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Abstract

We outline the Kasparov theory approach to proving the bulk-edge correspondence for
topological insulators. As well as reviewing the KK background required, we indicate how
the Kasparov approach relates to boundary maps in K-theory and the “pairing K-theory
with K-homology” point of view.
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Key Objectives We aim to give sufficient detail about Kasparov theory to describe the KK-
proof of the bulk-edge correspondence for topological insulators.

1 Introduction

For the involved history of the theoretical development of both the quantum Hall effect and
topological phases of matter, we refer to the broader physics literature and the piece by
Bernevig in this encyclopedia. The initial developments of the index theory approach to the
quantum Hall effect is outlined in [51], and many of the topics we discuss can be reviewed in
[58] in the complex case.

The use of K-theory to label topological phases of matter is by now well-established, see for
instance [1, 4, 30, 48, 66]. Bellissard gave the Fredholm module picture of the quantum Hall
effect, as summarised in [5], and the relation to cyclic cohomology is described by Connes in
[23, IV.6]. An approach using unbounded Kasparov theory is more recent, [10, 11, 12, 14].

To describe the KK-approach to the bulk-edge correspondence, we will initially simplify Bel-
lissard’s picture by omitting disorder and focussing just on the quantum Hall effect. Later, we
will incorporate disorder, along with the real and Real structures required to accommodate the
various linear and anti-linear symmetries characterising different topological phases. Through-
out we will only discuss the “tight-binding” models, mentioning continuum models briefly at
the end.

On a 2-dimensional lattice Z2 without boundary, we take the Hilbert space H = `2(Z2), and
define the magnetic translations as unitaries U and V , and the Hamiltonian H = U + U∗ +
V + V ∗. We choose the Landau gauge so that for ξ ∈ `2(Z2) we have

(Uξ)(m,n) = ξ(m− 1, n), (V ξ)(m,n) = e−2πiφmξ(m,n− 1), m, n ∈ Z,
∗email: renniea@uow.edu.au
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where the real number φ has the interpretation as the magnetic flux through a unit cell. We
note that UV = e2πiφV U , so C∗(U, V ) ∼= Aφ, the rotation algebra. Our choice of gauge also
means that C∗(U, V ) ∼= C∗(U) oα Z, where V is implementing the crossed-product structure
via the automorphism α(Um) = V ∗UmV . See Kellendonk’s discussion of observable algebras
in this Encyclopedia.

The topological properties of the bulk conductance in the quantum Hall effect come from two
pieces of information: the Fermi projection of the Hamiltonian and a spectral triple encoding
the geometry of the (noncommutative) Brillouin zone. Provided the Fermi energy is in a gap
of the spectrum of the Hamiltonian, the Fermi projection PF defines a class in the complex
K-theory group [PF ] ∈ K0(Aφ).

The “spectral triple” ingredient was initially described in terms of a Fredholm module. Roughly
the analogy is that a Fredholm module provides conformal geometry and its homotopy class in
K-homology provides topological information. A spectral triple is a refinement of a Fredholm
module incorporating metric and differential geometry: more information will be provided in
Section 3.

Proposition 1.1 ([10]). Let Aφ be the dense ∗-subalgebra of Aφ generated by finite polynomials
of U and V , and let X1, X2 be the position operators on `2(Z2) given by (Xjξ)(n1, n2) =
njξ(n1, n2). Then(

Aφ, `
2(Z2)⊗ C2 =

(
`2(Z2)
`2(Z2)

)
,

(
0 X1 − iX2

X1 + iX2 0

)
, γ =

(
1 0
0 −1

))
is a complex spectral triple which defines a class in the K-homology group K0(Aφ).

The topological invariance of the transverse conductivity in the quantum Hall effect can be
expressed via the Fredholm index pairing [34] of K-theory and K-homology,

K0(Aφ)×K0(Aφ)→ K0(C) ∼= Z
([PF ], [X]) 7→ Index(PF (X1 + iX2)PF ),

where [X] is the K-homology class of the spectral triple from Proposition 1.1. Bellissard
showed that the Kubo formula for the Hall conductivity gives an expression for this index
pairing [5]. More precisely, the Hall conductivity is given by

σH =
e2

h
Index(PF (X1 + iX2)PF )

=
2πie2

h
T(PF [X1, PF ][X2, PF ]− PF [X2, PF ][X1, PF ]), (1.1)

where T is the trace per unit area. The second expression is the Kubo formula for the transverse
conductivity, and in this context is also called the Chern number of the projection PF . This
tracial formula gives a computationally tractable expression for the index pairing, and arises
(mathematically) from translating the index pairing into cyclic cohomology via the Chern
character, [23, 22, 33].

While formulae in cyclic theory can be found for integer invariants, they can not naively be
found for torsion invariants, e.g. the Z2-invariant associated to the time-reversal invariant
systems [38, 32] (but see [43] for an interesting approach). Therefore cyclic formulae are not
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always available for general topological insulator systems and instead we must deal with the K-
theoretic index pairing directly. Importantly our methods prove the bulk-edge correspondence
even for torsion invariants.

To incorporate the boundary, Kellendonk, Schulz-Baldes and colleagues [44, 45, 46, 47] intro-
duced the short exact sequence relating the edge algebra C∗(U) and the bulk algebra Aφ via
an intermediary “half-space” algebra T ,

0→ C∗(U)⊗K(`2(N))→ T → Aφ → 0. (1.2)

In the two-dimensional case relevant to the quantum Hall effect, the half-space is a (discrete)
half-plane Z × N, with algebra T generated by a unitary shift U on Z and isometric shift V
on N. The edge algebra C∗(U) is generated by a single unitary shift U , and the compacts
K(`2(N)) represent observables decaying away from the edge. The quotient map to the bulk
algebra Aφ “pushes the boundary to infinity”, or more algebraically quotients by the ideal
generated by V ∗V − V V ∗ so that the bulk theory is described by two unitary shifts.

Associated to the exact sequence (1.2) are the six term exact sequences in K-theory and
K-homology [7], given respectively by

K0(C
∗(U)) // K0(T) // K0(Aφ)

∂
��

K1(Aφ)

∂

OO

K1(T)oo K1(C
∗(U))oo

K0(C∗(U))

∂
��

K0(T)oo K0(Aφ)oo

K1(Aφ) // K1(T) // K1(C∗(U))

∂

OO

. (1.3)

The class of the Fermi projector [PF ] lies in K0(Aφ). As noted above, the conductance is
computed (up to an overall constant) by pairing with the spectral triple (Aφ, `

2(Z2)⊗ C2, X)
with class [X] ∈ K0(A).

The analogue of the Fermi projector for the edge system is represented by some unitary Ũ with
class [Ũ ] ∈ K1(C

∗(U)) (so [Ũ ] = [Um] for some m ∈ Z [34]). The edge current is computed as
the pairing between [Ũ ] and a spectral triple (C∗(U), `2(Z), X2) representing the Brillouin zone
of the edge with class [X2] ∈ K1(C∗(U)). Such odd pairings are expressed using the relative
index of a pair of projections [2]. Here the projections are P := χ[0,∞)(X2) and UPU∗.

The bulk-edge correspondence relating the bulk conductance to the edge current follows from
some general facts in KK-theory and a specific computation in KK-theory relating the geo-
metry of the Brillouin zones for the bulk and edge systems.

Briefly, the general facts are that the index pairings and the boundary maps are compatible
in specific ways [34]. In turn, this compatibility follows from the fact that the boundary maps
in both K-theory and K-homology are given by Kasparov products with the KK-class [ext]
of the exact sequence (1.2), [40]. These general facts will be explained below.

The specific computation which enables us to use this information is that we can relate the
bulk and edge geometries as

−[X] = ∂[X2] = [ext]⊗C∗(U) [X2].

Taken with the general facts above we learn that [58] in the language of pairings we have

Bulk conductance =
e2

h
〈[PF ] | [X]〉 =

e2

h
〈[PF ] | ∂[X2]〉 =

e2

h
〈∂[PF ] | [X2]〉 = Edge conductance
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and the class ∂[PF ] ∈ K1(C
∗(U)) is identified with the class of the boundary translation

operator. In the more sophisticated language of Kasparov theory and the Kasparov product
we have

Bulk conductance =
e2

h
[PF ]⊗A [X] =

e2

h
[PF ]⊗A

(
[ext]⊗C∗(U) [X2]

)
=
e2

h

(
[PF ]⊗A [ext]

)
⊗C∗(U) [X2] = Edge conductance

and the bulk-edge correspondence is simply the associativity of the Kasparov product.

The aim of this note is to describe enough of the KK-framework to explain how it is used
to prove the bulk-edge correspondence. In order to describe the general facts and the specific
computation alluded to above, we spend the next few sections recalling some general facts with
relevant examples.

2 Real algebras, gradings and disorder for general topological insulators

To address general topological insulators we need to accommodate real, Real and graded C∗-
algebras, more general dimensions, and disorder.

2.1 Disorder and twisted crossed products

As the disorder is generally modelled by the “hull”, see Kellendonk’s article, we can consider
the translational action α of Zd (in d dimensions) on a probability space Ω. This gives us
a crossed product C(Ω) oα Zd. More generally, if there is a magnetic field present, we can
consider a twisted crossed product C(Ω) oα,θ Zd, [54], which we now briefly describe.

Let B be a separable and unital C∗-algebra with an action α of Zd and twisting cocycle
θ : Zd×Zd → U(B), with U(B) the unitaries of B. The twisted crossed product A := Boα,θZd
is the universal C∗-completion of the algebraic crossed product A := Cc(Zd, B) given by finite
sums

∑
n∈Zd Unbn where bn ∈ B, n ∈ Zd is a multi-index and Un = Un1

1 · · ·U
nd
d is a product of

powers of d abstract unitary elements Ui subject to the multiplication extending that of B by

Uib = αi(b)Ui, UiUj = θijUjUi, U∗i = U−1i , i, j = 1, . . . , d.

The map αi is the automorphism corresponding to the action of ei ∈ Zd for ei the standard
generators of Zd. The elements θij belong to B and can be obtained from the cocycle θ.

By modelling the neighbourhood of an edge by Zd−1 × N, we can build an edge algebra using
twisted crossed products by Zd−1. We will describe the process and the relation to the bulk
algebra in Section 3.4.

2.2 Z2-graded, complex, real and Real algebras

In the following we need to consider real and complex C∗-algebras as well as Real and Z2-graded
C∗-algebras, [8, 40, 64]. We recall the required definitions here.

Definition 2.1. A real C∗-algebra A is a real Banach ∗-algebra such that for all a ∈ A
‖a∗a‖ = ‖a‖2 and 1 + a∗a is invertible.
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A Real C∗-algebra A is a complex C∗-algebra together with a map σ : A → A such that for
a, b ∈ A and λ ∈ C

σ(ab) = σ(a)σ(b), σ(a∗) = σ(a)∗, σ(λa) = λσ(a). (2.1)

One readily checks that the fixed point algebra Aσ = {a ∈ A : σ(a) = a} is a real C∗-algebra.

Example 2.2. The Clifford algebra Clr,s generated by the orthogonal/unitary elements γj ,
1 ≤ j ≤ r + s subject to

γj∗ =

{
γj 1 ≤ j ≤ r
−γj r + 1 ≤ j ≤ r + s

, γjγk + γkγj = 0 for j 6= k

is a real algebra. If we complexify then we obtain the complex Clifford algebras C`r+s =
Clr,s ⊗ C, and the result depends only on r + s. If we wish to remember the values of r, s, we
should consider the Real algebra C`r,s = Clr,s ⊗ C together with σ(γj) = γj .

Definition 2.3. A Z2-graded C∗-algebra is a C∗-algebra A together with a homomorphism
γ : A → A satisfying γ2 = 1. We denote by A0 the fixed point algebra and A1 = {a ∈ A :
γ(a) = −a}. Elements of A0 are called even, while elements of A1 are called odd. If A = A0

we say that A is trivially graded.

Let A,B be Z2-graded C∗-algebras with gradings γA, γB. A ∗-homomorphism ϕ : A → B is
called a Z2-graded ∗-homomorphism if ϕ(γA(a)) = γB(ϕ(a)).

Example 2.4. Most Z2-graded algebras encountered in this text are of the form A ⊗ C`r,s or
A⊗ Clr,s or A⊗ C`n, where A is trivially graded. The Clifford algebras are Z2-graded by

Clr,s = Cl0r,s ⊕ Cl1r,s
where Cl0r,s is the span of even products of the generators γj , and Cl1r,s is the span of odd
products.

We record an important fact about Clifford algebras.

Proposition 2.5. On the graded vector space
∧∗Rd of exterior powers (we denote the grading

by γ∧∗ Rd) there is a representation of Cld,0 and a representation of Cl0,d. The generators γj

of Cld,0 and the generators ρj of Cl0,d act by

γj(w) = ej ∧ w + ι(ej)w, ρj(w) = ej ∧ w − ι(ej)w,

for {ej}dj=1 the standard basis of Rd, w ∈
∧∗Rd and with w = w1 ∧ · · · ∧ wk

ι(v)w :=

k∑
j=1

(−1)j−1〈v, wj〉w1 ∧ · · · ∧ ŵj ∧ · · · ∧ wk

is the contraction of w along v. The actions of Cld,0 and Cl0,d graded-commute, or equivalently
γjρk + ρkγj = 0 for all j, k = 1, . . . , d.

In fact the Z2-graded tensor product (see [7]) Cld,0⊗̂Cl0,d is isomorphic to the R-linear maps
on
∧∗Rd.

There are many different pictures of Kasparov theory, depending on the choice of cycles used
to develop the theory. We will use Kasparov modules and extensions (short exact sequences)
of C∗-algebras. The basic tools for describing Kasparov modules are Hilbert modules and
operators on them.
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2.3 Hilbert modules for C∗-algebras

We need to make use of (right) Hilbert modules over C∗-algebras, and left actions of C∗-
algebras on such modules as well. Standard references for Hilbert modules are [50, 60].

Definition 2.6. Let B be a real or complex C∗-algebra. A right Hilbert B-module is a real
or complex Banach space X together with a right action X ×B → X of the C∗-algebra B and
a B-valued inner product (· | ·)B. This inner product satisfies

(x+ y | zb)B = (x | z)Bb+ (y | z)Bb, (x | y)B = (y | x)∗B, (x | x)B ≥ 0

for x, y, z ∈ X and b ∈ B. The norm making X a Banach space is ‖x‖2 := (x | x)B.

If B is a Real C∗-algebra with real structure σB, then X is a Real Hilbert module if there is
an anti-linear involution σX : X → X such that σX(xb) = σX(x)σB(b) for b ∈ B, x ∈ X.

Similarly, if B is Z2-graded (even trivially) by γB then X is Z2-graded if there is γX : X → X
such that γX(xb) = γX(x)γB(b).

Example 2.7. Every C∗-algebra B acts on itself by right multiplication, and we obtain a Hilbert
module by defining (a | b)B = a∗b for a, b ∈ B.

Example 2.8. If p = p∗ = p2 ∈MN (B) is a projection then pBN is a Hilbert module.

Example 2.9. Given a C∗-algebra B, let `2(Zd, B) be the sequences (bn)n∈Zd , bn ∈ B, such that∑
n∈Zd b∗nbn converges in B. Together with the inner product ((bn) | (cm))B =

∑
n∈Zd b∗ncn we

obtain a right Hilbert B-module, [40].

Definition 2.10. [50, 60] If XB is a Z2-graded Hilbert module, a map R : XB → XB is
adjointable if there exists S : X → X such that for all x, y ∈ XB we have (Rx|y)B = (x|Sy)B.
If an adjoint exists it is unique and we denote it by S = R∗. Adjointable operators turn out to
be B-linear, bounded and together form a C∗-algebra for the operator norm and composition
as usual. We denote this algebra by End∗B(X) (some authors use L(X)).

Example 2.11. If B is non-trivially Z2-graded, the grading operator γX of XB given by γX(x) =
x if x ∈ X0 and γX(x) = −x if x ∈ X1 is NOT an adjointable endomorphism. Nevertheless
γX defines a Z2-grading on End∗B(X) by saying that an endomorphism T : X → X such that
TγX = −γXT is odd. Likewise a Real structure σX defines a Real structure on End∗B(X) by
σEnd(T ) = σX ◦ T ◦ σX .

Definition 2.12. [50, 60] Let XB be a Z2-graded Hilbert module. Given x, y ∈ X we can define
a rank-one operator (a ket-bra) Θx,y : X → X by Θx,y(z) = x(y|z)B. Then Θx,y is adjointable
with adjoint Θy,x, and the linear span of the rank one operators form a two-sided ∗-deal in
End∗B(X). The norm closure is denoted by End0

B(X) and called the compact endomorphisms
(some authors use K(X)).

2.4 Correspondences

The notion of correspondences for C∗-algebras developed over many years from Rieffel and
Paschke’s use of the Mackey machine to define Morita equivalences, to the widespread modern
use of correspondences to define Toeplitz- and Cuntz-Pimsner algebras, initiated by Pimsner
[57].
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Definition 2.13. Let XB be a countably generated real or complex C∗-module over the real
or complex C∗-algebra B, and let ϕ : A → End∗B(X) be a representation of the C∗-algebra
A as adjointable endomorphisms. Then we call (A,XB) a correspondence from A to B or an
A-B-correspondence. When needed we write (A, ϕXB) to indicate the left action.

If A,B are Real C∗-algebras with real structures σA, σB, and σX : X → X is a Real structure
then we require σX(ϕ(a)xb) = ϕ(σA(a))σX(x)σB(b) for a ∈ A, b ∈ B, x ∈ X.

Similarly, if A,B are Z2-graded (even trivially) by γA, γB then X is Z2-graded if there is
γX : X → X such that γX(ϕ(a)xb) = ϕ(γA(a))γX(x)γB(b).

Example 2.14. A representation ϕ : A→ B(H) of a C∗-algebra on a complex Hilbert space is
an A-C correspondence.

Example 2.15. Given a left action ρ of B on a right B-module M one obtains a left action π
of Cc(Z, B) ⊂ B oα Z on the module given by the algebraic tensor product `2(Z) �M . The
action π is given on elementary tensors by

π(b)(ej ⊗ ξ) = ej ⊗ ρ(α−j(b))ξ, π(U)(ej ⊗ ξ) = ej+1 ⊗ ξ (2.2)

with {ej}j∈Z the standard basis of `2(Z) and ξ ∈ M . We will show below that when M is a
C∗-module the action extends to an action of the C∗-crossed product B oα Z on the Hilbert
module completion of the algebraic tensor product `2(Z)⊗M given by `2(Z,M).

Defining the left-action of A on the copy of A ⊂ `2(Zd, B) via the twisted convolution multi-
plication in Cc(Zd, B) yields a representation of B oα,θ Zd [54].

Proposition 2.16. [12] Let A = Cc(Zd, B) be the finitely supported functions Zd → B with
(twisted) convolution determined by α, θ as in Subsection 2.1. The left-action of A on `2(Zd, B)
densely defined by twisted convolution extends to an adjointable representation of A = Boα,θZd.
So (A, `2(Zd, B)B) is a correspondence, which is real, complex, Real and/or graded as B is.

The essence of the proof is that the action of the compact dual group Td provides an expectation
Φ : Boα,θZd → B with which the completion to `2 is made. Since the inner product is positive
and faithful, the bounded extension can be deduced as in [10, 12].

3 Kasparov theory

General references for Kasparov theory are scarce, but the original articles [40, 41] reward
study, and more general introductory texts include [7, 34].

3.1 Kasparov modules bounded and unbounded

The following definition works for real, Real or complex Z2-graded C∗-algebras and C∗-
modules. It is easiest to digest the definitions starting with trivially graded complex algebras.

Definition 3.1. Let A and B be Z2-graded C∗-algebras. A (bounded) Kasparov A-B-module
(A, ϕXB, F ) is a Z2-graded A-B-correspondence (A, ϕXB) together with an odd operator F ∈
End∗B(X) such that for all a ∈ A the operators

ϕ(a)(IdX − F 2), ϕ(a)(F ∗ − F ), [F,ϕ(a)]± (3.1)

are compact. If A, B and XB are trivially graded and F ∈ End∗B(X) satisfies the conditions
(3.1) then we say that (A, ϕXB, F ) is an odd Kasparov module.
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Example 3.2. Every A-B-correspondence (A, ϕXB) for which A acts compactly defines a Kas-
parov module (A, ϕXB, 0). This includes ∗-homomorphisms and imprimitivity bimodules. The
Kasparov module of a ∗-homomorphism φ : A→ B is given by (A, φBB, 0). If B is unital and
p ∈MN (B) is a projection then pBN is called a finite projective module, and (C, pBN

B , 0) is a
Kasparov module.

Example 3.3. In the next subsection we will build an odd Kasparov module from an extension
of C∗-algebras. To incorporate these odd modules into the theory we have the following
construction (see [23, 27]).

Let (A,XB, F ) be an odd Kasparov module (so A and B are trivially graded). Let e ∈ C`1 be
the nontrivial odd generator so e = e∗ and e2 = 1. Then we define the Kasparov module(

A⊗ C`1,
(
X
X

)
B

,

(
0 −iF
iF 0

))
(3.2)

where a⊗ e ∈ A⊗ C`1 acts as

(
0 a
a 0

)
.

The groups KK(A,B) are built from homotopy classes of Kasparov modules: see [7, 40] for
details. To obtain higher groups we define

KKn(A,B) = KK(A⊗̂C`n, B) complex case

KKRr,s(A,B) = KKR(A⊗̂C`r,s, B) Real case

KKOr,s(A,B) = KKO(A⊗̂Clr,s, B) real case

and in each case we use the Z2-graded tensor product of algebras, [40, Section 2]. In general
we just write KK to indicate any of these particular cases.

Each KK(A,B) is an abelian group under direct sum, the inverse of the class of the Kasparov
module (A, ϕXB, F ) is the class of (A, ϕ◦X

◦,−F ) where X◦ is X with the grading γX◦ = −γX
and

ϕ◦(aeven + aodd) = ϕ(aeven)− ϕ(aodd).

We also have KK(A⊗K, B) ∼= KK(A,B⊗K) ∼= KK(A,B) where K is the compact operators
(or a full matrix algebra). For separable ungraded complex algebras, Kasparov theory recovers
K-homology and K-theory via

KK(A,C) ∼= K0(A), KK(A⊗ C`1,C) ∼= K1(A),

KK(C, A) ∼= K0(A), KK(C, A⊗ C`1) ∼= K1(A).

The analogous (more complicated) relations hold in the real and Real cases [12]. Many more
properties can be found in [7, 40].

Definition 3.4. Let A and B be real or complex Z2-graded C∗-algebras, and let A ⊂ A be
a dense ∗-subalgebra. An unbounded Kasparov A-B-module (A, ϕXB,D) is a Z2-graded A-
B-correspondence (A, ϕXB) together with an odd self-adjoint (unbounded) regular operator
D : DomD→ X such that for all a ∈ A:
1) we have ϕ(a) DomD ⊂ DomD and the densely-defined commutator

[D, ϕ(a)] (3.3)

is uniformly bounded on DomD and so extends to an adjointable operator on X;
2) the operator ϕ(a)(1 + D2)−1/2 is a compact endomorphism on X.
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Remark 3.5. Condition 2) in Definition 3.4 is often called the local compactness of the resolvent
in analogy with the classical case of elliptic operators [34]. If the algebra A is unital and acts
unitally on XB, then the operator D has compact resolvent.

Proposition 1.1 gives a special case of a Kasparov module.

Definition 3.6. A spectral triple (A,H,D) for the C∗-algebra A is an unbounded A-C Kas-
parov module.

Every class inKK(A,B) has an unbounded representative [3]. The definition of the equivalence
relation defining the groups can also be implemented directly in terms of unbounded cycles,
[28, 35]. The reasons for introducing the unbounded version of the cycles is to assist in
computing products (see below, and [3]), index pairings [19, 22], and to stay close to the
defining geometric and physical origins of these cycles. For instance, the spectral triple for the
quantum Hall effect in Proposition 1.1 is built from the position operators. Next we will build
unbounded Kasparov modules for the bulk theory and the edge theory.

3.2 Bulk and edge classes

To construct Kasparov modules for the bulk and edge algebras, we start with the correspon-
dences of Proposition 2.16. The last ingredient we need are Dirac-like operators on these
correspondences, which we construct using the position operators, Xj : Cc(Zd, B)→ `2(Zd, B)
for j ∈ {1, . . . , d} defined by

Xj(em ⊗ b) = mj(em ⊗ b), m ∈ Zd.

We construct the Dirac-like operator by enlarging the module using a Clifford representation.

On the tensor product space `2(Zd, B)⊗
∧∗Rd we define

X :=
d∑
j=1

Xj ⊗ γj .

A simple check shows that X is odd, self-adjoint and regular on `2(Zd, B)⊗
∧∗Rd.

Proposition 3.7. [12] Consider a possibly twisted Zd-action α, θ on a separable and unital
C∗-algebra B. Let A = B oα,θ Zd be the associated crossed product with dense subalgebra
A = Cc(Zd, B). The data

λ(d) =

(
A⊗̂C`0,d, `2(Zd, B)B ⊗

∧∗
Rd,

d∑
j=1

Xj ⊗ γj , γ∧∗ Rd

)
defines an unbounded A⊗̂C`0,d-B Kasparov module. The C`0,d-action is generated by the
operators ρj from Proposition 2.5. In the complex case we have C in place of R in the above
formula and C`d in place of C`0,d.

For α, θ such that the action of Zd restricts to an action of Zd−1 on B, we define the edge cycle
as

λ(d−1) =

(
Cc(Zd−1, B)⊗̂C`0,d−1, `2(Zd−1, B)B ⊗

∧∗
Rd−1,

d−1∑
j=1

Xj ⊗ γj , γ∧∗ Rd−1

)
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We call λ(d) the fundamental K-cycle of the Zd-action because of its similarity to Kasparov’s
fundamental class [41] for oriented dimension d manifolds.

To relate the bulk and edge theories we will use extensions (aka short exact sequences) of
observable algebras. Given an extension of the form

0→ B o Zd−1 ⊗K→ T → B o Zd → 0 (3.4)

we let X∂ =
∑d−1

j=1 Xj ⊗ γj and X =
∑d

j=1Xj ⊗ γj denote the operators associated to the
“edge” and “bulk” respectively.

In the next section we show how an exact sequence of C∗-algebras gives rise to an odd Kasparov
module. The class of the Kasparov module associated to the extension (3.4) is denoted [ext].
We will show that

[ext]⊗BoZd−1 [X∂ ] = (−1)d−1[X]

and in fact the same relation holds on the level of cycles for an explicit construction of the
product that we describe below.

3.3 Kasparov modules from short exact sequences

Given a short exact sequence of C∗-algebras

0→ J
ι→ A

q→ A/J → 0 (3.5)

which is split by a completely positive map ρ : A/J → A such that q ◦ ρ = IdA/J we can
define a bounded Kasparov module and so a class in KK-theory. To construct the Kasparov
module associated to the “semi-split extension” (3.5), we require Kasparov’s version [39] of the
Stinespring dilation theorem for Hilbert-modules.

Theorem 3.8 (Kasparov’s Stinespring dilation theorem). (see [39, Theorem 3] and [50, The-
orem 5.6]) Let A, B be C∗-algebras, let XB be a right C∗-B-module and let ρ : A→ End∗B(X)
be a strict completely positive mapping.

Then there is a Hilbert B-module YB, a ∗-homomorphism πρ : A → End∗B(Y ) and an ad-
jointable isometry V : X → Y such that πρ(A)V X is dense in Y and for all a ∈ A we
have

ρ(a) = V ∗πρ(a)V.

The data Y, πρ, V are unique in the sense that if we have W : X → Z and π : A→ End∗B(Z)
such that π(A)WX is dense in Z and ρ(a) = W ∗π(a)W for all a ∈ A, then there is a unitary
U : Y → Z such that π(a) = Uπρ(a)U∗ for all a ∈ A.

Returning to our semi-split extension (3.5), we observe that since A acts by multipliers on
the ideal J / A, we can regard ρ as a map ρ : A/J → A ⊂ End∗J(J). Applying the Stine-
spring dilation theorem gives us a right C∗-J-module YJ , an isometry V : J → Y , and a
∗-homomorphism

ρ̃ : A/J → EndJ(Y ) of the form V ∗ρ̃(a)V = ρ(a).

Splitting the module Y with respect to the projection V V ∗, we have

ρ̃ =

(
ρ ρ12
ρ21 ρ22

)
.
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Example 3.9. Using the fact that q ◦ ρ = IdA/J , it follows that σ is a homomorphism modulo
J . Consequently one sees that ρ12([a]) and ρ21([a]) are compact endomorphisms of Y for all
[a] ∈ A/J .

Letting P = V V ∗ : YJ → YJ be the projection, the definitions and Example 3.9 show that

(A/J, ρ̃YJ , 2P − 1)

is an odd Kasparov module. If instead we compress ρ̃ by the projection IdY −V V ∗ we see that
ρ22 is also a completely positive map, and so we obtain another extension

0→ J → B → A/J → 0.

The class determined by ρ22 is the additive inverse of the class determined by ρ in KK1(A/J, J)
[7, 40].

Definition 3.10. Given an extension of (graded) C∗-algebras

0→ J → A→ A/J → 0

semi-split by the completely positive map σ : A/J → A, the Kasparov class of the extension
is the class [(A/J, ρ̃YJ , 2P − 1)] ∈ KK1(A/J, J). See [40, 65].

For an extension 0 → J → B → C → 0 of a nuclear C∗-algebra C by a nuclear algebra J
there is always a completely positive splitting, [40, 39]. In general, however, obtaining such
a splitting can be difficult, and tantamount to finding the ‘associated Kasparov module’, see
[14, 61] for hard examples. The next section describes the easy examples arising from the bulk
edge correspondence of Zd topological insulators.

The reason one might want the class of an extension is that the boundary maps in K-theory
and K-homology are given by the Kasparov product with that class. Finding representatives
of the class of an extension which enable more-or-less geometric realisations of the product on
the level of cycles makes the physical applications simpler and more transparent.

3.4 The extension K-cycle

Relating the observables of bulk and edge algebras via an extension was pioneered in [44, 45, 46],
and a good discussion appears in [47].

Under mild assumptions on the twist θ (see [47]), we can unwind the crossed product A =
B oα,θ Zd such that, for α = (α‖, αd) and α‖ the restricted action of Zd−1,

A =
(
B oα‖,θ Z

d−1
)
oαd

Z = C oαd
Z (3.6)

where C = B oα‖,θ Zd−1. We link C and C oαd
Z by the Toeplitz extension, which we briefly

recall.

Very similar to the construction of the crossed product C oαd
Z, we can consider Cαd

N the
algebra given by finite sums

∑
k∈N Ũ

k
d ck + (Ũ∗d )kc′k, where ck, c

′
k ∈ C and Ũd is the operator

such that

Ũdb = αd(b)Ũd, Ũ∗d b = α−1d (b)Ũd, Ũ∗d Ũd = 1, ŨdŨ
∗
d = 1− p

11



with p = p∗ = p2 a projection. Thus Ũd is no longer unitary but an isometry. There is a unique
∗-algebra morphism q : Cαd

N→ Cαd
Z determined by q(Ũd) = Ud and is the identity on C. Its

kernel is the ideal generated by p which can easily be seen to be isomorphic to F ⊗C where F
is the algebra of the finite rank operators. The exact sequence

0→ F ⊗ C → Cαd
N q→ Cαd

Z→ 0

is the algebraic version of the Toeplitz extension, the C∗-version is obtained by taking the
universal C∗-closures. The C∗-closure of Cαd

N, denoted by T(αd), is the Toeplitz algebra of
the Z-action αd and the closure of F ⊗ C is K⊗ C, with K the algebra of complex operators
on a separable (real or complex) Hilbert space. The short exact sequence

0→ K⊗ C → T(αd)→ C oαd
Z→ 0 (3.7)

gives rise to a class [ext] in the group KKO0,1(A,C) (or KKR0,1(A,C) or KK1(A,C)).

The extension class [ext] serves to compute boundary maps in K-theory and K-homology,
namely by taking Kasparov products with it. In order to make these maps computable in
terms of the physical cycles, we construct an unbounded representative of [ext].

Proposition 3.11. [12] Let C be a separable and unital C∗-algebra and A = C oαd
Z. On

Cc(Z, C) ⊂ `2(Z, C) define N(
∑

n encn) =
∑

n nencn to be the number operator. The extension
class of the Toeplitz extension of Equation (3.7) is represented by the fundamental K-cycle of
the Z-action, (

Cc(Z, C)⊗̂C`0,1, `2(Z, C)C ⊗
∧∗

R, N ⊗ γ1 , γ∧∗ R) . (3.8)

There is an analogous result for complex algebras.

The method of proof is to use the Busby invariant of the exact sequence [7, 10] and seeing that
the meaning of equivalence for odd Kasparov modules is equality of Busby invariants.

3.5 The Kasparov product

There are various instances of the product [40]. The one we require is a Z-bilinear pairing

KKi(A,B)×KKj(B,C)→ KKi+j(A,C). (3.9)

Theorem 3.12. [40] There is a well-defined Z-bilinear pairing as described in (3.9). Given
classes [F1] ∈ KKi(A,B) and [F2] ∈ KKj(B,C), there exists a unique class [F1#F2] ∈
KKi+j(A,C) which depends covariantly on A and contravariantly on C.

Given an extension 0 → J → A → A/J → 0 with completely positive splitting, we have seen
that there is a class [ext] ∈ KK1(A/J, J) representing the extension.

Theorem 3.13. The product with the class [ext] gives the boundary maps in K-theory and
K-homology, so · ⊗A/J [ext] : K∗(A/J) → K∗+1(J) and [ext] ⊗J · : K∗(J) → K∗+1(A/J) are
the boundary maps.

The proof of the existence of a well-defined product given by [40] is not constructive. Neverthe-
less, there are various ways to compute the product [F1#F2], and even in the noncommutative
case there are guess and check methods [24, Appendix].
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More recently methods of computing the product on the level of representatives, rather than
on classes have been developed. The principal benefit of these methods, when they apply, is
that the product can be computed directly in terms of geometric and/or physical data. These
methods can provide deeper understanding of the noncommutative geometry which represents
the topological data.

It is not the case that we can always compute representatives of the product of two classes in
terms of the input cycles. There are numerous different sufficient conditions for: 1) recognising
when a class represents the product [24, 49]; 2) for knowing ahead of time that the construction
described below produces a representative of the product [37, 52, 53] given two unbounded
cycles representing composable classes.

In the specific context of the models of topological insulators we have described, all of the
methods of computing the Kasparov product are available. In particular the constructive
procedure outlined next allows us to compute up to unitary equivalence the product of the
cycle representing ext and the cycle representing the boundary.

The simplicity of the constructive Kasparov product for topological insulators is essentially
because (ignoring disorder) we have the flat principal fibre bundle T → Td → Td−1 arising
from the Zd action, [18, 29] This structure is visible in the extension class (3.8) for C = BoZd−1.
More difficult examples are presented in [14].

To compute a representative of the class of the product of unbounded Kasparov modules

(A, XB, S) and (B, YC , T )

we need the additional ingredient of a (densely defined) connection ∇ : XB → X ⊗ End∗C(Y ).
This is a C (or R) linear map satisfying ∇(xb) = ∇(x)b+ x⊗ [T, b] for x ∈ XB and b ∈ B.

Given these ingredients, we try

(A, X⊗̂BY, S⊗̂1 + 1⊗̂∇T )

where we use the fact that for x ∈ X we have ∇(x) : Y → X ⊗B Y to define

1⊗̂∇T (x⊗̂y) = ∇(x)y + x⊗ Ty, x⊗ y ∈ X⊗Dom(T ).

One readily checks that S⊗̂1 + 1⊗̂∇T is well-defined and symmetric.

The three points of difficulty are: existence of a suitable connection; self-adjointness of S⊗̂1 +
1⊗̂∇T ; boundedness of the commutators. All can fail in various types of example, but are
straightforward for the examples arising from topological insulators, including the aperiodic
examples from [14]. All of these issues are discussed in [37, 52, 53].

Example 3.14. We start with the boundary cycle

λ(d−1) =

(
Cc(Zd−1, B)⊗̂C`0,d−1, `2(Zd−1, B)B ⊗

∧∗
Rd−1,

d−1∑
j=1

Xj ⊗ γj , γ∧∗ Rd−1

)
and the extension cycle

ext =
(
Cc(Z, B o Zd−1)⊗̂C`0,1, `2(Z, B o Zd−1)BoZd−1 ⊗

∧∗
R, N ⊗ γ1 , γ∧∗ R) .

The internal product of the underlying Hilbert modules is described by an explicit unitary
isomorphism

U :
(
`2(Z, B o Zd−1)BoZd−1 ⊗

∧∗
R
)
⊗̂
(
`2(Zd−1, B)B ⊗

∧∗
Rd−1

) ∼=→ `2(Zd, B)⊗
∧∗

Rd

13



On Cc(Z, B o Zd−1) ⊂ `2(Z, B o Zd−1) we can define

∇(
∑
n

encn) =
∑
n

en ⊗ [X∂ , cn]

whereX∂ is the unbounded operator defining the boundary (or edge) cycle. Then for
∑

n encn ∈
Cc(Z, B o Zd−1) and ξ ∈ `2(B o Zd−1)⊗ ∧∗Rd−1 we have

1⊗∇ X∂(
∑
n

encn ⊗ ξ) =
∑
n

en ⊗X∂(cnξ).

Then as proved in detail in [12, Theorem 3.4],

U(N⊗̂1 + 1⊗̂∇X∂)U∗ = (−1)d−1X

where the sign needs to be determined by the change of orientation in the Clifford algebra
arising from relabelling γ1 from the extension module to γd in the bulk module.

4 The bulk-edge correspondence via Kasparov theory

The bulk-edge correspondence relies on the general properties of the Kasparov product, espe-
cially associativity, and the following summary of the calculation from Example 3.14.

Theorem 4.1. [10, 12] Let B be a separable and unital real or complex C∗-algebra with fun-
damental K-cycles λ(d) and λ(d−1) for (possibly twisted) Zd and Zd−1-actions. Then the un-
bounded Kasparov product of the extension Kasparov module from Proposition 3.11 with λ(d−1)

gives, up to unitary equivalence and a cyclic permutation of the Clifford generators, the fun-
damental K-cycle λ(d). On the level of KK-classes this means

[ext]⊗̂C [λ(d−1)] = (−1)d−1[λ(d)],

where −[x] denotes the additive inverse of the KK-class.

Consequently, the associativity of the Kasparov product tells us that when we pair with the
(bulk) Fermi projector, we obtain [PF ]⊗A [λ(d)] = (−1)d−1([PF ]⊗A [ext])⊗C [λ(d−1)]. The class
(−1)d−1([PF ]⊗A [ext]) ∈ K1(C) defines a unitary on the boundary. More generally, we have

Corollary 4.2. The pairing of a K-theory class [z] ∈ KOj(B oα,θ Zd) (or complex) with λ(d)

is, up to a sign, the same as the pairing of ∂[z] ∈ KOj−1(B oα‖,θ Zd−1) with λ(d−1).

Proof. Using Theorem 4.1 and associativity of the Kasparov product,

[z]⊗̂A[λ(d)] = (−1)d−1[z]⊗̂A
(
[ext]⊗̂C [λ(d−1)]

)
= (−1)d−1

(
[z]⊗̂A[ext]

)
⊗̂C [λ(d−1)]

= (−1)d−1∂[z]⊗̂C [λ(d−1)]

as the product with [ext] implements the boundary map in K-theory.
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5 Continuum theory, disorder, van Daele K-theory and semifinite index
theory

There are numerous aspects we have only touched on, or not addressed at all. We summarise
some of them here along withs starting points in the literature for the interested reader.

Continuum models Throughout we have described the tight-binding model for topological
insulators. Instead of modelling a d-dimensional sample by Zd we could also use Rd [5, 67],
where the Hamiltonian operator is a differential operator. Certainly the discussion becomes
more technical, but the main results about the bulk-edge correspondence and Kasparov mod-
ules continue to hold as shown in [15].

Bulk-defect correspondence In [14] the methods described here were extended to incorpo-
rate aperiodicity and “edges” of different codimension. The bulk-edge correspondence, com-
patibility with pairings etc go through as expected. In [59] the notion of defect was used to
describe, roughly speaking, a codimension 0 edge. These defects naturally give rise to a short
exact sequence of groupoid algebras, and so determines a Kasparov class.

Edge vs bulk disorder One very strange feature of the class of models we have described,
whether tight-binding or continuum, is that the same disorder space arises for the bulk and
edge theories. This is certainly less than desirable. To the best of our knowledge, this problem
is not yet understood.

Extension of pairing to strong disorder More positively, as Bellissard showed, the cocycles
which compute the index pairings extend continuously to much larger algebras of “smooth-
but-not-continuous” observables, [5]. Ultimately these continuous extensions are what allows
us to describe the index pairings in the presence of disorder. This is not just mathematical
artifice: the “non-smooth” algebras are characterised in terms of Sobolev-type norms defined in
terms of “localisation length”. As the localisation length diverges, mathematically the pairing
loses meaning, and physically a new electron is promoted to the conduction band. These
observations are consistent with the Kasparov approach to the bulk-edge correspondence [15],
but go beyond the Kasparov framework.

van Daele K-theory The version of K-theory developed by van Daele [25, 26] is designed
to be a K-theory capable of discussing all complex, real, Real and graded variants at once,
just as Kasparov theory is. Consequently van Daele theory is a natural tool for topological
insulators and their invariants [42, 43]. Unsurprisingly, van Daele classes can be related to the
KK-language used to prove the bulk-edge correspondence [62, 63, 13]. The relationship can be
made explicit at the level of cycles [13], so as to be compatible with the constructive Kasparov
product discussed in previous sections.

Semifinite index theory In the genuinely disordered case, the bulk and edge fundamental
classes are Kasparov modules over the disorder space B = C(Ω). Since, typically, the algebra
C(Ω) is infinite dimensional, the bulk and edge Kasparov modules do not define spectral triples.

Instead, if we have a positive norm-lower semicontinuous trace τ : B → C, we can define a
scalar product on Cc(Zd, B) ⊂ `2(Zd, B) by

〈encn, ekdk〉 = δn,kτ(c∗ndn),

where en ⊗ cn, ek ⊗ dk ∈ Cc(Zd)⊗B are simple tensors.

The passage from the Kasparov module to its completion

(A, `2(Zd, B)B,D) 7→ (A, L2(`2(Zd, B), τ),D)
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yields what is called a semifinite spectral triple, [6, 20, 21], as was eventually recorded in
[12, 31]. In the context of topological phases of matter, where B = C(Ω) the trace τ arises
from a probability measure on Ω.

Semifinite spectral triples define index pairings with K-theory just like “vanilla” spectral
triples, though these index pairings in general yield a real number [16, 17, 55, 56]. Nonetheless,
the semifinite index pairings respect the Kasparov product [19], and the bulk-edge correspon-
dence for the numerical index pairings follows from the Kasparov arguments above: see [12, 15].

References

[1] A. Altland, M.R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-
superconducting hybrid structures, Phys. Rev. B 55 (2), (1997), 1142–1161.

[2] J. Avron, R. Seiler, and B. Simon, The index of a pair of projections, J. Funct. Anal. 120
(1994), no. 1, 220–237.
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