalues. Thus from
this point on we assume that we are in the positive definite case with fµ = 0 and D = D(t).
This gives us enough information to recover the measure on our space also. All of these
operators, D(t), have the same principal symbol, ξ·, Clifford multiplication by ξ. Hence, over
the unit sphere bundle the principal symbol of |D| is 1. Likewise, the restriction of the principal
symbol of a|D|−p to the unit sphere bundle is a, where here we mean π(a), of course. Before
evaluating the Dixmier trace of a|D|−p, let us look at the volume form.
Since the [D, aij ] are independent at each point of U i, the sections [D, aij ], j = 1, ..., p, form a
(coordinate) basis of the cotangent bundle. Then their product is the real volume form ωi.
With ωC = i[(p+1)/2]ω the complex volume form, we have

Γ = π(c) =
∑
i

ai0[D, ai1] · · · [D, aip] =
∑
i

ãi0ω
i
C (167)

where ai0 = ãi0i
[(p+1)/2], [21].

As ωC is central over U i for p odd, it must be a scalar multiple, k, of the identity. So∑
i kã

i
0(x) = k, and we see that the collection of maps {ãi0}i form a partition of unity subor-

dinate to the U i. The axioms tell us that k = 1. In the even case, ωC gives the Z2-grading of
the Hilbert space,

H =
1 + ωC

2
H⊕ 1− ωC

2
H. (168)
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This corresponds to the splitting of the spin bundle, and for sections of these subbundles we
have

1 =
∑
i

ãi0
1 + ωiC

2
=
∑
i

ãi0 (169)

and similarly for 1−ωC
2 . Thus in the even dimensional case we also have a partition of unity.

Recall the usual definition of the measure on X. To integrate a function f ∈ A over a
single coordinate chart U i, we make use of the (local) embedding ai : U i → Rp. We write
f = f̃(ai1, ..., a

i
p) where f̃ : Rp → C has compact support. Then∫

U i
f :=

∫
U i

(ai)∗(f̃) =
∫
ai(U i)

f̃(x)dpx. (170)

To integrate f over X, we make use of the embedding a and the partition of unity and write∑
i

∫
ai(U i)

(ãi0f̃)(x)dpx. (171)

Now given a smooth space like X, a representation of the continuous functions will split into
two pieces; one absolutely continuous with respect to the Lebesgue measure, above, and one
singular with respect to it, [13], π = πac ⊕ πs. This gives us a decomposition of the Hilbert
space into complementary closed subspaces, H = Hac ⊕Hs. The joint spectral measure of the
aij , j = 1, ..., p, is absolutely continuous with respect to the p dimensional Lebesgue measure, so
H∞ ⊆ Hac. By the definition of the inner product on H∞ given in the axiom of finiteness and
absolute continuity, H∞ = L2(X,S,−

∫
·|D|−p). As the Lebesgue measure on the joint absolutely

continuous spectrum is itself absolutely continuous with respect to the measure given by the
Dixmier trace, we must also have Hac ⊆ H∞, and so they are equal. As all the aij act as zero
on Hs, recall they are smooth elements, and they generate both A and A, the requirement of
irreducibilty says that Hs = 0. Thus the representation is absolutely continuous, and as the
measure is in the same measure class as the Lebesgue measure, H = H∞ = L2(X,S).
Let us now compute the value of the integral given by the Dixmier trace. From the form of D,
we know that D is an operator of order 1 on the spinor bundle of X, so |D|−p is of order −p.
Invoking Connes’ trace theorem

−
∫
f |D|−p =

1
p(2π)p

∑
i

∫
S∗U i

trS(ãi0f)
√
gdpxdξ

=
2[p/2]V ol(Sp−1)

p(2π)p
∑
i

∫
U i
ãi0f
√
gdpx. (172)

Thus the inner product on H is given by

〈aξ, η〉 =
2[p/2]V ol(Sp−1)

p(2π)p

∫
X

(a∗(ξ, η)S
√
g)(x)dpx. (173)

We note for future reference that Vol(Sp−1) = (4π)p/2

2p−1Γ(p/2)
, [26], so that the complete factor

above is the same as in equation (65),

2[p/2]V ol(Sp−1)
p(2π)p

= c(p). (174)
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All the above discussion is limited to the case p 6= 1. The only 1 dimensional compact spin
manifold is S1. In this case the Dirac operator is 1

i
d
dx , with singular values µn(|D|−1) = 1

n . In
[6, pp 311,312], Connes presents an argument bounding the (p, 1) norm of [f(εD), a] in terms
of [D, a] and the Dixmier trace of D, with ε > 0 and f a smooth, even, compactly supported,
real function. ¿From this Theorem 7 is a consequence of specialising f . Our aim then is to
bound the trace of [f(εD), a]. So suppose that the support of f is contained in [−k, k]. Then
the rank of [f(εD), a] is bounded by the number of eigenvalues of |D|−1 ≥ εk−1. Calling this
number N , we have N ≤ ε−1k and so

‖ [f(εD), a] ‖1≤ 2ε−1k ‖ [f(εD), a] ‖ . (175)

The rest of the argument uses Fourier analysis techniques to bound the commutator in terms
of ‖ [D, a] ‖, and noting that

∑N 1
n/ logN ≥ 1, for then

‖ [f(εD), a] ‖1≤ 2Cf ‖ [D, a] ‖ −
∫
|D|−1. (176)

¿From this a choice of f gives the analogue of Theorem 7 in this case, as the results of Voiculescu
and Wodzicki hold for dimension 1; see [6] for the full story.
As the Dirac operator of a compatible Clifford connection is self-adjoint only when there is no
boundary, the self-adjointness of D and the geometric interpretation of the inner product on the
Hilbert space now shows that the spin manifold X is closed. There are numerous consequences
of closedness, as well as a more general formulation for the noncommutative case; see [6]. All
that remains is to examine the gravity action given by the Wodzicki residue.

4.4.2 The Even Dimensional Case.

Much of what follows is based on [24], though we also complete the odd dimensional case. We
also note that this calculation was carried out in the four dimensional case in [25]. The key to
the following computations is the composition formula for symbols:

σ(P ◦Q)(x, ξ) =
∞∑
|α|=0

(−i)|α|

α!
(∂αξ σ(P ))(∂αxσ(Q)). (177)

We shall use this to determine σ−p(|D|2−p), so that we may compute the Wodzicki residue. In
the even dimensional case, we use this formula to obtain the following,

σ−p(D2−p) = σ0(D2)σ−p(D−p) + σ1(D2)σ−p−1(D−p)
+σ2(D2)σ−p−2(D−p)− i

∑
µ

(∂ξµσ1(D2))(∂xµσ−p(D−p))

−i
∑
µ

(∂ξµσ2(D2))(∂xµσ−p−1(D−p))

−1
2

∑
µ,ν

(∂2
ξµξνσ2(D2))(∂2

xµxνσ−p(D−p)). (178)

This involves the symbol of D2 which we can compute, and lower order terms from |D|−p. Since
|D|2 = D2, we have a simplification in the even dimensional case, namely that the expansion

σ(D−2m) =
∞∑
|α|=0

(−i)|α|

α!
(∂αξ σ(D−2m+2)(∂αxσ(D−2)), (179)
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provides a recursion relation for the lower order terms provided we can determine the first
few terms of the symbol for a parametrix of D2. Let σ2 = σ2(D2) and p = 2m. Then by the
multiplicativity of principal symbols, or from the above, σ−2m(D−2m) = σ−m2 , at least away
from the zero section. Also let us briefly recall that while principal symbols are coordinate
independent, other terms are not. So all the following calculations will be made in Riemann
normal coordinates, for which the metric takes the simplifying form

gµν(x) = δµν − 1
3
Rµνρσ(x0)xρxσ +O(x3). (180)

This choice will simplify many expressions, and we will write =RN to denote equality in these
coordinates. Also, as we will be interested in the value of certain expressions on the cosphere
bundle, we will also employ the symbol =RN, mod ‖ξ‖ to denote a Riemann normal expression
in which ‖ ξ ‖ has been set to 1. So using (179) to write

σ−2m−1(D−2m) = σ−m+1
2 σ−3(D−2) + σ−2m+1(D−2m+2)σ−1

2

−i
∑
µ

(∂ξµσ
−m+1
2 )(∂xµσ−1

2 ), (181)

we can use Riemann normal coordinates to simplify this to

σ−2m−1(D−2m) =RN σ−m+1
2 σ−3(D−2)

+σ−2m+1(D−2m+2)σ−1
2

=RN mσ−m+1
2 σ−3(D−2), (182)

after applying recursion in the obvious way. The next term to compute is

σ−2m−2(D−2m) = σ−m+1
2 σ−4(D−2) + σ−2m+1(D−2m+2)σ−3(D−2)

+σ−2m(D−2m+2)σ−1
2 − i

∑
µ

(∂ξµσ
−m+2
2 )(∂xµσ−3(D−2))

−1
2

∑
µ,ν

(∂2
ξµξνσ

−m+1
2 )(∂2

xµxνσ
−1
2 ). (183)

Using the last result and the following two expressions

∂2
ξµξν ‖ ξ ‖

−2m+2=RN 2m(2m− 2)σ−m−1
2 δµτξτδ

νσξσ − (m− 1)σ−m2 δµν ,

∂2
xµxν ‖ ξ ‖−2=RN

1
3
Rρσµνξρξσσ

−2
2

we find

σ−2m−2(D−2m) =RN σ−m+1
2 σ−4(D−2) + (m− 1)σ−m+2

2 (σ−3(D−2))2

+σ−2m(D−2m+2)σ−1
2 + 2i(m− 1)δµσξσ∂xµσ−3(D−2)

−4m(m− 1)
3

σ−m−3
2 ξµξνRρσµνξρξσ +

(m− 1)
3

σ−m−2
2 δµνRρσµνξrhoξσ. (184)

Given σ−4(D−2) and σ−3(D−2) this can be computed recursively, giving
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σ−2m−2(D−2m) =RN mσ−m+1
2 σ−4(D−2) +

m(m− 1)
2

σ−m+2
2 (σ−3(D−2))2

+im(m− 1)ξµ∂xµσ−3(D−2)

−4m(m+ 1)(m− 1)
9

σ−m−3
2 ξµξνRρσµνξρξσ

+
m(m− 1)

6
σ−m−2

2 δµνRρσµνξρξσ, (185)

where ξµ = δµνξν . In the even case, this gives us a short cut; we shall compute this term in
general for the odd case, but note that in the even case the short cut gives us

σ−p(D−p+2) =RN, mod ‖ξ‖
(p− 2)

2
σ−4(D−2) +

(p− 2)(p− 4)
8

(σ−3(D−2))2

+
(p− 2)(p− 4)

4
iξµ∂µσ−3(D−2)− p(p− 2)(p− 4)

18
ξµξνRρσµνξρξσ

+
(p− 2)(p− 4)

24
δµνRρσµνξρξσ. (186)

Having obtained σ−2m−2(D−2) and σ−2m−1(D−2), the next step is to compute σ−3(D−2) and
σ−4(D−2). We follow the method of [24] to construct a parametrix for D2.
First, let us write D2 in elliptic operator form

D2 = −gµν∂µ∂ν + aµ∂µ + b. (187)

So the symbol of D2 is

σ(D2) = gµνξµξν + iaµξµ + b

=‖ ξ ‖2 +iaµξµ + b

= σ2 + σ1 + σ0. (188)

With this notation in hand, let P be the pseudodifferential operator defined by σ(P ) = σ−1
2 . In

fact we should consider the product χ(|ξ|)σ2(x, ξ)−1, where χ is a smooth function vanishing
for small values of its (positive) argument. As this does not affect the following argument,
only altering the result by an infinitely smoothing operator, we shall omit further mention of
this ”mollifying function”. So, one readily checks that σ(D2P − 1) is a symbol of order −1.
Denoting this symbol by r, we have

σ(D2P ) = 1 + r so σ(D2P ) ◦ (1 + r)−1 ∼ 1 (189)

where on the right composition means the symbol of the composition of operators. So if
σ(R) = 1 + r, then D2PR−1 ∼ 1. Hence PR−1 ∼ D−2. As r is of order −1, we may expand
(1 + r)−1 as a geometric series in symbol space. Thus

σ(D−2) ∼ σ−1
2 ◦

∞∑
k=0

(−1)kr◦k

∼ σ−1
2 ◦ (1− r + r◦2 − r◦3 + . . .)

∼ σ−1
2 − σ

−1
2 ◦ r + σ−1

2 ◦ r ◦ r + order -5. (190)



4 STATEMENT AND PROOF OF THE THEOREM 40

It is straightforward to compute the part of order −1 of r

r−1 = iaµξµσ
−1
2 + 2iξµgρτ,µ ξρξτσ

−1
2

=RN iaµξµσ
−1
2 (191)

and its derivative

∂xµr−1 =RN iaρ,µξρσ
−1
2 −

2i
3
ξρRατρµξαξτσ

−2
2 , (192)

as well as the part of order −2

r−2 =RN bσ−1
2 −

2
3
δµνRρσµνξρξσσ

−2
2 . (193)

Using the composition formula (repeatedly) and discarding terms of order −5 or less, we
eventually find that

σ−3(D−2) = −iaµξµσ−2
2 , (194)

and

σ−4(D−2) = −bσ−2
2 +

2
3
δµνRατµν ξαξτσ

−3
2

+2ξµaρ,µξρσ
−3
2 − aµξµaρξρσ

−3
2

−4
3ξ
µξνRατνµξαξτσ

−4
2 . (195)

Employing the shortcut for the even case yields

σ−p(D−p+2) =RN, mod ‖ξ‖ −
1
2

(p− 2)b+
p(p− 2)

4
ξµaρ,µξρ

−p(p− 2)
8

aµξµa
ρξρ +

p(p− 2)
24

δµνRρσµνξρξσ

−(p− 2)(p2 − 4p+ 6)
18

ξµξνRρσµνξρξσ. (196)

In order to perform the integral over the cosphere bundle, we make use of the standard results∫
‖ξ‖=1

ξµdξ = 0,
∫
‖ξ‖=1

ξµξνξρdξ = 0,
∫
‖ξ‖=1

ξµξνdξ =
1
p
gµν , (197)

and ∫
‖ξ‖=1

ξµξνξρξσdξ =
1

p(p+ 2)
(gµνgρσ + gµρgνσ + gσνgµρ). (198)

Using the symmetries of the Riemann tensor, one may use the last result to show that∫
S∗X

Rµναβξ
αξβξσξτgσµgτνdξdx = 0. (199)
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Thus

WRes(D2−p) =
1

p(2π)p

∫
S∗X

trσ−p(D2−p)
√
gdξdx

= −(p− 2)
2

V ol(Sp−1)
p(2π)p

∫
X
tr(b+

1
4
aµaµ −

1
2
aµ,µ)
√
gdx

+
(p− 2)

24
V ol(Sp−1)2[p/2]

p(2π)p

∫
X
R
√
gdx. (200)

To make use of this we will need expressions for aµ and b. The art of squaring Dirac operators
is well described in the literature, and we follow [24]. Writing

D = γµ(∇µ + Tµ) (201)

the square may be written, with ∇ the lift of the Levi-Civita connection,

D2 = −gµν(∇µ∇ν) + (Γν − 4T ν)(∇ν + Tν) +
1
2
γµγν [∇µ + Tµ,∇ν + Tν ]. (202)

Here we have used the formulae
γµ[Tµ, γν ] = −4T ν

γµ[∇µ, γν ] = −γµγρΓνµρ = Γν := gµρΓνµρ
To simplify the following, we also make use of the fact that the Christoffel symbols and their
partial derivatives vanish in Riemann normal coordinates, and γµν [∇µ,∇ν ] = 1

2R, with R the
scalar curvature. We can then read off

aµ = −2(ωµ + 3Tµ) (203)

b =
1
2
aµ,µ −

1
4
aµaµ + 5Tµ,µ + 2[ωµ, Tµ]

+4TµTµ + 1
4R+ γµν [∇µ, Tν ] + 1

2γ
µν [Tµ, Tν ]. (204)

As [ωµ, Tµ] = gµν [ων , Tµ] = 0, and the trace of Tµ,µ and vanishes, we have

traceS(b+
1
4
aµaµ −

1
2
aµ,µ) = 2[p/2](

1
4
R− 3tabctabc) + traceS(γµν [∇µ, Tν ]). (205)

Here we have used
traceS(TµTµ) = −1

2 tabct
abc × 2[p/2]

traceS(1
2γ

µν [Tµ, Tν ]) = −tabctabc × 2[p/2].

So for the even case we arrive at

WRes(D−p+2) = −(p− 2)V ol(Sp−1)2[p/2]

12p(2π)p

∫
X
R
√
gdx

−(p− 2)V ol(Sp−1)
2p(2π)p

∫
X

(−3tabctabc + tr(γµν [∇µ, Tν ]))
√
gdx. (206)

As ∇µ is torsion free, γµν [∇µ, Tν ] is a boundary term, so
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WRes(D2−p) = −(p− 2)c(p)
12

∫
X
R
√
gdx+ (p− 2)c(p)

∫
X

3
2
tabct

abcdx. (207)

This clearly has a unique minimum, given by the vanishing of the torsion term. If we wish to
regard the above functional on the affine space of connections, as suggested by Connes, we do
the following. Every element of Aσ may be written as (D0 + T ) − D0, where D0 is the Dirac
operator of the Levi-Civita connection. Denote this element by T . Then, from what we have
proved so far,

q(T ) := WRes(T 2D−p) =
(p− 2)V ol(Sp−1)2[p/2]

p(2π)p

∫
X

3
2
tabct

abc√gdx. (208)

This is clearly a positive definite quadratic form on Aσ, for p > 2, and has unique minimum
T = 0. The value of WRes(D2−p) at the minimum is just the other term involving the scalar
curvature. Hence, in the even dimensional case, we have completed the proof of the theorem.

4.4.3 The Odd Dimensional Case.

For the odd dimensional case (p = 2m + 1) we begin with the observation that |D|−p+2 =
D−2m|D|. As we already know a lot about D−2, the difficult part here will be the absolute
value term. So consider the following

σ−p(|D|2−p) = σ1(|D|)σ−2m−2(|D|−2m) + σ0(|D|)σ−2m−1(|D|−2m)

+σ−1(|D|)σ−2m(|D|−2m)− i
∑
µ

∂ξµσ1(|D|)∂xµσ−2m−1(|D|−2m)

−i
∑
µ

∂ξµσ0(|D|)∂xµσ−2m(|D|−2m)

−1
2

∑
µ,ν

∂2
ξµξνσ1(|D|)∂2

xµxνσ−2m(|D|−2m). (209)

This tells us that the only terms to compute are σ1(|D|), σ0(|D|) and σ−1(|D|), the other terms
having been computed earlier. It is a simple matter to convince oneself that σ(|D|) has terms
of integral order only by employing

σ(D2) = σ(|D|2) = σ(|D|)σ(|D|)− i
∑
µ

∂ξµσ(|D|)∂xµσ(|D|) + etc. (210)

Clearly σ1(|D|) =‖ ξ ‖, which we knew anyway from the multiplicativity of principal symbols.
Also

iaµξµ + b = 2 ‖ ξ ‖ (σ0(|D|) + σ−1(|D|) + σ−2(|D|))
+σ0(|D|)2 + 2σ−1(|D|)σ0(|D|)
−i
∑
µ

∂ξµσ1(|D|)∂xµσ0(|D|)− i
∑
µ

∂ξµσ0(|D|)∂xµσ1(|D|)

−i
∑
µ

∂ξµσ1(|D|)∂xµσ−1(|D|)− i
∑
µ

∂ξµσ0(|D|)∂xµσ0(|D|)

−i
∑
µ

∂ξµσ−1(|D|)∂xµσ1(|D|)− 1
2

∑
µ,ν

∂2
ξµξνσ1(|D|)∂2

xµxνσ1(|D|)
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−1
2

∑
µ,ν

∂2
ξµξνσ1(|D|)∂2

xµxνσ0(|D|)− 1
2

∑
µ,ν

∂2
ξµξνσ0(|D|)∂2

xµxνσ1(|D|)

+order −2 or less. (211)

Looking at the terms of order 1, we have

iaµξµ = 2 ‖ ξ ‖ σ0(|D|)− i
∑
µ

∂ξµ ‖ ξ ‖ ∂xµ ‖ ξ ‖, (212)

or, in Riemann normal coordinates,

σ0(|D|) =RN
1

2 ‖ ξ ‖
iaµξµ. (213)

The terms of order 0 are more difficult, and we find that

b =RN 2 ‖ ξ ‖ σ−1(|D|)− 1
4 ‖ ξ ‖2

aµξµa
νξν

−iξµ∂xµσ0(|D|)− i∂ξµσ0(|D|)∂xµσ1(|D|)

−1
2
∂2
ξµξνσ1(|D|)∂2

xµxνσ1(|D|). (214)

Remembering that the derivative of an expression in Riemann normal form is not the Riemann
normal form of the derivative, we eventually find that

b =RN, mod ‖ξ‖ 2σ−1(|D|)− 1
4
aµξµa

νξν

+
1
2
aν,µξνξ

µ +
1
12
δµνRρσµνξρξσ. (215)

In the above, as well as expressing the result in Riemann normal coordinates and mod ‖ ξ ‖,
we have omitted a term proportional to ξµξνRρσµνξρξσ, since we know that this will vanish when
averaged over the cosphere bundle. This gives us an expression for σ−1(|D|) in terms of aµ and
b. Indeed, with the same omissions as above we have

σ−1(|D|) =RN, mod ‖ξ‖
1
2
b+

1
2
aµξµa

νξν

−1
8
aν,µξνξ

µ − 1
24
δµνRρσµνξρξσ. (216)

Completing the tedious task of calculation and substitution yields

σ−p(|D|2−p) =RN, mod ‖ξ‖ −
(p− 2)

2
b+

p(p− 2)
4

aν,µξνξ
µ

−p(p− 2)
8

aµξµa
νξν +

p(p− 2)
24

δµνRρσµνξρξσ. (217)

We note that the factor p(p− 2) arises from 4m2 − 1 = (2m+ 1)(2m− 1) = p(p− 2).
Using the experience gained from the even case, we have no trouble integrating this over the
cosphere bundle, giving

WRes(|D|2−p) = −(p− 2)
12

c(p)
∫
X
R
√
gdpx+ (p− 2)c(p)

∫
X

3
2
tabct

abc√gdpx. (218)
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Again, this expression clearly has a unique minimum (for p > 1 and odd) given by the Dirac
operator of the Levi-Civita connection.

From the results of [24] and the above calculations, if we twist the Dirac operator by some
bundle W , the symbol will involve the “twisting curvature” of some connection on W . This
does not influence the Wodzicki residue, and so the above result will still hold, except that the
minimum is no longer unique. If we have no real structure J , and so are dealing with a spinc

manifold, we have the same value at the minimum, though it is now reached on the linear
subspace of self-adjoint U(1) gauge terms. This completes the proof of the theorem.

5 The Abstract Setting

In presenting axioms for noncommutative geometry, Connes has given sufficient conditions for
a commutative spectral triple to give rise to a classical geometry, but has not given a simple
abstract condition to determine whether an algebra has at least one geometry. In our setup
we did not try to remedy this situation, but merely to flesh out some of Connes’ ideas enough
to give the proof of the above theorem.
In light of this proof, we offer a possible characterisation of the algebras that stand a chance
of fulfilling the axioms. The main points are that

1) ∃c ∈ Zn(A,A⊗Aop) such that π(c) = Γ,
2) π(Ω∗(A)) ∼= γ(Cliff(T ∗X)) whilst π(Ω∗(A))/π(δ(kerπ)) is the exterior algebra of T ∗X.

This second point may be seen as a consequence of the first order condition and the imposition
of smoothness on both A and π(Ω∗(A)). The other interesting feature of the (real) represen-
tations of Ω∗(A), is that if the algebra is noncommutative we have self-adjoint real forms, and
so gauge terms. With this in mind we should regard Ω∗(A), or at least its representations
obeying the first order condition, as a generalised Clifford algebra which includes information
about the internal (gauge) structure as well. Since this algebra is built on the cotangent space,
the following definition is natural.

Definition 5 A pregeometry is a dense subalgebra A of a C∗-algebra A such that Ω1(A) is
finite projective over A.

This is in part motivated by definitions of smoothness in algebraic geometry, and provides us
with our various analytical constraints. Let us explore this.
The hypothesis of finite projectiveness tells us that there exist Hermitian structures on Ω1(A).
Let us choose one, (·, ·)Ω1 . We can then extend it to Ω∗(A) by requiring homogenous terms of
different degree to be orthogonal and

(δ(a)δ(b), δ(c)δ(d))Ω∗ = (δ(a), δ(c))Ω1(δ(b), δ(d))Ω1 , (219)

and so on. Then we can define a norm on Ω∗(A) by the following equality:

‖ δa ‖Ω∗=‖ (δa, δa) ‖A . (220)

As (δa, δa)Ω1 = (δa, δa)∗Ω1 and ‖ δa ‖Ω∗=‖ (δa)∗ ‖Ω∗ we have

‖ δa(δa)∗ ‖Ω∗=‖ δa ‖2Ω∗ . (221)

So Ω∗(A) is a normed ∗-algebra satisfying the C∗-condition, and so we may take the closure
to obtain a C∗-algebra.
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What are the representations of Ω∗(A)? Let

π : Ω∗(A)→ End(E) (222)

be a ∗-morphism, and E a finite projective module over A. Thus π|A realises E as E ∼= ANe
for some N and some idempotent e ∈MN (A).
As E is finite projective, we have nondegenerate Hermitian forms and connections. Let (·, ·)E
be such a form, and ∇π be a compatible connection. Thus

∇π : E → π(Ω1(A))⊗ E

∇π(aξ) = π(δa)⊗ ξ + a∇πξ

(·, ·)E : E ⊗ E → π(A)

(∇πξ, ζ)E − (ξ,∇πζ)E = π(δ(ξ, ζ)). (223)

If we denote by c the obvious map

c : End(E)⊗ E → E, (224)

then we may define
Dπ = c ◦ ∇π : E → E. (225)

Comparing
Dπ(aξ) = π(δa)ξ + aDπξ (226)

and
Dπ(aξ) = [Dπ, a]ξ + aDπξ (227)

we see that π(δa) = [Dπ, π(a)]. Note that Dπ depends only on π and the choice of Hermitian
structure on Ω1(A). This is because all Hermitian metrics on E are equivalent to

(ξ, ζ) =
∑

ξiζ
∗
i . (228)

This in turn tells us that the definition of compatibility with (·, ·)E reduces to compatibility
with the above standard structure. The dependence on the structure on Ω1(A) arises from
the symmetric part of the multiplication rule on Ω∗(A) being determined by (·, ·)Ω1 . If we are
thinking of (·, ·)Ω as “g” in the differential geometry context, then it is clear that Dπ should
depend on it if it is to play the role of Dirac operator. Thus it is appropriate to define a
representation of Ω∗(A) as follows.

Definition 6 Let A ⊂ A be a pregeometry. Then a representation of Ω∗(A) is a ∗-morphism
π : Ω∗(A)→ End(E), where E is finite projective over A and such that the first order condition
holds.

In the absence of an operator D, we interpret the first order condition as saying that π(Ω0(A))
lies in the centre of π(Ω∗(A)), at least in the commutative case. In general, we simply take
it to mean that the action of π(Aop) commutes with the action of π(Ω∗(A)). Next, it is
worthwhile pointing out that representations of Ω∗(A) are a good place to make contact with
Connes description of cyclic cohomology via cycles, [6], though this will have to await another
occasion. In this definition we encode the first order condition by demanding that π(Ω∗(A))
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is a symmetric π(A) module in the commutative case. In the noncommutative case that we
discuss below, we will require that the image of Aop commutes with the image of Ω∗(A). Let
us consider the problem of encoding Connes’ axioms in this setting.
The first thing we require is an extension of these results to Ω∗(A)⊗Aop. Since a left module
for A is a right module for Aop, we shall have no problem in extending these definitions if we
demand that [π(a), π(bop)] = 0 for all a, b ∈ A. Since Ω∗(A) is a C∗-algebra, any representation
of it on Hilbert space lies in the bounded operators. This deals with the first two items of
Definition 2 in section 3. The real structure will clearly remain as an independent assumption.
What remains?
We do not know that A is “C∞(X)” in the commutative case yet. Examining the foregoing
proof, we see that we first needed to know that the elements involved in the Hochschild cycle
c generated π(A), which came from π(c) = Γ. Then we needed to show that the condition

π(a), [Dπ, π(a)] ∈ ∩∞Dom(δm) (229)

implied that π(a) was a C∞ function and that π(Ω∗(A)) was the smooth sections of the Clifford
bundle. Recall that δ(x) = [|Dπ|, x].
So having a representation, we obtain Dπ, and we can construct |D|π if Dπ is self-adjoint. This
will follow from a short computation using the fact that ∇π is compatible.
Then we say that π is a smooth representation if

π(Ω∗(A)) ⊂ ∩∞Dom(δm). (230)

This requires only the finite projectiveness of Ω∗(A) to state, though this is not necessarily
sufficient for it to hold. As E ∼= eAN , this also ensures that Dπ : E → E is well-defined.
Further, in the commutative case we see immediately that Dπ is an operator of order 1. Thus
any pseudodifferential parametrix for |Dπ| is an operator of order −1. We can then use Connes’
trace theorem to state that |Dπ|−p ∈ L(1,∞). The imposition of Poincaré duality then says that
−
∫
|Dπ|−p 6= 0. It is not clear how this works in the general case.

So, a pregeometry is a choice of “C1” functions on a space. Given a first order representation
π of the universal differential algebra of A provides an operator Dπ of order 1. We use this to
impose a further restriction (smoothness) on the representation π and algebra A.

Definition 7 Let π : Ω∗(A)→ End(E) be a smooth representation of the pregeometry A ⊂ A.
Then we say that (A,Dπ, c) is a (p,∞)-summable spectral triple if

1) c ∈ Zp(A,A⊗Aop) is a Hochschild cycle with π(c) = Γ
2) Poincaré duality is satisfied
3) E is a pre-Hilbert space with respect to −

∫
(·, ·)E |D|−pπ .

Definition 8 A real (p,∞)-summable spectral triple is a (p,∞)-summable spectral triple with
a real structure.

It is clear that in the commutative case this reformulation loses no information.
This approach may be helpful in relation to the work of [28]. By employing extra operators
and imposing supersymmetry relations between them, the authors show that all classical forms
of differential geometry (Kähler, hyperkähler, Riemannian...) can also be put into the spectral
format. Examining their results show that the converse(s) may also be proved in a similar way
to this paper, provided the correct axioms are provided. The elaboration of these axioms may
well be aided by the above formulation, but this will have to await another occasion.
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